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An efficient quantum implementation of the advanced encryption standard
(AES) is crucial for reducing the complexity of implementing an exhaustive key
search through Grover’s algorithm. In this paper, we study how to construct
resource-efficient quantum circuits for AES. We consider the product of T-
gates depth and width (TDW) and the product of full depth and width (FDW)
as optimization targets. We propose a generic method, called the controlled
control qubit cascade (CCQC) technique, to construct quantum circuits for
nonlinear components with reduced TDW and FDW. Using this, we construct
a quantum circuit for the AES S-box. Compared with recent work presented
at ASIACRYPT 2023, our S-box quantum circuit achieves reductions of 2.3% in
TDW and 45.2% in FDW. Additionally, we propose a new key schedule strategy
to reduce the full depth of the AES quantum circuit. Finally, the trade-offs
between T-gates depth and width and the parallel numbers of S-box and TDW
are analyzed.
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1 Introduction

Quantum technology, including cryptography Shor and Preskill [1]; Qin et al.
[2], quantum computing Grover [3]; Shor [4], and quantum precision measurement
Braginsky and Khalili [5]; Childs et al. [6], is the frontier of a new round of scientific
and technological revolution. Quantum computing has been widely applied in fields
including quantum cryptography Zhou et al. [7]; Gong et al. [8], quantum simulation
Buluta and Nori [9], machine learning Song et al. [10, 11]; Li et al. [12, 13], solving
equations Childs et al. [14]; Wan et al. [15, 16], and cryptanalysis Kaplan et al. [17];
Cai et al. [18]. The threats that quantum computing poses to existing cryptographic
systems are well-known. Once large-scale quantum computers become operational,
Shor’s algorithm will be capable of breaking asymmetric cryptographic schemes that
rely on the discrete logarithm and factoring problems, such as RSA, ECDH, and
ECC Shor [4]; Shor [19]. For symmetric cryptography, the primary challenges posed
by quantum computation arise from Simon’s algorithm and Grover’s algorithm. When
a quantum oracle that implements the target cryptographic quantum circuit can be
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accessed, Simon’s algorithm can undermine various symmetric
cryptographic schemes by finding hidden periods Kaplan et al.
[17]; Bonnetain et al. [20], while Grover’s algorithm can provide
quadratic acceleration for exhaustive key searches that attack block
ciphers Grover [3].

Due to the extremely high cost of quantum resources, estimating
the quantum resources needed to attack block ciphers usingGrover’s
algorithm is crucial for reducing the implementation difficulty of
such attacks and accurately predicting their actual implementation
time. The advanced encryption standard (AES) Daemen [21]
is one of the most widely used block ciphers today; thus,
evaluating the quantum resources needed to attack it is highly
significant. Moreover, the National Institute of Standards and
Technology (NIST) has proposed the standardization of post-
quantum cryptography by defining security categories 1, 3, and 5
based on the computational resources needed for exhaustive key
searches on AES-128, AES-192, and AES-256, respectively. The
key to applying Grover’s algorithm to AES lies in implementing
the Grover oracle, which utilizes the AES quantum circuit to
mark the correct key during the search process. Consequently,
the precise estimation and careful optimization of the quantum
circuit implementing AES have attracted significant attention in
recent years.

Computational resources are oftenmeasured by quantum circuit
size. Metrics commonly used to measure quantum circuits include
width, depth, and the number of quantum gates Specifically, width
refers to the number of logical qubits needed in a quantum circuit.
Meanwhile, the minimum stages of quantum gates that can be
executed in parallel in a circuit is called depth. We can measure the
depth of all elementary gates within the circuit or focus specifically
on the depth of a particular quantum gate, depending on the
requirements of our demand. From a physical implementation
perspective, realizing quantum circuits with a large width or deep
depth is quite difficult Sun et al. [22]. Therefore, prior works have
often focused on ways to reduce either the width Grassl et al. [23];
Zou et al. [24]; Li et al. [25] or depth Jaques et al. [26]; Huang and
Sun [27] required for Grover’s attack onAES. However, there is often
a trade-off between these two metrics. For example, optimizing the
width of a quantum circuit may lead to a very large depth, which in
turn makes Grover’s attack difficult to implement. Hence, it is also
very feasible to consider the product of width and depth as a metric
for measuring the size of a quantum circuit. Specifically, because the
running time of fault-tolerant quantumcomputers is proportional to
the T-gates depth Fowler [28]; Amy et al. [29, 30], the T-gates depth
is also commonly used as an optimization target. For distinction, this
paper refers to the depth of all elementary gates as the F-depth and
to the T-gates depth as the T-depth. Considering the significance of
F-depth and T-depth, we introduce the definitions of FDW as the
product of F-depth and width and TDW as the product of T-depth
and width, respectively.

1.1 Related works

One of the key challenges in implementing the AES quantum
circuit is constructing the quantum circuit for the nonlinear
component S-box. Previous works can generally be categorized into
three types based on optimization goals for S-box quantum circuits:

reducing width, depth, or the product of width and depth. We
introduce related works from these three perspectives.

1.1.1 Reducing width
This field was initiated by Grassl et al., who utilized the

Itoh–Tsujii algorithm to find the multiplicative inverse in a finite
field GF(28) for an S-box Grassl et al. [23]. Consequently, extensive
subsequent works Chung et al. [31]; Wang et al. [32]; Li et al. [25]
focused on efficiently solving the multiplicative inverse in GF(28).
These works leveraged the properties of tower fields tomap elements
from an extension field to a subfield, thereby leading to the design
of S-box circuits with low widths. Alternatively, Zou et al. [24] and
Huang and Sun [27] employed the classical S-box circuit proposed
by Boyar and Peralta [33] to construct S-box quantum circuits
with low width, leveraging the fact that this classical S-box circuit’s
multiplicative complexity was optimized by a heuristic algorithm.
Huang and Sun [27] developed an in-place circuit structure for an
S-box, and Li et al. [34] utilized this circuit to construct an S-box
quantum circuit with five ancilla qubits.

1.1.2 Reducing depth
Jang et al. [35] constructed the first S-box quantum circuit

aimed at reducing depth. However, the focus was usually on T-
depth. Huang and Sun [27] formulated a technique that transforms
a classical circuit with a multiplicative depth of t into a quantum
circuit with a T-depth of t. They utilized the S-box classical circuit
Boyar and Peralta [36] to construct an S-box quantum circuit aimed
at optimizing T-depth. Furthermore, Huang et al. optimized the
classical S-box circuit Boyar and Peralta [36] and constructed an S-
box quantum circuit with the theoretically lowest T-depth of 3 using
this optimized classical circuit. Additionally, Huang et al. provided
theoretical proof that the T-depth equals 3.

1.1.3 Reducing the product of width and depth
This metric was first presented and optimized by Jaques et al.

Jang et al. [35], but fewer studies focused on it. Most recently, the
product of width and depth has begun to receive attention. Liu
et al. proposed a technique called m-XOR at ASIACRYPT 2023
Liu et al. [37] that can identify reusable qubits. They also designed
a compact circuit structure for the S-box and constructed an S-box
quantum circuit with a product of T-depth and width equal to 344.

1.2 Our contributions

We analyze the algebraic structures of S-box classical circuits,
uncovering the intrinsic connections between multiplicative
nodes. This inspires our controlled control qubit cascade (CCQC)
technique for constructing quantum circuits with optimized TDW
and FDW. Applying CCQC, our S-box quantum circuit reduces
TDW by 2.3% and FDW by 45.2% compared to ASIACRYPT 2023
work Liu et al. [37]. We develop a key schedule strategy to reduce
AES circuit F-depth. With this and our S-box circuit, we estimate
the quantum resources required to implement iterative AES-128.
Finally, we analyze the trade-offs of T-depth and width, as well as
S-box parallelism versus TDW. Finally, we analyze T-depth vs. width
and S-box parallelism vs. TDW trade-offs.
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2 Preliminaries

2.1 Synthesis of quantum circuits

A qubit is typically denoted as |q〉, and |q〉⊗n refers to a n-
qubit quantum system that can also be represented by unit vectors
in ℂ2

n
Nielsen and Chuang [38]. A quantum circuit transforms the

initial input state into the final output state through a series of
unitary operations, where the unitary transformation U is a linear
map and satisfies U ⋅U† = I, and U† is the adjoint of U. Any unitary
transformation can be constructed by a composition and a tensor
product of a universal gate set. A universal gate set consists of a
finite number of single-qubit gates and two-qubit gates. And U† can
be obtained by reversing the order of adjoint gates in U. Quantum
circuits require that ancilla qubits should be ultimately returned
to |0〉; thus, U† is typically used for uncompute operations. We
adopt the Clifford + T set as this gate set that can be implemented
fault-tolerantly on a large set of surface codes. The Clifford + T set
includes

H = 1
√2
(
1 1
1 −1
), S = (

1 0
0 i
), CNOT =(

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

),

and a non-Clifford gate T = (
1 0
0 eiπ/4

), where i = √−1. We also

apply the Pauli-X gate X =HS2H = (
0 1
1 0
), which can implement

|a〉 → |a+ 1〉. Here, “+” implies XOR. The CNOT gate implements
|a〉|b〉 → |a〉|a+ b〉, and the Toffoli gate implements |a〉|b〉|c〉 →
|a〉|b〉|c+ a ⋅ b〉. In quantum circuits, X gates, CNOT gates, and
Toffoli gates, respectively, perform the corresponding classical NOT,
XOR, and operations. The quantum AND gate is similar with the
Toffoli gate to |a〉|b〉|0〉 → |a〉|b〉|a ⋅ b〉. The difference is that the
quantum AND gate requires the input state of the target qubit as
|0〉. In this paper, the quantum circuit we constructed perfectly
meets this condition. Hence, we adopt a quantum AND gate
because the T-depth of the quantum AND gate is 1 Huang and
Sun [27]. The quantum AND gate, together with its adjoint, are
illustrated in Figure 1.

2.2 Classical circuits and directed acyclic
graphs (DAG)

This paper utilizes concepts related to classical circuits and
directed acyclic graphs (DAGs) to explain the circuit construction
method Cong and Ding [39]. Therefore, this section will introduce
these relevant concepts. A classical circuit can be represented by
a DAG C = (V,E) with a set of nodes V and a set of edges E.
Nodes represent basic gates in classical circuits, and edges denote the
direction of bit-flow in the classical circuit. The inputs of a classical
circuit are often called the primary inputs. If there is a path from
node v to node w, v is a predecessor of w, and w is a successor of
v. Let us define the function l(v) → {0,1}, which returns 1 if v is
a multiplicative node and 0 otherwise. The multiplicative depth of
node v is the maximum number of multiplicative gates on any path

FIGURE 1
The quantum AND gate and its adjoint (a) quantum AND gate and (b)
quantum AND† gate.

that begin with a primary input and end with a node v. The function
of multiplicative depth d is

d (v) =
{
{
{

0 if |pred (v) | = 0

maxu∈pred(v)d (u) + l (v) otherwise
, (1)

where pred(v) denotes the set of all predecessor nodes of v. The
multiplicative depth of a circuit C is the maximal multiplicative
depth of its nodes

D =max
v∈C

d (v) . (2)

2.3 The advanced encryption standard

The advanced encryption standard (AES) is a block cipher
standardized by the NIST Daemen [21]. Three variants, AES-128,
AES-192, and AES-256, correspond to three different original key
lengths. The detailed process of the AES algorithm is that the input
128-bit data block is initially XOR with the first 128 bits of the
original key. Then, a specific number of round function iterations
constitute the encryption process of AES: 10 rounds, 12 rounds, and
14 rounds for AES-128, AES-192, and AES-256, respectively. There
are four operations during a round function in Figure 2: SubByte,
ShiftRow, MixColumn, and AddRoundKey. MixColumn is omitted
in the final round iteration.

Each block in a 4× 4 matrix represents a byte. AddRoundKey
applies the XOR operations to the round key and the 16 bytes.
SubByte transforms the 16-byte state using the S-box. ShiftRow
performs a cyclical leftward shift of the blocks in the i-th row by
i positions, where i = 0,1,2,3. MixColumn treats each column as a
polynomial over the finite field 𝔽256[x]/(x4 + 1) and multiplies these
polynomials by a fixed polynomial. It is a linear transformation that
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FIGURE 2
Round function process of the AES.

can be modeled as a matrixM in 𝔽32×322

M =(

(

0x02 0x03 0x01 0x01

0x01 0x02 0x03 0x01

0x01 0x01 0x02 0x03

0x03 0x01 0x01 0x01

)

)

,

where the elements inmatrixM are represented in hexadecimal.The
current round key is generated from the preceding round key by
Keyexpansion. Four bytes in a column of the 4× 4 matrix represent
a word W. Three operations are involved in the Keyexpansion:
RotWord, Rcon, and SubWord. RotWord performs a cyclical
leftward shift of words from the round key by one position. Rcon
applies the XOR operations to the round key and a constant vector.
SubWord transforms the state of one word from a round key by an S-
box.

3 Constructing a circuit for an S-box
with a low TDW and FDW

Theuniversalmethod for constructing an S-box quantumcircuit
can be summarized in two steps. First, identify a classical circuit
that implements the S-box. Then, implement this classical circuit
in a quantum circuit. We chose the S-box classical circuit proposed
by Boyar and Peralta [36], whose circuit depth had been optimized
by heuristic algorithms. This section introduces the construction
method: the controlled control qubit cascade (CCQC) technique for
the S-box quantum circuit.

3.1 Constructing a quantum circuit with a
low TDW and FDW

We introduce constructing an S-box quantum circuit by
studying the S-box classical circuit Boyar and Peralta [36]. Based
on the relevant knowledge presented in Equations 1, 2, we compute
the multiplicative depth of all multiplicative nodes within this
classical circuit and stratify all multiplicative nodes according to
their multiplicative depth, as shown in Table 1, where we assign
nodes with greater multiplicative depth to the higher layers.

The variables U0,U1,…,U7 in the classical circuit Boyar and
Peralta [36] represent the primary inputs of the S-box, while
S0,S1,…,S7 denote the outputs of the S-box. Analyzing these eight

TABLE 1 Hierarchical multiplicative nodes from an S-box
classical circuit.

Layer and multiplicative
depth

Multiplicative node

1 M1, M2, M4, M6, M7, M9, M11, M12,
and M14

2 M25, M31, and M34

3 M29, M30, M32, and M35

4 M46, M47, M48, M49, M50, M51,
M52, M53, M54, M55, M56, M57,
M58, M59, M60, M61, M62, and M63

outputs leads to Observation 1. Based on our previous experience,
the linear combinations of existing quantum states can be prepared
easily by several CNOT gates in a quantum circuit. Therefore, our
CCQC technique focuses on how to prepare multiplicative nodes
with maximum multiplicative depth in classical circuits.

Observation 1: The eight outputs of the S-box can be derived by
linear combinations of all multiplicative nodes with a multiplicative
depth of 4.

Example 1: A1 = I1× I2, A2 = I2× I3, B1 = A1+ I3, B2 = A2+ I1,
A3 = B2× I2, A4 = B2× I3, B3 = A3+B1, B4 = B3+A4, A5 = B2×
B1, B5 = A5+ I2, A6 = B4× I3, A7 = B5× I2.

We illustrate this method through a classical circuit in
Example 1.We calculate themultiplicative depth of all multiplicative
nodes in Example 1 and stratify them hierarchically. During the
stratifying of multiplicative nodes in Example 1, we further observe
that there usually exist additive nodes among different layers. These
additive nodes merge nodes with smaller multiplicative depth to
become the input for multiplicative nodes in a higher layer.

Theorem 1: In a given classical circuit, any multiplicative node can
be expressed as the product of a linear combination of its lower layer
multiplicative nodes and the primary inputs.

Theorem 1 shows that the highest-level multiplicative nodes
can be obtained from lower-level multiplicative nodes and
the primary inputs. The proof of Theorem 1 can be found in
Supplementary Material. Table 2 lists the algebraic relationships
between the multiplicative nodes from different layers of
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TABLE 2 Algebraic relationships between the multiplicative
nodes from Example 1.

Layer Algebraic relationships

1 A1 = I1× I2, A2 = I2× I3

2 A3 = (A2+ I1) × I2, A4 = (A2+ I1) × I3, A5 = (A2+ I1) × (A1+ I3)

3 A6 = (A1+A3+A4+ I3) × I3, A7 = (A5+ I2) × I2

1:Input: Any classical circuit C
2:Output: A novel classical circuit C that derived

the algebraic relationships between

multiplicative nodes

3:Function EXPAND(v)

4:  //v is the start node

5:i = = 1

6:for i ≤ 2 do

7:    //Inputiv ∈ {Input1v,Input2v}

8:   if Inputiv is addictive node then

9:      //Inputiv is the input of v

10:    EXPAND(Inputiv)

11:   else

12:    Update v with the production of Inputiv in C
13:   end if

14:   i++

15: end for

16: End Function

17: for each node c ∈ C do

18:  if c is multiplicative node then

19:    EXPAND(c)

20:  else

21:    Continue

22:  end if

23: end for

24: Return C

Algorithm1. Deriving algebraic relationshipsbetweenmultiplicativenodes
in circuit C.

Example 1. Algorithm 1 can ascertain the algebraic relationships
between multiplicative nodes in any classical circuit.

The CCQC technique prepares multiplicative nodes in the
quantum circuit hierarchically, and multiplicative nodes at the same
layer are prepared in parallel. Because a qubit cannot be used in
different quantum gates at the same time, to support the parallelism
of quantum AND gates, ancilla qubits are needed to copy variables
that are used as inputs to differentmultiplicative nodes.We can liken
the inputs of multiplicative nodes to the control qubits of Toffoli
gates and the outputs of themultiplicative nodes to controlled qubits.
We use Toffoli gates due to the compactness of its visualization and
the convenience of explanation.Then, the core concept of the CCQC
technique is to use the controlled qubits of lower-layermultiplicative
nodes as the control qubits for higher-layer multiplicative nodes. To
elaborate, we take advantage of the qubits occupied by lower-layer

FIGURE 3
Constructing a quantum circuit with the CCQC technique.

FIGURE 4
The quantum circuit to change the basis for the S-box.

multiplicative nodes as controlled qubits within the CNOT network,
transforming these lower-layer controlled qubits into inputs for
higher-layer multiplicative nodes. Figure 3 implements the highest-
layer multiplicative nodes from Table 2 by our CCQC technique.

Constructing an S-box quantum circuit using the CCQC
technique ismore complex.We preprocess the S-box classical circuit
followed by Theorem 1 and list the algebraic relationships among
multiplicative nodes in Supplementary Material. Upon analyzing the
classical circuit for the S-box, we obtain Observation 2.

Observation 2: All inputs of the lowest layer multiplicative nodes are
also the inputs of the highest layer multiplicative nodes.

We find that it is beneficial to save qubits if primary inputs can
be the inputs of multiplicative nodes directly. If not, extra qubits
are needed to prepare inputs for multiplicative nodes. Therefore,
we select eight linearly independent inputs U0 +U3 +U4 +U6,U0 +
U3 + U4 + U6 + U7,U2 +U4 +U5 +U6,U1 +U2 +U7,U0 +U3 +U5 +
U6,U0 +U1 +U2 +U5 +U6 +U7,U0 +U6,U1 +U2 +U6 +U7 from
the first layer as a new set of basis. We adopt the method proposed
by Patel et al. Markov et al. [40] to construct an in-place circuit that
needs 17CNOTgates to implement the transformation; see Figure 4.
This new basis is used as the primary input when constructing an
S-box quantum circuit with the help of Algorithm 2.

Algorithm 2 interprets how to construct a quantum circuit
with the CCQC technique. List Prepared includes the prepared
multiplicative nodes, and Anc includes ancilla qubits that are
introduced to ensure quantum AND gates can be executed in
parallel. Operation CNOT(m) means qubit m is a controlled qubit
in the CNOT network, and Uncompute(q)means do an uncompute
operation to release qubit q. Note that after preparing multiplicative
nodes from the fourth layer, we still need to construct the outputs
|S0〉, |S1〉,…, |S7〉 through CNOT gates and X gates. We list all
allocated qubits and gates of the S-box quantum circuit constructed
by Algorithm 2 in Table 3. Among them, the definitions of a CNOT
gate, AND gate, X gate, and REWIRE operation are as follows:
CNOTa, b→ a, a+ b, ANDa, b, c→ a, b, c = a ⋅ b, X(a) → (a+ 1),
REWIREa, b → b, a. We implemented our S-box quantum circuit
on Microsoft Q# to verify its correctness. The details can be viewed
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TABLE 3 Quantum circuit for the S-box implementation.

No. Gate No. Gate No. Gate

1 CNOTu3, u0 2 CNOTu4, u0 3 CNOTu6, u0

4 CNOTu6, u0 5 CNOTu2, u1 6 CNOTu7, u1

7 CNOTu4, u2 8 CNOTu5, u2 9 CNOTu6, u2

10 CNOTu4, u3 11 CNOTu7, u3 12 CNOTu5, u4

13 CNOTu7, u4 - REWIREu6, u7 - REWIREu3, u6

14 CNOTu6, u5 - REWIREu3, u1 15 CNOTu3, u7

16 CNOTu3, u7 17 CNOTu3, u5 18 CNOTu0, u1

19 CNOTu1, u4 20 CNOTu1, u5 21 CNOTu1, u6

22 CNOTu4, Anc0 23 CNOTu5, Anc0 24 CNOTu0, Anc1

25 CNOTu1, Anc1 26 CNOTu6, Anc2 27 CNOTu7, Anc2

28 CNOTu2, Anc3 29 CNOTu3, Anc3 30 CNOTAnc1, Anc4

31 CNOTAnc3, Anc4 32 CNOTu4, Anc5 33 CNOTu6, Anc5

34 CNOTu1, Anc6 35 CNOTu3, Anc6 36 CNOTu5, Anc7

37 CNOTu7, Anc7 38 CNOTAnc6, Anc8 39 CNOTAnc4, Anc8

40 CNOTu4, Anc9 41 CNOTu6, Anc9 42 CNOTAnc7, Anc9

43 ANDu4, u0, Anc10 44 ANDu5, u1, Anc11 45 ANDAnc0, Anc1, Anc12

46 ANDu6, u2, Anc13 47 ANDu7, u3, Anc14 48 ANDAnc2, Anc3, Anc15

49 ANDAnc9, Anc4, Anc16 50 ANDAnc5, Anc8, Anc17 51 ANDAnc7, Anc6, Anc18

52 CNOTu6, Anc19 53 CNOTu2, Anc19 54 CNOTAnc13, Anc19

55 CNOTAnc14, Anc19 56 CNOTAnc16, Anc19 57 CNOTAnc17, Anc19

58 CNOTAnc9, Anc20 59 CNOTAnc4, Anc20 60 CNOTAnc10, Anc20

61 CNOTAnc11, Anc20 62 CNOTAnc16, Anc20 63 CNOTAnc17, Anc20

64 CNOTAnc2, Anc21 65 CNOTAnc3, Anc21 66 CNOTAnc13, Anc21

67 CNOTAnc15, Anc21 68 CNOTAnc16, Anc21 69 CNOTAnc18, Anc21

70 CNOTAnc7, Anc22 71 CNOTAnc6, Anc22 72 CNOTAnc10, Anc22

73 CNOTAnc12, Anc22 74 CNOTAnc16, Anc22 75 CNOTAnc18, Anc22

76 CNOTAnc19, Anc23 77 CNOTAnc20, Anc24 78 ANDAnc19, Anc20, Anc25

79 ANDAnc24, Anc21, Anc26 80 ANDAnc22, Anc23, Anc27 81 CNOTAnc25, Anc21

82 CNOTAnc5, Anc28 83 CNOTAnc8, Anc28 84 CNOTAnc11, Anc28

85 CNOTAnc12, Anc28 86 CNOTAnc17, Anc28 87 CNOTAnc18, Anc28

88 CNOTAnc25, Anc22 89 CNOTu7, Anc29 90 CNOTu3, Anc29

91 CNOTAnc14, Anc29 92 CNOTAnc15, Anc29 93 CNOTAnc17, Anc29

(Continued on the following page)
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TABLE 3 (Continued) Quantum circuit for the S-box implementation.

No. Gate No. Gate No. Gate

94 CNOTAnc18, Anc29 95 CNOTAnc28, Anc30 96 CNOTAnc29, Anc31

97 ANDAnc21, Anc28, Anc32 98 ANDAnc22, Anc29, Anc33 99 ANDAnc30, Anc26, Anc34

100 ANDAnc31, Anc27, Anc35 101 CNOTAnc31, Anc29 102 CNOTAnc24, Anc20

103 CNOTAnc30, Anc28 104 CNOTAnc19, Anc21 105 CNOTAnc31, Anc21

106 CNOTAnc25, Anc21 107 CNOTAnc25, Anc19 108 CNOTAnc33, Anc19

109 CNOTAnc35, Anc19 110 CNOTAnc25, Anc22 111 CNOT(Anc32,Anc22)

112 CNOT(Anc25,Anc23) 113 CNOT(Anc33,Anc23) 114 CNOT(Anc35,Anc23)

115 CNOT(Anc25,Anc31) 116 CNOT(Anc35,Anc31) 117 CNOT(Anc25,Anc24)

118 CNOT(Anc32,Anc24) 119 CNOT(Anc34,Anc24) 120 CNOT(Anc25,Anc30)

121 CNOT(Anc34,Anc30) 122 CNOT(Anc21,Anc29) 123 CNOT(Anc22,Anc29)

124 CNOT(Anc29,Anc36) 125 CNOT(Anc29,Anc36) 126 CNOT(Anc19,Anc20)

127 CNOT(Anc24,Anc20) 128 CNOT(Anc20,Anc37) 129 CNOT(Anc30,Anc28)

130 CNOT(Anc31,Anc28) 131 CNOT(Anc28,Anc21) 132 CNOT(Anc15,Anc13)

133 CNOT(Anc16,Anc13) 134 CNOT(Anc18,Anc13) 135 CNOT(Anc33,Anc13)

136 CNOT(u0,Anc13) 137 CNOT(u2,Anc13) 138 CNOT(u4,Anc13)

139 CNOTAnc13, Anc38 140 CNOTAnc22, Anc39 141 CNOTAnc11, Anc10

142 CNOTAnc16, Anc10 143 CNOTAnc17, Anc10 144 CNOTAnc25, Anc10

145 CNOTAnc32, Anc10 146 CNOTAnc34, Anc10 147 CNOTu0, Anc10

148 CNOTu2, Anc10 149 CNOTu3, Anc10 150 CNOTu4, Anc10

151 CNOTu5, Anc10 152 CNOTAnc12, Anc11 153 CNOTAnc17, Anc11

154 CNOTAnc18, Anc11 155 CNOTAnc25, Anc11 156 CNOTAnc34, Anc11

157 CNOTu0, Anc11 158 CNOTu2, Anc11 159 CNOTu4, Anc11

160 CNOTu6, Anc11 161 CNOTAnc15, Anc14 162 CNOTAnc17, Anc14

163 CNOTAnc18, Anc14 164 CNOT(Anc25,Anc14) 165 CNOTAnc35, Anc14

166 CNOTu2, Anc14 167 CNOTu6, Anc14 168 ANDAnc19, u0, Anc40

169 ANDAnc14, u1, Anc41 170 ANDAnc13, Anc1, Anc42 171 ANDAnc10, u2, Anc43

172 ANDAnc11, u3, Anc44 173 ANDAnc22, Anc3, Anc45 174 ANDAnc29, Anc4, Anc46

175 ANDAnc20, Anc8, Anc47 176 ANDAnc28, Anc6, Anc48 177 ANDAnc23, u4, Anc49

178 ANDAnc31, u5, Anc50 179 ANDAnc38, Anc0, Anc51 180 ANDAnc24, u6, Anc52

181 ANDAnc30, u7, Anc53 182 ANDAnc39, Anc2, Anc54 183 ANDAnc36, Anc9, Anc55

184 ANDAnc37, Anc5, Anc56 185 ANDAnc21, Anc7, Anc58 186 CNOTAnc43, s0

187 CNOTAnc44, s0 188 CNOTAnc46, s0 189 CNOTAnc20, s0

(Continued on the following page)
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TABLE 3 (Continued) Quantum circuit for the S-box implementation.

No. Gate No. Gate No. Gate

190 CNOTAnc49, s0 191 CNOTAnc50, s0 192 CNOTAnc55, s0

193 CNOTAnc56, s0 194 CNOTAnc40, s1 195 CNOTAnc41, s1

196 CNOTAnc46, s1 197 CNOTAnc47, s1 198 CNOTAnc49, s1

199 CNOTAnc50, s1 200 CNOTAnc55, s1 201 CNOTAnc56, s1

202 X(s1) 203 CNOTAnc40, s2 204 CNOTAnc42, s2

205 CNOTAnc46, s2 206 CNOTAnc48, s2 207 CNOTAnc52, s2

208 CNOTAnc54, s2 210 CNOTAnc55, s2 211 CNOTAnc58, s2

212 X(s2) 213 CNOTAnc40, s3 213 CNOTAnc41, s3

214 CNOTAnc43, s3 215 CNOTAnc44, s3 216 CNOTAnc49, s3

217 CNOTAnc50, s3 218 CNOTAnc55, s3 219 CNOTAnc56, s3

220 CNOTAnc41, s4 221 CNOTAnc42, s4 222 CNOTAnc44, s4

223 CNOTAnc45, s4 224 CNOTAnc49, s4 225 CNOTAnc50, s4

226 CNOTAnc55, s4 227 CNOTAnc56, s4 228 CNOTAnc40, s5

229 CNOTAnc42, s5 230 CNOTAnc43, s5 231 CNOTAnc44, s5

232 CNOTAnc47, s5 233 CNOTAnc48, s5 234 CNOTAnc50, s5

235 CNOTAnc51, s5 236 CNOTAnc52, s5 237 CNOTAnc54, s5

238 CNOTAnc55, s5 239 CNOTAnc56, s5 240 CNOTAnc44, s6

241 CNOTAnc45, s6 242 CNOTAnc47, s6 243 CNOTAnc48, s6

244 CNOTAnc52, s6 245 CNOTAnc53, s6 246 CNOTAnc55, s6

247 CNOTAnc56, s6 248 X(s6) 249 CNOTAnc40, s7

250 CNOTAnc42, s7 251 CNOTAnc43, s7 252 CNOTAnc45, s7

253 CNOTAnc52, s7 254 CNOTAnc53, s7 255 CNOTAnc55, s7

256 CNOTAnc56, s7 257 X(s7)

in the online code at https://github.com/kyolxs/Constructing-
Resource-Efficient-Quantum-Circuits-for-AES.

Various implementations of S-box quantum circuits have been
proposed, with some utilizing Toffoli gates and others employing
AND gates. We present a comparison of the quantum resource
costs in S-box quantum circuits based on the Toffoli gate in
Table 4, focusing on previous works that study low Toffoli depth S-
boxes. Additionally, Jang et al. [35] and Liu et al. [37] conducted
a comprehensive comparison by decomposing Toffoli gates in
differentmanners. However, this paper adopts AND gates to achieve
lower circuit depth. Therefore, we need an additional 18 ancilla
qubits to support the preparation of the fourth layer multiplicative
nodes.After executing the fourth layer ofANDgates, those 18 ancilla
bits are reset to |0〉, and eight of them can be used directly to prepare

|S0〉, |S1〉,…, |S7〉. After the execution of the S-box, an S-box† is
necessary to uncompute ancilla qubits. We list a comparison of the
quantum resources costs in the S-box and the S-box† based on
the AND gate in Table 5. Among those works, the S-box quantum
circuit proposed by Liu et al. at ASIACRYPT 2023 Liu et al. [37] has
the same T-depth and a similar width as our work. Because their
proposed m-XOR technique can identify reusable qubits, it is very
effective in reducing width. Therefore, their work is similar to our
work in terms of the TDW. In fact, during our preprocessing to
obtain an S-box classical circuit, we frequently find that variables
Mj or Ui appear even times within the same formulation ∑jxjMj +
∑iyiUi, xj,yi ∈ 𝔽2. Due to the properties of the XOR operation, these
variables can be directly eliminated, avoiding unnecessary CNOT
gates targeting the same qubit and thereby reducing the F-depth.
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TABLE 4 Comparison of quantum resources for low Toffoli depth S-boxes based on a Toffoli gate.

Source Ancilla qubits #Toffoli To f-depth #CNOT #1qClifford

[26] 120 34 6 186 4

[27] 120 34 4 214 4

[27] 182 78 3 356 4

[42] 136 78 3 313 4

[42] 68 34 4 162 4

[37] 74 34 4 168 4

[37] 60 34 4 196 4

[43] 74 34 4 179 4

[43] 60 34 4 207 4

Ours 58 34 4 219 4

The bold values indicate the quantum resources required by the S-box quantum circuit constructed in this work.

TABLE 5 Comparison of quantum resources for an S-box and an S-box† based on an AND gate.

Source #CNOT #1qClifford #T T-depth F-depth Width Depth × width

TDW FDW

[26] 664 205 136 6 117 136 816 15,912

[27] 718 208 136 4 109 136 544 14,824

[37] 624 204 136 4 101 99 396 9,999

[37] 688 220 136 4 132 86 344 11,352

Our 710 276 136 4 74 58 + 8 + 18 = 84 336 6,216

The bold values indicate the TDW and FDW of the S-box quantum circuit constructed in this work.

Two types of S-boxes are required to construct the AES
quantum circuit in the next section. The first S-box implements
|x〉⊗8|0〉⊗8|0〉⊗a→ |x〉⊗8|S(x)〉⊗8|0〉⊗a in SubByte. The second S-box
implements |x〉⊗8|y〉⊗8|0〉⊗a→ |x〉⊗8|y+ S(x)〉⊗8|0〉⊗a in SubWord.
Our S-box quantum circuit can directly accommodate both
situations. We do not differentiate between these two types of S-
boxes in our subsequent discussions.

4 Optimized quantum circuits for AES

This section discusses the implementation of the quantum
circuit of AES. We begin by explaining how each component can be
implemented in a quantum circuit, followed by how to implement
the iterative encryption circuits for AES under a pipeline structure
and a round-in-place structure. We address estimating the quantum
resources required to implement AES. It is important to emphasize
that all the circuits mentioned in this section are implemented with
the maximum parallelism numbers of an S-box.

4.1 Components of AES and their
implementations

4.1.1 SubByte and SubWord
The S-box is the core cryptographic component used

to implement SubByte and SubWord. Its quantum circuit
implementation is detailed in previous sections. SubByte needs
16 S-boxes, and SubWord needs four S-boxes.

4.1.2 ShiftRow and RotWord
ShiftRow and RotWord only perform cyclical leftward shifts

but do not change the state of bytes. Both can be implemented
in a quantum circuit entirely through rewiring. Following
Grassl et al. [23], we considered rewiring as a free operation, thus
excluding it from cost estimates.

4.1.3 MixColumn and Rcon
MixColumn can be implemented with an in-place quantum

circuit due to the invertibility of its 32× 32 binary matrix M. A
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TABLE 6 The key schedule process of AES-192.

Round |K0〉⊗32 |K1〉⊗32 |K2〉⊗32 |K3〉⊗32 |K4〉⊗32 |K5〉⊗32

0 W0 W1 W2 W3 W4 W5

1 W̃6 W7 W8 W9 W4 W5

2 W6 W7 W8 W9 W10 W11

3 W̃12 W13 W14 W15 W16 W17

4 W̃18 W19 W14 W15 W16 W17

5 W18 W19 W20 W21 W22 W23

6 W̃24 W25 W26 W27 W28 W29

7 W̃30 W31 W26 W27 W28 W29

8 W30 W31 W32 W33 W34 W35

9 W̃36 W37 W38 W39 W40 W41

10 W̃42 W43 W38 W39 W40 W41

11 W42 W43 W44 W45 W46 W47

12 W̃48 W49 W50 W51 W46 W47

The bold keywords denote the keywords used in the current round of iteration.

TABLE 7 The key schedule process of AES-256.

Round |K0〉⊗32 |K1〉⊗32 |K2〉⊗32 |K3〉⊗32 |K4〉⊗32 |K5〉⊗32 |K6〉⊗32 |K7〉⊗32

0 W0 W1 W2 W3 W4 W5 W6 W7

1 W̃8 W9 W10 W11 W4 W5 W6 W7

2 W8 W9 W10 W11 W12 W13 W14 W15

3 W̃16 W17 W18 W19 W12 W13 W14 W15

4 W16 W17 W18 W19 W20 W21 W22 W23

5 W̃24 W25 W26 W27 W20 W21 W22 W23

6 W24 W25 W26 W27 W28 W29 W30 W31

7 W̃32 W33 W34 W35 W28 W29 W30 W31

8 W32 W33 W34 W35 W36 W37 W38 W39

9 W̃40 W41 W42 W43 W36 W37 W38 W39

10 W40 W41 W42 W43 W44 W45 W46 W47

11 W̃48 W49 W50 W51 W44 W45 W46 W47

12 W48 W49 W50 W51 W52 W53 W54 W55

13 W̃56 W57 W58 W59 W52 W53 W54 W55

14 W56 W57 W58 W59 W52 W53 W54 W55

The bold keywords denote the keywords used in the current round of iteration.
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TABLE 8 Quantum resources for implementing AES and its adjoint circuit with a pipeline structure.

Source #CNOT #1qClifford #T T-depth F-depth Width Depth × width

TDW FDW

AES-128

[26] 291,150 83,116 54,400 120 2,827 3,936 472,320 11,127,072

[27] 298,720 83,295 54,400 80 2,198 3,936 314,880 8,651,328

[35]∗ 285,984 75,040 54,400 80 1,856 6,372 509,760 11,826,432

[37] 264,752 103,600 54,400 80 1,600 3,689 295,120 5,902,400

[27] 570,785 189,026 124,800 60 2,312 5,576 334,560 1,2,891,712

Our 189,300 42,440 54,400 80 1,790 2,896 231,680 5,183,840

AES-192

[35] 325,072 86,384 60,928 96 2,228 6,692 642,432 14,909,776

[37] 298,512 116,848 60,928 96 1924 3,945 378,720 7,590,180

Our 212,652 47,520 60,928 96 2,154 3,216 308,736 6,927,264

AES-256

[35] 399,792 106,654 75,072 112 2,614 6,980 781,760 18,245,720

[37] 374,256 147,758 38,080 112 2,240 4,457 499,184 9,983,680

Our 261,148 58,564 75,072 112 2,518 3,536 396,032 8,903,648

The bold values indicate the T-depth, TDW, and FDW of the AES quantum circuit constructed in this work.

FIGURE 5
The iterative encryption circuit with a round-in-place structure.

number of studies by Jang et al. [35]; Liu et al. [37]; Xiang et al. [41]
have been conducted on the implementation ofMixColumn.We use
an in-place circuit Liu et al. [37] that requires only 98 CNOT gates
to implement MixColumn with an F-depth of 16. It can easily be
realized for the Rcon operation by applying X gates in the first word
of the round key as necessary.

4.1.4 AddRoundKey
AddRoundKey is executed in a quantum circuit through a

CNOT network, where the round key qubits act as control bits and
the 128 qubits for the AES data block act as controlled bits in the
CNOT network.

4.1.5 Keyexpansion
As mentioned before, the key used in the AddRoundKey

comes from the round key generated by the Keyexpansion. Hence,
Keyexpansion is also an iterative process that uses ten rounds, eight
rounds, and seven rounds for AES-128, AES-192, and AES-256,
respectively. In this paper, we adopt the in-place circuit structure
proposed by Jaques et al. [26] to realize the Keyexpansion iteration

by combining it with the SubByte subcircuit implemented by S-
boxes. For detailed circuit structure, please refer to Jaques et al. [26].
Each round of Keyexpansion process generates four, six, and
eight words that correspond to AES-128, AES-192, and AES-256,
respectively.

The key schedule strategy controls the iterative progress of
Keyexpansion, and a reasonable key schedule strategy can make the
circuit more compact. We designed a new key schedule strategy that
reduces the F-depth. The criterion of our key schedule strategy is to
ensure that the SubWord subcircuitmust be executed in parallel with
the SubByte subcircuit. For AES-128, the Keyexpansion’s iteration
is synchronized with the round function’s iteration. However, it
should be noted that subcircuits of Rcon and SubWord must
be executed in parallel with the SubByte subcircuit, and the
remainder subcircuit of Keyexpansion executes in parallel with the
MixColumn subcircuit. Due to the iterative rounds ofKeyexpansion,
it is slightly more complex to arrange the circuit layout of AES-
192 and AES-256 in a reasonable way to make the circuit more
compact. We summarize the key schedule process corresponding
to each iteration of the round function for AES-192 and AES-
256 in Tables 6, 7. The leftmost column in the tables indicates the
round function’s iterative round, while the remaining columns show
which key word is stored in the 32 qubit registers during the key
schedule process. W0,W1,…,W5 are original key of AES-192, and
W0,W1,…,W7 are original key of AES-256. The key words with
a wavy line on top indicate the key words generated by SubWord
and need to be executed in parallel with the SubByte subcircuit.
The bold keywords denote the key words used in the current round
of iteration.
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TABLE 9 Quantum resources for implementing forward AES with a round-in-place structure.

Source T-depth F-depth Width Depth × width

TDW FDW

AES-128

[27]† 2,460 — 492 1,210,320 —

[37] 80 2,796 1,660 132,800 4,641,360

Our 80 1,636 1,608 128,640 2,630,688

AES-192 Our 96 1966 1,672 160,512 3,287,152

AES-256 Our 112 2,296 1,736 194,432 3,985,856

The bold values indicate the Width, TDW, and FDW of the AES quantum circuit constructed in this work.

FIGURE 6
The trade-off between T-depth and width for AES-128.

4.2 AES quantum circuit with a pipeline
structure

The pipeline structure Jaques et al. [26] was proposed by Jaques
et al. to reduce the depth of the circuit. The characteristic of the
pipeline structure is that after completing one round iterative round
function, it directly allocates new qubits to implement the next
round iterative round function. Jang et al. [42] further refined the
pipeline structure into a regular version and a shallow version.
We adopted the regular version because the regular version has
high parallelism while considering the depth-qubit trade-off. We
integrated our S-box quantum circuit into the regular-version
pipeline structure and estimated the quantum resources required to
implement the AES forward circuit and its adjoint circuit. Table 8
compares our work with previous works under the same structure.
It is worth noting that Liu et al. [37] and Jang et al. [35] only provide

FIGURE 7
The influence of p on TDW.

the resources for a forward circuit.Therefore, we havemultiplied the
metrics other than width by 2 in Table 8.

For the implementation of AES-128, the quantum circuit that
applies our S-box quantum circuit with pipeline structure has a T-
depth of 80. Compared to the state-of-the-art work with the same
T-depth, our approach achieves a 21.5% reduction in TDW and
a 12.2% reduction in FDW. In the case of AES-192, the quantum
circuit that applies our S-box quantum circuit with a pipeline
structure has a T-depth of 96. Compared to the state-of-the-art work
with the same T-depth, our approach achieves an 18.5% reduction
in TDW and an 8.7% reduction in FDW. Regarding AES-256, the
quantum circuit that applies our S-box quantum circuit with a
pipeline structure has a T-depth of 112. Compared to the state-of-
the-art work with the same T-depth, our approach achieves a 20.7%
reduction in TDW and a 10.9% reduction in FDW.
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  Input: Algebraic relationships between

multiplicative nodes of a given classical circuit

 2: Output: A quantum circuit to implement the

highest layer

  Initialize empty lists Prepared and Anc

 4: l = 1

    //L denotes maximum layer of C
 6: while l ≤ L do

    if Anc is not empty then

 8:    for q ∈ Anc do

        if q is not required by l-th layer then

 10:       Uncompute(q)

         remove q from Anc

 12:      end if

        end for

 14:    end if

      for Mi ∈ l-th layer do

 16:    if ∃m ∈ Prepared is required by Mi ∧ only

required by Mi then

      CNOT(m)

 18:  else

     Introduce new ancilla qubit qnew and add qnew

to Anc

 20:   CNOT(qnew)

   end if

 22: end for

   prepare multiplicative nodes in l-th layer by

quantum AND gates

 24: for Mi ∈ l-th layer do

       add Mi to Prepared

 26: end for

   l = l+1

 28: end while

Algorithm 2. Apply the CCQC technique to construct the quantum circuit.

4.3 AES quantum circuit with a
round-in-place structure

The round-in-place structure Huang and Sun [27] was proposed
by Huang et al. to maximize the reuse of qubits and greatly
reduce circuit width. They showed the method to construct the
inverse S-box quantum circuit based on an S-box quantum circuit,
an additional 42 CNOT gates, and four X gates. For more
details, please refer to Huang and Sun [27]. With the inverse S-
box quantum circuit, they constructed the iterative encryption
in an in-place manner; see Figure 5. Because the T-depth of
one round iteration with the round-in-place structure is twice
that of the pipeline structure, we divide K̃E into two halves
to save ancilla qubits. After dividing K̃E into two-halves, there
needs an accumulative total of 18 S-boxes in each part, two S-
boxes in K̃Ehalf and 16 S-boxes or inverse S-boxes in SubByte or
SubByte−1.

We also apply our S-box quantum circuit to the round-in-place
structure and estimate quantum resources for implementing the

AES forward circuit without its adjoint circuit. Table 9 compares
our work with previous works under the round-in-place structure.
Because Liu et al. [37] did not provide the F-depth of AES-128,
we calculate the F-depth of their circuit based on the F-depth
of the S-box they applied to an R structure. Apart from the F-
depth, all other metrics are directly derived from Liu et al. The
quantum circuit that applies our S-box quantum circuit with a
round-in-place structure had a T-depth of 80. Compared with
the circuit of Liu et al. with the same T-depth, we achieved a
modest reduction of 3.1% in TDW and a substantial reduction of
43.3% in FDW.

5 Trade-offs of circuit metrics

This section shows the trade-offs between T-depth and width,
the parallel numbers p of the S-box and TDW. We construct four
AES-128 circuits by combining the pipeline structure and round-
in-place structure with our S-box quantum circuit. We set different
values for p in these four circuits and estimate their width, T-
depth, and TDW. We define the pipeline structure using our S-
box quantum circuit as Circuit 1, and the round-in-place structure
using our S-box quantum circuit is represented by Circuit 2. It
should be noted that due to the different structural characteristics
of these two circuit structures, we set p for the pipeline structure
to be a factor of 20 and p for the round-in-place structure to
be a factor of 18. Figure 6 shows the trade-off curves for the
T-depth and width of the different circuits. Figure 7 reflects the
influence of p on TDW. The points on the curves correspond to
different values of p. In the same curve, the points on the right
correspond to smaller values of p. From left to right, the points
on Circuit 1 correspond to p = 20,10,5,4,2,1, respectively. From
left to right, points on Circuit 2 correspond to p = 18,9,6,3,2,1,
respectively.

6 Conclusion

We propose the CCQC technique for constructing quantum
circuits for nonlinear components, providing a general method
to reduce both TDW and FDW. Additionally, we design a new
key schedule strategy to reduce the F-depth of the AES quantum
circuit. This paper introduces significantly optimized AES quantum
circuits, achieving improvements in TDW and FDW. Our research
provides a new idea for constructing quantum circuits for nonlinear
components of other block ciphers with low TDW and FDW.
However, the CCQC technique is more suitable for constructing
quantum circuits with low TDW and FDW for classical circuits
that have a lower multiplicative depth. On the other hand, solely
focusing on reducing the multiplicative depth of a circuit implies
the need for more intermediate values, which in turn costs more
qubits when constructing the quantum circuit. Therefore, the
impact of multiplicative depth on TDW and FDW is worth further
exploration. Finally, we find that for the S-box quantum circuit
designed in this article, implementing the iterative AES quantum
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circuit by regular-version pipeline structure is more advantageous
for FDW and TDW.
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