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Non-cooperative inference
method for the IoBT topology
based on flow rate estimation

Jun Huang, Rongcheng Dong*, Zhao Niu, Chao Peng and
Jie Chen

College of Electronic Engineering, National University of Defense Technology, Hefei, China

The widespread integration of Internet of Things (IoT) technology in the
military domain has brought significant attention to the security concerns
surrounding the Internet of Battlefield Things (IoBT). Given the limited
communication resources within IoBT, there is a growing focus on detecting
network security without interrupting normal network operations. Topology
serves as a crucial foundation for the detection of network security in
IoBT, facilitating the discovery of abnormal devices and the detection of
unauthorized access. Security detection based on topology can effectively
enhance the information security and operational levels of IoBT. This paper
utilizes matching analysis of time series for information exchanged between
neighboring nodes and implements IoBT topology inference based on flow
rate estimation, and a threshold parameter adaptive adjustment strategy is
innovatively proposed to improve the accuracy of topology inference. The non-
cooperative inferencemethod proposed in this paper enables network topology
inference without network access and information parsing, exhibiting strong
generality and independence from the discovery of acknowledgment frames
during information exchange processes. The simulation results demonstrate the
feasibility and superiority of this method.

KEYWORDS
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1 Introduction

With the continuous evolution of military technology, the demands placed on
information transmission efficiency and security during battlefield operations have
escalated Wen et al. [1]. Traditional military systems encounter several limitations,
including high costs, extended deployment times, constrained communication resources,
and low information transmission efficacy Conradie [2]. In order to effectively improve
the efficiency of battlefield communication, the construction of a distributed battlefield
network has become the development direction for military communication networks
worldwide Chen et al. [3]. Compared to traditional military systems, large-scale distributed
networks composed of various military systems can achieve faster, cheaper, and more
flexible battlefield deployment and information transmission. As a crucial component of the
distributed battlefield network, IoBT is receiving increasing attention globally Abuzainab
and Saad [4]. IoBT connects various combat elements through information sensing, linking
them to the military information network. This integration bridges the gap between the
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network domain and the physical domain, providing new
perspectives for constructing a novel military communication
network system Akter et al. [5]. Within the IoBT framework,
real-time perception and rapid response to the status information
and dynamics of weapon systems, combat units, and battlefield
environments are facilitated through network communication.
Despite the introduction of security measures, IoBT remains
challenging to effectively counter attacks such asman-in-the-middle
attacks, communication node impersonation, and information
tampering Li et al. [6]. When impersonating nodes gain access
to the network, the attackers can launch denial-of-service attacks by
sending a large volume of useless information, leading to network
congestion Islam et al. [7]. Additionally, they can disrupt normal
information transmission by forging information, affecting the
regular operations of military forces, such as altering commands
or fabricating false situational information Rutravigneshwaran
et al. [8]. To detect hidden abnormal nodes in the network and
enhance the security performance of IoBT, topology discovery
proves to be an effective means. Topology inference methods can be
broadly classified into cooperative and non-cooperative categories,
depending on network accessibility assumptions. Cooperative
methods rely on network accessibility and parseable messages as
their fundamental premise. They are further divided into methods
based on protocol analysis Yan [9]; Yong et al. [10] and methods
based on network tomography Chen et al. [11]; Zhang and Phillips
[12]; Jin et al. [13]. Some methods necessitate the transmission of
numerous probing packets to finalize the inference, rendering them
impractical for scenarios with restricted information acquisition
and inaccessible networks. Moreover, the traffic generated by
the detection devices upon access can escalate the network
load, exacerbating the strain, especially in environments with
limited communication resources. Consequently, this can impede
the efficiency of information transmission within the network.
Currently, research on non-cooperative topology inferencemethods
is relatively scarce. Relevant research outcomes mainly focus on
inferring network topology based on the correlation between data
frames and acknowledgment frames Niu et al. [14]. Common
methods include granger causality Tilghman and Rosenbluth
[15], transfer entropy Sharma et al. [16], clusteringLiu et al. [17],
neural network Testi and Giorgetti [18] etc. The aforementioned
methods strictly rely on the confirmation information sent from the
receiving node to the sending node after data frames are transmitted.
In cases where the protocol lacks a confirmation mechanism,
these methods cannot infer the communication relationships
between nodes. Additionally, due to the typically short length of
acknowledgment frames, there is a risk of undetectable situations
during the monitoring process, increasing the probability of false
negatives and false positives to some extent.

To address the shortcomings of the aforementioned methods,
this paper proposes a non-cooperative topology inference method
based on flow rate estimation. In this method, for the monitored
communication signals, the transmission times of information from
different nodes are extracted. Subsequently, the close correlation
between the relay nodes and the sending nodes in terms of flow rates
is utilized to determine the communication relationships. In order
to improve the accuracy of communication relationship inference, a
threshold parameter adaptive method is also proposed. Finally, the

results of communication relationship determination are integrated
to achieve the inference of network topology.

The remaining sections of the paper are organized as follows.
In Section 2, the related models adopted are presented. In
Section 3, the non-cooperative topology inference method based
on flow rate estimation is presented in detail. In Section 4,
the simulation experiments and results are shown, followed by
conclusions in Section 5.

2 Related model

The schematic diagram of the topology inference scenario
is shown in Figure 1. The green objects represent IoBT
communication equipments. Security detection devices are
deployed in proximity to each IoBT communication equipment,
enabling them to monitor signals within the deployment area
effectively. The red line represents that two communication
equipments are close enough to send signals to each other. While
detection devices can detect the location information and capture
all communication signals in the area, they lack the capability
to parse the content of transmitted information. Therefore, the
challenge at hand is: How can we infer the network topology of IoBT
without directly accessing the network or parsing the transmitted
information?

2.1 Network model

The topology diagram of the IoBT in Figure 1 is shown in
Figure 2. In Figure 2, G = (V,E) is used to represent the network
topology of IoBT, where V represents the set of nodes, with each
node representing a communication device, and E represents the set
of edges, with each edge representing a link. Each node is capable of
receiving, storing, and sending information with its communication
range. When nodes are within each other’s communication range, a
physical link capable of information transmission exists between the
two nodes. However, the existence of communication relationships
between nodes is only determined when information transmission
occurs between the nodes.We assume a static network, whichmeans
that the topology of the network does not change when executing
algorithms.

The topology inference results are represented using an
adjacency matrix A = [aij] ∈ ℝn×n, where aij = 1 indicates that there
is a communication relationship between the ith communication
device and the jth communication device during the monitoring
period, while aij = 0 indicates that there is no communication
relationship between the ith and jth communication devices during
the monitoring period.

Due to the impact of communication device transmission
power and environmental attenuation, each communication
device in IoBT has limitations on its communication range
Ganesh and Venkataraman [19]. To ensure effective information
transmission, communication networks often employ multi-hop
methods to achieve long-distance information transmission Singh
and Shrivastava [20]. In IoBT, devices can act as both sending
nodes and receiving nodes, and they can also serve as relay nodes
to forward information. When the sending node (source node)
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FIGURE 1
The schematic diagram of the topology inference scenario.

FIGURE 2
Network topology diagram.

FIGURE 3
Schematic diagram of a single information flow passing through
adjacent nodes.

and the receiving node (destination node) cannot be reached in
a single hop, multiple data packets will be successively relayed
among intermediate nodes Chai et al. [21]. The term “information
flow” refers to the flow created by the relayed data packets between
intermediate nodes.

2.2 Information flow model

Assuming that only one information flow passes between
two adjacent nodes within a certain period, as shown in
Figure 3. From Figure 3, it can be observed that the sending
moments of network node data are represented as points on the
real axis, described using a one-dimensional point process F =
{F1,F2,…,Fi,…,Fn},1 ≤ i ≤ n. The sending time sequences of data
between node 1 and node 2 are denoted as F1 and F2, where F1 =
{ f1(1), f1(2),…, f1(k),…, f1(L1)},1 ≤ k ≤ L1, L1 is denoted as the
number of time points in F1. For every time point in F1, if there exists
a time point in F2 corresponding to it, such that the time difference
between the two time points is less than a certain threshold, then an
information flow is formed from F1 to F2.

Examining the forwarding process of an individual data packet
within the information flow as the subject of observation, the
reliable transmission of the same packet along adjacent links in the
information flow path is subject to a delay, referred to here as the
packet single-hop forwarding delay ts. This delay mainly consists
of two parts. First, the MAC delay, including the transmission
delay tt, and the wait-to-access medium delay tw, where tt is the
time for data transmission when accessing the medium, which is
necessary, and tw is caused by access conflicts, determined by conflict
resolution solutions Roy et al. [22]. The estimation of the wait-to-
access medium delay needs to be based on a specific understanding
of the content of conflict resolution solutions. Second, the queuing
delay tq of the packet in the node buffer. If the network node adopts a
FIFO (First-In-First-Out) queuingmechanism, the queuing delay of
the n-th packet in the queue is the sum of the single-hop forwarding
delays of the preceding (n− 1) packets. The formula for calculating
the single-hop forwarding delay of a packet is given in Equation 1:

ts = tt + tw + tq (1)

where tt is relatively small, ts is mainly determined by the sizes of
tw and tq. Under general circumstances, there is a maximum value
for both tw and tq in the wireless network’s packet transmission.
Therefore, ts also has a maximum value Δm. However, in practical
networks, there is more than one information flow forwarded by
a wireless node. Assume Si represents the transmission time of
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FIGURE 4
Schematic diagram of a node forwarding two information flows.

FIGURE 5
Non-cooperative topology inference process flowchart based on flow
rate estimation.

data from the ith node, Fi represents the time when a particular
information flow passes through the ith node, andWi represents the
times when other information flows pass through the ith node. The
relationship among them can be expressed as Equation 2:

Si = Fi ⊕Wi (2)

where ⊕ means: for the three sequency (a1,a2,⋯), (b1,b2,…),
and (c1,c2,…), if (ak)

∞
k=1 ⊕ (bk)

∞
k=1 = (ck)

∞
k=1, when and only when

{ak}
∞
k=1 ∪ {bk}

∞
k=1 = {ck}

∞
k=1, where a1 < a2 < …,b1 < b2 < …,c1 <

c2 < ….
Figure 4 illustrates a scenario where the same node forwards two

information flows. It can be observed that when utilizing the sending
time sequences F1 and F2 of data from nodes 1 and 2 to detect
the information flow SA transmitted from node 1 and forwarded
by node 2, the sending time sequence of information flow SB sent
by node 3 and forwarded by node 2 are also mixed in F2. For the
detection analysis of the information flow from node 1 to node 2,
the sending time sequence of information flow from node 3 to node
2 is considered useless time records. Additionally, information flows
initiated directly by node 2, apart from those forwarded by node 2,
will also generate useless time records for the detection analysis of
information flow SA.

3 Non-cooperative topology
inference based on flow rate
estimation

The process of topology inference of the IoBT is
depicted in Figure 5. It involves analyzing and inferring the
network topology based on the timestamp sequence of packet
data transmission during the node’s sending process. If it can be
determined that there is information forwarding between some
nodes in the network, especially between two adjacent wireless
nodes, and directional information flow is detected between them,
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FIGURE 6
Noise reduction process diagram using the matching method for adjacent node data transmission times.

FIGURE 7
Denoising process diagram using ITA for adjacent node data transmission time sequence.

then these two wireless nodes and the corresponding directional
edges can be considered as part of the entire network topology.
Through prolonged accumulation and observation, the complete
topology of the network can be inferred. This method does not rely
on parsing the content of packet data, making it highly suitable for
topology inference in IoBT.

Based on obtaining the physical topology of the IoBT
and identifying pairs of adjacent nodes in the target network,
the sending time sequence of data from adjacent nodes is
extracted. By comparing the length differences between data
frames and link control frames, the frames containing data are
identified and arranged in chronological order on the time axis.
Subsequently, the denoising method is applied to remove data
that does not meet the criteria. The relative flow rate RD is
calculated based on the remaining data. Independent flow rate
estimation is performed on the extracted data from adjacent
nodes, followed by denoising and calculation of the relative flow
rate of independent flows (RE). If RD ≥ RE, it is determined that
there is an information transmission link between the two nodes;
otherwise, it is considered that there is no information transmission
link between the two nodes during the monitoring period.
Finally, the determination results of communication relationships
between different adjacent nodes are aggregated to draw the
topology of the IoBT.

3.1 Noise reduction processing

Utilizing the characteristic that the single-hop forwarding delay
of packets has a maximum value, matching is conducted between
the time sequences of data transmission from adjacent nodes.
Data transmission times within a certain time range difference
are grouped as the same packet data, while unmatched data is
deemed noise and promptly removed. The objective of denoising is
to identify potential packet data for the information flow.

Addressing the two types of useless time records mixed in the
information flow, one caused by the relay node forwarding other
information flows and those caused by the relay node itself sending
information flows, the maximum delay Δm requirements during
the packet forwarding process can be used. This involves cross-
referencing and locating packet data of the same information flowon
adjacent links. Figure 6 illustrates the concept of using the interval
time between data packet transmissions from adjacent nodes to
match the transmitted data packets from neighboring nodes.

From the diagram, it can be seen that when the time difference
between the downstream node’s packet transmission time and the
upstream node’s packet transmission time is less than Δm, it is
preliminarily considered that the packets sent by the two adjacent
nodes belong to the same information flow; otherwise, the packets
do not belong to the same information flow. In thematching process,
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FIGURE 8
The scenario diagram.

TABLE 1 Parameter settings in the EXata simulation environment.

Parameter Value

Simulation Area 1.5 km∗1.5 km

Simulation Time 300s

Nodes Number 49

Location Distribution grid

Interval Distance 200 m

Communication Distance 250 m

Physical Protocol 802.11

MAC Protocol TDMA or CSMA

Routing Protocol Bellmanford

Business Type CBR

a greedy algorithm approach is applied, attempting to match the
packets from adjacent upstream nodes with those from adjacent
downstream nodes that have not yet been paired. The remaining
unmatched packets are then classified as noise data.

3.2 Parameter adaptive adjustment

From the above subsection, we can see that Δm directly affects
the processing of noisy data, which in turn affects the accuracy of
topological inference results. If Δm is set too large, it will cause
misjudgment; If Δm is set too small, it will increase the probability

of missed judgment. Therefore, this paper proposes a parameter
adaptive adjustment method based on monitored data. Set node
identification accuracy rate PN as a measurement indicator, and
through continuously increasing the value of Δm, filter the value of
Δm whenPN reaches a stable state for subsequent topology inference.
The formula for calculating PN is shown as Equation 3:

PN =
|Nu|
|Na|
× 100% (3)

where Na is the set of nodes that send data during the monitoring
time of the network, Nu is the set of upstream nodes identified in
the network. In order to accelerate the speed of filtering the value
of Δm, divide the process into two stages: coarse-grained setting
and fine-grained adjustment. In the coarse-grained setting phase,
set Δm = Δ1, where Δ1 is the initial value, and if the inference result
is inaccurate, set Δm = 2×Δ1, i.e., the current is doubled until the
value of PN reaches a stable state. In the fine-grained adjustment
stage, it is assumed that the inference is correct when Δm = Δk,
then the optimal value is found between Δk and Δk−1. During the
optimization process, set Δm = Δk + t′, where t′ is the step size,
and gradually increase the value until the value of PN reaches a
stable state.

3.3 Relative flow rate estimation

Count the possible number of information flow packets,
calculate the proportion of these packets among the total number of
data transmissions from adjacent nodes, and obtain the magnitude
of the relative flow rate valueRD. In information flowdetection based
on the transmission time of data packets, useless time records are
analogous to noise in signal detection. Referring to the definition of
signal-to-noise ratio in communication signal detection, the relative
flow rate R f(t) is defined as the ratio of the number of information
flow data samples to the total number of data samples transmitted
by the node. The formula for calculating R f(t) is shown as

R f (t)Δ =
∑2

i=1
| fi ∩ [0, t]|

∑2
i=1
|si ∩ [0, t]|

(4)

where fi represents the data transmission time of the information
flow forwarded by the ith node, and Si represents the overall data
transmission time of the ith node. From Equation 4, it can be
observed that R f(t) changes with time.

3.4 Independent flow rate estimation
processing

The adjacent node data sending time sequences are subjected
to sampling processing to generate a new time sequence reflecting
the independent flow components between adjacent node pairs.
Subsequently, denoising and relative flow rate estimation are applied
to the new time sequence to obtain the value of the relative
flow rate under the condition of mutually independent time
sequences of adjacent nodes, which is denoted as RE. Independent
Traffic Approximation (ITA) is a heuristic algorithm that estimates
independent traffic between node pairs by sampling data from the
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FIGURE 9
Bar chart of scene and accuracy relation with fixed delta.

FIGURE 10
Bar chart of scene and accuracy relation with adaptive value.

node data transmission process. ITA has two parameters: one is
the synchronous window size Ws, and the other is the interval
between adjacent synchronous windows α. Figure 7 provides a
schematic diagram of the processing of node data transmission
points using the ITA method. ITA relies on the heuristic knowledge
that if Ws is sufficiently large, the data transmission times of F1
in window A1 and F2 in window B1 tend to be uncorrelated, even
under the condition of the existence of information flow. Then,
by performing maximum matching on F1 and F2 obtained using
the ITA method, the threshold value for the relative flow rate
is calculated.

3.5 Determination of association
relationships

ComparingRD andRE, ifRD is within a certain range and greater
than RE, it indicates that there is no information flow forwarding
relationship between adjacent nodes. Conversely, if RD is smaller
than RE, it suggests the presence of an information flow forwarding
relationship between adjacent nodes. To assess the performance of
the information flow detection algorithm, the metrics of node pairs
identification accuracy rate PR and node pairs identification false
rate PF are utilized. Assuming the set node pairs with upstream
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FIGURE 11
The diagram of the coarse-grained setting stage.

and downstream relationships actually exist in the network during
the monitoring time is denoted as NR, the set of node pairs with
upstream and downstream relationships identified by the algorithm
is denoted as NI, the equations for calculating PR and PF are shown
as Equations 5, 6:

PR =
|NI ∩NR|

NR
× 100% (5)

PF =
|NI −NI ∩NR|

NR
× 100% (6)

Drawing the network topology based on the identified
information flow transmission paths. In the topology inference
process, a confirmation method based on “topological convergence”
is employed. Specifically, after continuous processing of a substantial
amount of link transmission activities over an extended period,
if the network topology inference results no longer change, it is
considered as the end of identification. The stabilized topology
inference result is then considered as the final identification
result. Considering the analysis of the aforementioned inference
process, the pseudocode for the non-cooperative inference of
IoBT topology based on flow rate estimation is presented as
Algorithm 1. By lines 4, 6 and 18 in Algorithm 1, we have the run
time complexity of the algorithm max {O(n2), len(F)}, where n is the
size of the network, and F is the total sending time sequence of all
nodes of the network.

4 Simulation analysis

To validate the feasibility of the method, a simulation
environment was built using simulation software. Currently,
mainstream simulators include NS-2, NS-3, GloMoSim, OPNET,
QualNet, EXata, etc Walia et al. [23]. In comparison to other
simulators, both EXata and QualNet are developed based on
GloMoSim, utilizing an efficient parallel simulation kernel.
EXata and QualNet indeed showcase remarkable advantages
in simulation speed, scalability, and model fidelity, making

them prime choices for simulating large-scale wireless networks.
Given these advantages of EXata, it was used in this paper’s
research to construct experimental scenarios and conduct relevant
experiments.

4.1 Scene setup

In EXata, communication nodes were deployed to construct the
network based on the grid model, the scenario diagram is shown
in Figure 8, and relevant simulation parameters are listed in Table 1.
From the diagram, it can be observed that the simulated network
consists of 49 nodes positioned in a fixed manner arranged in a
grid. Additionally, for simplification purposes, while maintaining
the relative relationship between the network coverage area and
node communication distance, the communication distance of the
communication nodes and the coverage area of the network were
uniformly reduced in the simulated network. The communication
distance for communication nodes was set to 250 m, and the
simulation area was set to 1.5km2. The transmitted information by
the communication node is generated by a constant bit rate (CBR)
traffic generator in EXata.

4.2 Parameter adaptive adjustment

In order to show the necessity of Δm adaptive adjustment,
experiments are carried out, Δm was set fixed value and adaptive
value in different scenarios, and the accuracy rate of the
algorithm was compared. The experimental results are shown in
Figures 9, 10.

In Figures 9, 10, the abscissa represents the different scenarios
under the CSMA and TDMA protocols, from left to right: one
path mode, one-to-multiple mode, multiple-to-one mode, one-to-
one without crossing mode and one-to-one with crossing mode.
As can be seen from Figure 9, CSMA was used and Δm was set to
0.0003s, the number outside the parentheses above each bar is the
accuracy, and the number in the parentheses is the value of Δm in
the current scenario. It can be seen that when Δm is set to 0.0003s,
the highest accuracy of the algorithm is 66.67% (one path mode),
while the lowest is only 55% (multiple-to-onemode). Even under the
same protocol, the accuracy of the algorithm in different scenarios
is quite different. In Figure 10, TDMA was used and Δm was set
0.01s. In one-to-one with crossing mode, when Δm is fixed, the
accuracy of the algorithm is only 7.32%, while the accuracy of using
the adaptive adjustment reaches 63.41%. Therefore, using a fixed Δm
value cannot be adapted to different scenarios, and it is necessary to
select the appropriate values of Δm in combination with the scenario
during the operation of the algorithm. To verify the feasibility of
using the parameter adaptive adjusting method, experiments were
conducted in a scenario where multiple-to-one mode was used in
the network.

During the coarse-grained setting phase, Δm grows
exponentially. It can be seen fromFigure 11 that after the Δm is about
greater than 0.0001 s, the algorithm can make node identification
accuracy rate PN stably, so we can get the appropriate range of Δm
for fine-grained adjustment stage, which is 0.0001s–0.001 s. The
reason why PN is 0 when Δm is small is that, packet transmission
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FIGURE 12
The diagram of the fine-grained adjustment stage.

FIGURE 13
The influence of monitoring duration on inference accuracy and false rate.

between two adjacent nodes needs time. When Δm is too small,
the algorithm will exclude any packet transmission, thus the
accuracy is 0.

In the fine-grained adjustment phase, Δm grows linearly, in this
experiment, the Δm grows by 1

20
of the Δ1 at the beginning of each

fine setting phase. It can be seen from Figure 12 that the value of PN
is highest when the Δm is around 0.00073 s.Therefore, we can obtain

the optimal Δm value for this experimental configuration. Set Δm =
0.00073 s, then we study the influence of monitoring duration and
loss rate on inference accuracy and false rate.

As can be seen from Figure 13, the algorithm cannot make
effective inferences when the detection duration is less than 30s, and
when the detection duration is more than 36s, the algorithm can
make inferences. It is because before 30s, the algorithmdoes not have
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FIGURE 14
The influence of loss rate on inference accuracy and false rate.

FIGURE 15
Multiple-to-one business mode scenario diagram.

enough input, thus the calculated accuracy is low; after 36s, the input
is enough to infer the topology.

As can be seen from Figure 14, when the loss rate reaches a
certain value, around 57%, the false rate will gradually decrease. It
is because the amount of data is too small at this time, resulting in
very few node pairs inferred by the algorithm, and thus the number
of inferred wrong node pairs is gradually reduced.

FIGURE 16
Inference result for the multiple-to-one operational mode.

4.3 Typical operational scenarios
experiments

In the aforementioned simulated network environment, the
algorithm’s performance is validated in conjunction with different
typical operational scenarios. In each scenario, the value of Δm is
obtained through adaptive adjusting.
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FIGURE 17
One-to-multiple business mode scenario diagram.

FIGURE 18
Inference result for the one-to-multiple operational mode.

4.3.1 Multiple-to-one operational mode
Multiple-to-one operational mode refers to a scenario where

multiple nodes in the network communicate with a specified node
during the simulation period. This operational mode often occurs
in practical scenarios where lower-level units report situations to
higher-level units. The simulation scenario diagram containing
the business information flow is shown in Figure 15, nodes 4,
7, 13, 31, 45, and 46 transmit a CBR to node 22, respectively.
The time duration of every CBR is 30s. The topology inference
result is depicted in Figure 16. It can be observed that the node

FIGURE 19
Scene diagram for the one-to-one operational mode (non-crossing).

FIGURE 20
Scene diagram for the one-to-one operational mode (crossing).

pairs identification accuracy rate PR is 85%, and the node pairs
identification false rate PF is 5%. The reason for the last-hop cannot
be inferred is mainly because the method in this paper depends on
the forwarding behavior of the communication node, the receiving
node does not forward.

4.3.2 One-to-multiple operational mode
One-to-multiple operational mode refers to a scenario where

a specified node distributes information to multiple nodes in the
network during the simulation period. This operational mode often
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FIGURE 21
Inference result for the one-to-one operational mode (non-crossing).

FIGURE 22
Inference result for the one-to-one operational mode (crossing).

occurs in practical scenarios where higher-level units assign tasks
to lower-level units. The simulation scenario diagram is shown in
Figure 17, node 22 transmits one CBR to nodes 4, 7, 13, 31, and 45,
respectively. The topology inference result is depicted in Figure 18.
It can be observed that the node pairs identification accuracy rate PR
is 72.73%, and the node pairs identification false rate PF is 0%.

4.3.3 One-to-one operational mode
One-to-one operational mode refers to a scenario where

a specified node in the network randomly initiates business
communication with other nodes in the network. This operational

Input: F = {F1,F2,…,Fn},F′,n,t,Δm
Output: A = [aij] ∈ ℝn×n

1:A← 0n

2:F′←∅

3:Calculate Δm by adaptive adjustment method based

on input data

4: for i = 1:n do

5:  ni = len(Fi)

6:  for j = 1:(ni −1) do

7:    fu = Fi[j]}

8:   fd = Fi+1[j]

9:   if thenfd − fu ≤ Δm
10:    j = j+1

11:   else

12:    break

13:   end if

14:  end for

15:  Add{Fi,Fi+1} to F′

16:  i = i+1

17: end for

18: n′ = len(F′)

19: for i = 1:n′ do

20:  RD← Rf(t)Δ =

i+1
∑
i

|Fi∩[0,t]|

i+1
∑
i

|si∩[0,t]|

21:  CalculateRE between node i and node j

22:  if RE ≤ RD then

23:   aij = 1

24:  else

25:   aij = 0

26:  end if

27: end for

Algorithm 1. Topology inference algorithm.

mode often occurs in practical scenarios where adjacent units
exchange information. Two simulation scenarios were constructed
based on whether there are crossings in the information flow
transmission paths, as shown in Figures 19, 20. The topology
inference results are depicted in Figures 21, 22. From those figures,
it can be observed that in the case of non-crossing business flows,
the node pairs identification accuracy rate PR is 86.36%, and the
node pairs identification false rate PF is 9.1%. In the case of crossing
business flows, the node pairs identification accuracy rate PR is
87.1%, and the node pairs identification false rate PF is 0%.

5 Conclusion and future work

This paper investigates the topology inference of IoBT without
network access and information parsing. We propose a non-
cooperative topology inference method for IoBT based on flow
rate estimation. In the method, the sending time sequences of data
between adjacent nodes in the IoBT are extracted. According to the
requirement of the maximum delay in information transmission in
the network, the information flow within a certain threshold of the
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information transmission time between adjacent nodes is extracted.
In order to improve the accuracy of communication relationship
inference, a threshold parameter adaptive method is also proposed,
by adjusting the value adaptively, the negative influence of fixed
value on the inference result is avoided. The relative flow rate size
RD of information transmission in the network and the relative
flow rate RE between nodes with independent information flow are
calculated. IfRD ≥ RE, it is determined that there is a communication
relationship between adjacent node pairs. Simulation experiments
have demonstrated the feasibility of this method.

However, there are limitations and challenges associated with
the proposed method. First, the proposed algorithm operates
in a centralized manner. Since the runtime complexity of
the algorithm is polynomial with respect to the input size,
the execution time increases significantly as the size of the
network grows. This makes the proposed method less suitable
for large-scale networks, where the computational overhead
and latency could become prohibitive. To address this, future
work could explore distributed or parallelized versions of the
algorithm, leveraging modern computing architectures such as
edge computing or cloud-based solutions to improve scalability
and efficiency.

Second, the proposed method is primarily designed for static
networks. The input to the algorithm, which is the timestamp
sequence, remains fixed during the execution of the algorithm.
As a result, the inferred topology reflects only a snapshot of the
network’s state at the time the input was collected. If the network
topology changes after the input is taken—due to node mobility,
link failures, or adversarial actions—the accuracy of the inferred
topology may degrade significantly. This limitation is particularly
critical in IoBT environments, where network dynamics are inherent
due to the mobility of combat units, environmental factors, and
evolving mission requirements. To overcome such a challenge,
future research should focus on developing adaptive and real-time
topology inference methods capable of handling dynamic network
conditions.
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