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Introduction: The increasing emphasis on sustainable finance policies has
necessitated the development of advanced mathematical models to optimize
bank investment portfolios and debt structures. While traditional financial
models primarily focus on risk-return trade-offs, they often fail to dynamically
incorporate the evolving influence of environmental, social, and governance
(ESG) factors, regulatory policies, and sustainability constraints. Existing
approaches typically treat ESG factors as static constraints or ex-post
adjustments, which do not fully capture their dynamic and interdependent
nature in financial decision-making.

Methods: This study addresses these limitations by proposing a novel multi-
objective optimization framework that integrates ESG-adjusted risk-return
dynamics, regulatory compliance constraints, and policy-driven investment
incentives. The proposed model employs a constrained quadratic programming
approach to balance financial returns, ESG considerations, and risk exposure
while ensuring compliance with sustainability regulations. A policy-adjusted
return function is introduced to capture the influence of regulatory interventions
on portfolio performance. By incorporating reinforcement learning for dynamic
portfolio rebalancing, ESG-aware risk assessment frameworks, and hybrid deep
learning models for financial forecasting, our framework provides a structured
and adaptive approach to sustainable investment optimization.

Results: Experimental simulations demonstrate the model’s effectiveness in
enhancing financial resilience, mitigating greenwashing risks, and optimizing
debt structures under evolving regulatory environments.

Discussion: These findings offer valuable insights for policymakers and financial
institutions, contributing to a more stable and sustainable financial system.

KEYWORDS

sustainable finance, portfolio optimization, debt structure, ESG factors, mathematical
modeling

1 Introduction

The optimization of bank investment portfolios and debt structures under sustainable
finance policies has become a pressing concern as financial institutions face increasing
regulatory scrutiny and market expectations regarding environmental, social, and
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governance (ESG) considerations [1]. While traditional financial
models have been widely applied to optimize investment decisions,
their limited capacity to integrate sustainability constraints has
prompted the need for more advanced, adaptive methodologies [2].

Traditional financial theories, such as Markowitz’s mean-
variance optimization (MVO), capital asset pricingmodels (CAPM),
and modern portfolio theory (MPT), provide a foundational
framework for portfolio selection by focusing on risk-return trade-
offs [3]. However, these models assume stationary risk factors
and fail to account for the dynamic and interdependent nature
of ESG considerations, regulatory policies, and sustainability
risks [4]. For instance, regulatory frameworks such as the EU
Sustainable Finance Disclosure Regulation (SFDR) and Task
Force on Climate-related Financial Disclosures (TCFD) introduce
mandatory ESG reporting and investment constraints, which
traditional models struggle to incorporate effectively [5]. To
address these gaps, researchers have explored various optimization
techniques, including multi-objective programming, quadratic
optimization, and robust portfolio selection models that integrate
financial and ESG constraints [6]. While these approaches
improve compliance with sustainability mandates, they are often
rule-based and static, making them less adaptable to changing
regulatory landscapes and evolving ESG performance metrics
[7].

In parallel, machine learning (ML) and deep learning (DL)
approaches have gained traction for financial forecasting, risk
assessment, and portfolio optimization [8]. ML methods such
as regression models, decision trees, and ensemble learning have
improved risk prediction, while unsupervised learning techniques
like clustering and principal component analysis (PCA) have helped
identify patterns in ESG-related financial data [9]. Reinforcement
learning (RL)-based portfolio optimization further enhances
dynamic rebalancing by allowing models to learn from past
financial and sustainability performances [10]. Deep learning
methods, particularly recurrent neural networks (RNNs) and
transformers, have demonstrated strong predictive capabilities for
financial time series data, enabling better market trend analysis
[11].

Despite these advancements, a key research gap remains,
existing models for bank investment portfolio and debt structure
optimization either rely on static rule-based frameworks that
lack adaptability or employ data-driven approaches that struggle
with ESG integration, interpretability, and regulatory compliance
[12]. Traditional financial optimization models primarily focus
on risk-return trade-offs without sufficiently incorporating
sustainability constraints, whereas modern machine learning-
based methods excel at prediction but lack transparency and
robustness when applied in regulated financial environments [13].
Current debt structure optimization models fail to dynamically
adjust capital allocation based on evolving policy incentives
and ESG risks. To bridge this gap, this study develops a novel
multi-objective optimization framework that integrates ESG-
adjusted risk-return functions, regulatory constraints, and policy-
driven investment incentives into a dynamic portfolio and debt
structure optimization model [14]. By employing constrained
quadratic programming, policy-adjusted return functions, and
reinforcement learning for adaptive rebalancing, the proposed
framework ensures that financial institutions can optimize their

investment and debt structures while aligning with sustainability
mandates. This research not only enhances the adaptability of
financial models under sustainable finance policies but also
provides a structured and transparent approach that addresses the
shortcomings of both rule-based and purely data-driven methods
[15].

Given these challenges, this study proposes a novel
mathematical modeling framework that integrates multi-
objective optimization techniques, ESG-adjusted risk-return
functions, and policy-driven investment incentives. Our model
employs constrained quadratic programming to optimize bank
investment portfolios and debt structures while incorporating
regulatory constraints on sustainability performance. We introduce
a policy-adjusted return function to capture the dynamic
influence of ESG regulations and sustainability incentives.
By leveraging reinforcement learning for adaptive portfolio
rebalancing and explainable AI techniques to enhance model
transparency, our approach ensures that capital allocation remains
both financially optimal and compliant with sustainability
objectives.

This research contributes to the field in three key ways:

• It bridges the gap between traditional financial models and
data-driven methods by integrating structured mathematical
optimization with dynamic ESG-aware investment
strategies.
• It enhances regulatory adaptability by introducing a flexible
policy-adjusted return function that aligns investment
strategies with evolving sustainability mandates.
• It advances portfolio optimization methodologies by
incorporating reinforcement learning techniques that
dynamically adjust asset allocations based on real-time ESG
and financial performance indicators.

2 Related work

2.1 Sustainable finance and investment
optimization

The integration of sustainable finance principles into investment
optimization has gained significant attention in recent years
[16]. Traditional portfolio optimization models, such as mean-
variance optimization (MVO) and risk-parity models, primarily
focus on financial returns and risk management. However, with
the emergence of sustainability considerations, researchers have
incorporated environmental, social, and governance (ESG) factors
into these models [17]. ESG-enhanced portfolio optimization
methods involve multi-objective functions that balance financial
returns with sustainability constraints. For instance, robust
optimization techniques have been applied to mitigate uncertainty
in ESG ratings and their impact on portfolio performance [18].
Stochastic programming approaches have been developed to
address uncertainties associated with sustainability metrics and
regulatory changes. These models consider dynamic constraints
that adjust investment allocations based on evolving sustainability
policies [19]. Some studies employ scenario-based optimization to
integrate climate risk assessment into portfolio decision-making,
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ensuring resilience against environmental shocks. Moreover,
machine learning algorithms have been leveraged to predict ESG
trends and optimize portfolio selection accordingly [20]. Beyond
ESG integration, sustainable finance policies have led to the
adoption of green bonds and impact investing strategies. Portfolio
optimization models now incorporate green asset allocations to
comply with sustainability regulations and investor preferences
[21]. Researchers have proposed hybrid models that combine
traditional financial metrics with sustainability scores, allowing
for a more comprehensive assessment of investment risks and
opportunities [22]. Additionally, game-theoretic approaches
have been explored to model interactions between financial
institutions and regulatory bodies in shaping sustainable investment
decisions.

2.2 Debt structure optimization under
policy constraints

The optimization of bank debt structures under sustainable
finance policies involves balancing profitability, risk exposure, and
regulatory compliance [23]. Traditional debt optimization models
focus on minimizing the cost of capital while maintaining liquidity
and solvency. However, with the introduction of sustainability-
linked regulations, financial institutions must account for carbon
footprint considerations, green lending quotas, and sectoral
exposure limits [24]. Mathematical modeling techniques, such as
linear and nonlinear programming, have been employed to optimize
debt composition while adhering to sustainability constraints.
Dynamic optimization frameworks account for temporal changes
in policy requirements and market conditions [25]. Some studies
have utilized robust optimization methods to address uncertainties
in regulatory changes and credit risk fluctuations. Game-theoretic
approaches have been introduced tomodel the strategic interactions
between banks and policymakers [26]. These models explore how
financial institutions respond to regulatory incentives and penalties
related to sustainable lending practices. Additionally, network-
based models analyze systemic risk propagation in the banking
sector, considering the interdependencies between banks’ debt
structures and sustainability mandates [27]. Recent advancements
have also explored the application of machine learning algorithms
to optimize debt structures by predicting regulatory shifts and
macroeconomic trends. Reinforcement learning models have been
proposed to develop adaptive debt management strategies that
optimize financial performance while complying with sustainability
requirements [28]. Moreover, empirical studies have examined the
impact of sustainable finance policies on banks’ capital allocation,
highlighting shifts toward greener investment portfolios and debt
instruments [29].

2.3 Mathematical modeling in sustainable
banking

Mathematical modeling has played a crucial role in analyzing
and optimizing banking strategies under sustainable finance
policies [30]. Traditional banking models, such as stochastic
control and dynamic programming, have been extended to

incorporate sustainability considerations. These models aim
to optimize banks’ asset-liability management while ensuring
regulatory compliance and long-term financial stability [31]. Multi-
objective optimization techniques have been widely applied to
balance financial performance with sustainability constraints. For
example, Pareto-efficient frontier models enable banks to evaluate
trade-offs between profitability and sustainability objectives [32].
Constraint programming has been used to enforce regulatory
limits on carbon-intensive investments while optimizing loan
portfolios. Agent-based modeling has been employed to simulate
the interactions between banks, investors, and regulators in a
sustainable finance ecosystem [33]. These simulations provide
insights into the effectiveness of different policy interventions
and their impact on financial stability. Additionally, equilibrium
models have been used to study the macroeconomic implications
of sustainable finance policies on banking sector performance
[34]. Machine learning and artificial intelligence methods have
further enhancedmathematical modeling approaches in sustainable
banking. Predictive analytics techniques are applied to assess credit
risk under evolving sustainability standards [35]. Reinforcement
learning models have been proposed to develop adaptive banking
strategies that respond to policy changes dynamically. Moreover,
hybrid models combining traditional econometric techniques with
AI-driven forecasting methods have been developed to improve
the accuracy of financial decision-making in sustainable banking
contextss [36]. To further enhance the depth of our literature
review, we have incorporated recent studies that provide additional
insights into sustainable finance and financial modeling. Donath
et al. [37] explore a mathematical approach to network contagion
in the context of greening banks’ policies, which complements
our discussion on systemic sustainability constraints in financial
decision-making. Elnagar et al. [38] propose a sustainable
decision support system for banking environments using rough
set theory, highlighting the importance of adaptive decision-
making frameworks in sustainable finance. Negi and Jaiswal [39]
analyze sustainable bonds as financial instruments, providing
thematic insights into their role in green finance, which aligns
with our discussion on ESG-linked debt structure optimization.
These studies further reinforce the necessity of integrating
sustainability considerations into both investment portfolio and
debt structure optimization models, supporting the need for a
dynamic and mathematically driven approach as presented in
our research.

3 Methods

3.1 Overview

Sustainable finance policies have emerged as a critical
framework for integrating environmental, social, and governance
(ESG) considerations into financial decision-making.These policies
aim to address climate change, social inequalities, and corporate
governance issues by incentivizing responsible investment and
ensuring financial markets contribute to long-term economic
stability.

In Section 3.2, we establish the necessary theoretical
underpinnings of sustainable finance, outlining the fundamental
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economic and financial principles that guide sustainable
investments. This includes an analysis of risk assessment
frameworks, regulatory frameworks such as the EU Sustainable
Finance Disclosure Regulation (SFDR), and market mechanisms
like green bonds and sustainability-linked loans. By formalizing
these key principles, we set the foundation for a structured analysis
of policy impacts. In Section 3.3, we introduce our novel approach
to financial modeling, which integrates ESG factors into traditional
investment analysis. We develop a quantitative framework that
captures the dynamic interactions between financial performance
and sustainability metrics. This involves constructing mathematical
representations of ESG risk-adjusted returns, incorporating
regulatory constraints, and assessing the long-term viability of
sustainable financial instruments. The goal is to provide a robust
model that aligns financial incentives with sustainability goals
while maintaining economic efficiency. In Section 3.4, we explore
innovative policy strategies designed to enhance the effectiveness of
sustainable finance. This includes market-based instruments such
as carbon pricing and tax incentives, regulatory mandates for ESG
disclosure, and institutional mechanisms to support green financial
products. We also examine the role of financial intermediaries in
fostering sustainable investment practices and propose mechanisms
to mitigate greenwashing risks. These strategies aim to create a
coherent policy framework that aligns private sector incentives with
public sustainability objectives.

This study is grounded in several interrelated theoretical
foundations that provide a structured basis for sustainable finance
optimization. The integration of portfolio theory, capital structure
theory, sustainability economics, and regulatory compliance
principles forms the backbone of our proposed optimization
framework. Portfolio optimization is traditionally based on
Markowitz’s Modern Portfolio Theory (MPT), which emphasizes
the trade-off between risk and return through diversification.
However, MPT does not account for sustainability constraints
or evolving regulatory policies. To extend MPT, this study
incorporates multi-objective optimization techniques that integrate
ESG-adjusted risk-return functions, ensuring that sustainability
objectives are embedded within financial decision-making. Debt
structure optimization is rooted in classical capital structure
theories, including the Modigliani-Miller theorem, trade-off theory,
and pecking order theory, which focus on balancing debt and
equity to maximize firm value. These models, however, do not
consider sustainability-linked borrowing constraints or regulatory
requirements that impact financial stability. To address this,
our framework introduces policy-driven adjustments to debt
structures, incorporating ESG-linked debt instruments, carbon
risk-adjusted capital allocation, and sustainability-linked financing
incentives. Sustainability economics provides a theoretical lens
to incorporate externalities, long-term value creation, and policy
incentives into financial modeling. Economic theories related
to carbon pricing, green finance incentives, and sustainability-
linked risk premiums are integrated through policy-adjusted return
functions, dynamically modifying investment returns based on
ESG performance and regulatory compliance requirements. To
ensure adaptability in a constantly evolving financial and regulatory
environment, this study also incorporates reinforcement learning
(RL) as a dynamic optimization approach. RL is built upon Markov
Decision Processes (MDP), allowing for continuous learning and

adjustment of portfolio and debt structure decisions in response
to sustainability constraints and market conditions. Unlike static
financialmodels, RL enables institutions to rebalance their strategies
in real-time, aligning financial objectives with sustainability goals.
By integrating these theoretical foundations, this research bridges
the gap between traditional finance, sustainability constraints,
and adaptive financial decision-making, offering a structured and
theoretically grounded optimization framework for investment and
debt structure management under sustainable finance policies.

3.2 Preliminaries

Sustainable finance policies aim to integrate environmental,
social, and governance (ESG) factors into financial decision-making,
fostering long-term economic resilience while addressing global
sustainability challenges. To establish a formal framework for
analyzing sustainable finance policies, we introduce a mathematical
representation that encapsulates the interaction between financial
markets, investment strategies, and sustainability constraints.

Let M denote the financial market, consisting of a set of
assets A = {A1,A2,…,An}, where each asset Ai is characterized
by its financial return ri and an ESG score si. The ESG score si
is a function si:ℝd→ℝ mapping multidimensional sustainability
indicators (e.g., carbon emissions, social impact metrics, corporate
governance scores) to a scalar value (Equation 1).

si = fESG (xi) , xi ∈ ℝd, i = 1,…,n. (1)

Each investor j in themarket seeks tomaximize a utility function
Uj(⋅) that depends on both financial returns and ESG preferences.
The utility function is modeled as Equation 2:

Uj (w) =
n

∑
i=1

wi [ri + λjsi] −
γ
2
w⊤Σw, (2)

Where w = (w1,w2,…,wn) represents the portfolio weights, λj
is the investor’s preference for sustainability, γ is the risk aversion
parameter, and Σ is the covariance matrix of asset returns.

Regulatory policies introduce constraints that shape market
behavior. Let P denote the set of policy instruments, including
carbon taxes, green bond incentives, andmandatory ESG disclosure
requirements. Each policy π ∈ P modifies the return structure
through a function gπ(⋅) (Equation 3):

r′i = gπ (ri, si) , (3)

where r′i denotes the adjusted return after policy intervention.
Investment strategies must satisfy regulatory compliance

constraints, defined as Equation 4:

C (w, s,π) ≤ τ, (4)

where C(⋅) is a constraint function quantifying regulatory adherence
and τ is the policy threshold.

The equilibrium of the sustainable financial market is
determined by solving Equation 5:

max
w

Uj (w) subject to C (w, s,π) ≤ τ. (5)
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FIGURE 1
The SFOM integrates sustainability considerations into financial markets by systematically incorporating environmental, social, and governance (ESG)
factors into portfolio selection and policy design. The model consists of three key modules: Weighted Portfolio Optimization, which balances financial
returns with ESG factors using constrained quadratic programming; Driven Return Adjustment, where regulatory interventions reshape asset returns
and enforce sustainability compliance; and Sustainable Market Equilibrium, which ensures optimal capital allocation by dynamically adjusting portfolios
based on policy-induced changes. The framework employs advanced optimization techniques, including multi-objective decision-making and
machine learning-based calibration, to achieve a balance between financial performance and sustainability objectives.

To assess the systemic impact of sustainability policies, we define
a market-wide ESG-adjusted efficiency function (Equation 6):

Φ (π) =
m

∑
j=1

n

∑
i=1

wji [r
′
i + λjsi] −

γ
2

m

∑
j=1

w⊤j Σwj, (6)

where wji represents investor j’s allocation in asset Ai.

3.3 Sustainable finance optimization model

To advance the integration of sustainability considerations
into financial markets (As shown in Figure 1), we introduce
the Sustainable Finance Optimization Model (SFOM), a novel
framework that systematically incorporates environmental, social,
and governance (ESG) factors into portfolio selection and policy
design. SFOM extends classical financial models by embedding
ESG-adjusted risk-return dynamics and regulatory compliance
constraints, ensuring an optimal balance between financial
performance and sustainability objectives.

3.3.1 Weighted portfolio optimization
Let A = {A1,A2,…,An} represent a set of n financial assets,

each characterized by a financial return ri and an ESG impact
score si. Investors aim to construct an optimal portfolio w =
(w1,w2,…,wn) that balances financial returns with sustainability
considerations. The investor’s objective function incorporates both
financial performance and ESG factors through a weighted utility

formulation (Equation 7)

U (w) =
n

∑
i=1

wi [ri + λsi] −
γ
2
w⊤Σw (7)

where λ represents the sustainability preference of the investor, γ
denotes the risk aversion coefficient, and Σ is the covariance matrix
of asset returns. The ESG-adjusted portfolio return is defined as
Equation 8

R (w) = w⊤ (r+ λs) (8)

where r = (r1, r2,…, rn) and s = (s1, s2,…, sn) are the vectors of
financial returns and ESG scores, respectively. The optimization is
subject to capital allocation constraints to ensure full investment
(Equation 9)

n

∑
i=1

wi = 1, wi ≥ 0, ∀i ∈ {1,…,n} (9)

where wi ≥ 0 enforces a no-short-selling condition. The presence of
ESG constraints in investment decisions alters the traditional risk-
return trade-off, leading to a modified risk-adjusted return function
(Equation 10)

R̃ (w) = w⊤r−
γ
2
w⊤Σw+ λ

n

∑
i=1

wisi (10)

where the term λ∑ni=1wisi explicitly captures the additional
return contribution from sustainability factors. The investor’s
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problem can be rewritten as a constrained quadratic programming
formulation, solving Equation 11

max
w
[w⊤ (r+ λs) −

γ
2
w⊤Σw] , subject to

n

∑
i=1

wi = 1, wi ≥ 0

(11)

This formulation allows for dynamic adjustments in
asset allocations based on ESG considerations while maintaining
a balance between risk and return. Given regulatory influences,
an additional ESG compliance constraint can be introduced
in the form Equation 12

n

∑
i=1

wisi ≥ θ (12)

Where θ represents the minimum required ESG score for
a portfolio to be considered sustainable. The introduction of
such constraints ensures that the portfolio aligns with sustainable
finance policies, leading to a structurally different capital allocation
compared to conventional investment models. The solution to
this optimization problem provides an equilibrium allocation that
reflects both financial objectives and sustainability constraints,
enabling a more responsible and risk-aware investment strategy.

To ensure that ESG scores do not disproportionately influence
the optimization outcome due to differences in scale, we normalize
them usingMin-Max Scaling, transforming them into a comparable
range with financial returns. This approach mitigates potential
distortions caused by varying units or magnitudes across different
ESG indicators. The balance between the sustainability preference
coefficient (λ) and the risk aversion parameter (γ) plays a crucial
role in determining optimal portfolio allocations. To calibrate
these coefficients, we employ a combination of historical regression
analysis and hyperparameter tuning methods such as grid search
and Bayesian optimization. This allows us to estimate λ based
on the marginal contribution of ESG factors to asset returns,
while γ is derived from empirical market data, ensuring alignment
with observed investor risk preferences. We conduct a sensitivity
analysis to assess the impact of varying λ and γ values on portfolio
performance, demonstrating the robustness of our model under
different parameter settings. The experimental results, included in
the revised section, highlight the effectiveness of this approach in
achieving an optimal balance between financial performance and
sustainability objectives.

The results of the sensitivity analysis of the model parameters,
presented in Table 1, demonstrate the impact of varying
sustainability preference (λ) and risk aversion (γ) on key portfolio
performance metrics. As λ increases, the ESG score of the portfolio
rises significantly, indicating that the model effectively incorporates
sustainability considerations into asset selection. This shift suggests
that higher λ values encourage investments in assets with superior
ESG performance, aligning with sustainability-driven investment
strategies. However, this comes at a trade-off, as expected returns
exhibit a slight decline. The reduction in expected return is
primarily due to the exclusion of high-return but low-ESG assets,
reflecting the constraints imposed by a stronger emphasis on
sustainability. Risk aversion (γ) also plays a crucial role in shaping
portfolio behavior. As γ increases from 0.1 to 10.0, portfolio
volatility decreases across all λ values, highlighting the model’s
ability to construct more conservative allocations under higher

risk aversion. This result aligns with traditional portfolio theory,
where a higher degree of risk aversion leads to a preference for
lower-volatility assets. Correspondingly, the Sharpe ratio improves
with increasing γ, reflecting enhanced risk-adjusted returns. This
indicates that investors with higher risk sensitivity benefit from
more stable portfolios while still maintaining reasonable expected
returns. The interaction between λ and γ reveals an important
dynamic in sustainable portfolio optimization. At lower λ values,
increasing γ results in only modest improvements in the ESG
score, suggesting that risk-averse investors may not significantly
prioritize sustainability in their allocation decisions. However, at
higher λ levels, portfolios maintain strong ESG scores even with
increasing γ, demonstrating that sustainability-driven portfolios
remain viable across different risk preferences.This confirms that the
model effectively balances financial performance with sustainability
objectives, ensuring that capital allocation remains adaptable to
diverse investor preferences. The stability of Sharpe ratios across
different parameter settings reinforces the robustness of the model.
While higher λ valuesmay slightly lower expected returns, the trade-
off in risk-adjusted performance remains favorable, suggesting that
ESG-oriented investment strategies do not necessarily compromise
financial efficiency. This highlights the practical applicability
of the proposed optimization framework, as it accommodates
varying degrees of sustainability integration while maintaining
stable financial outcomes. The sensitivity analysis validates the
effectiveness of the model in optimizing investment portfolios
under sustainable finance policies. The results demonstrate that
the framework can adapt to different investor preferences and
regulatory environments, making it a versatile tool for financial
institutions seeking to align their investment strategies with both
risk management and ESG objectives.

3.3.2 Driven return adjustment
Regulatory interventions reshape the financial landscape by

modifying asset returns and imposing sustainability compliance
constraints on investment strategies (As shown in Figure 2). Let
P represent the set of policy instruments that influence financial
markets, including carbon pricing, green bond incentives, and
mandatory ESG disclosures. The effect of policy π ∈ P on asset
returns can be modeled as Equation 13

r′i = gπ (ri, si) (13)

where gπ(⋅) is a transformation function that adjusts returns
based on ESG performance metrics and policy mandates. The
function gπ(ri, si) serves as a critical policy-adjusted transformation
of financial returns, incorporating sustainability considerations. To
enhance clarity and consistency in implementation, we define gπ as
a piecewise function that accommodates both linear and nonlinear
adjustments depending on the nature of policy interventions. For
example, in the case of taxation penalties, a linear function can
be used: gπ(ri, si) = ri − αCi, where Ci represents the compliance
cost and α is the penalty coefficient. Incentive-based adjustments
may follow a nonlinear transformation, such as gπ(ri, si) = ri(1+ βsi),
where β is an incentive weight amplifying returns based on ESG
performance. These functional forms ensure adaptability across
different regulatory environments while maintaining a structured
approach to sustainable investment modeling.
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TABLE 1 Sensitivity analysis of model parameters (λ and γ).

Sustainability
preference (λ)

Risk aversion (γ) ESG score of
portfolio

Expected return (%) Volatility (%) Sharpe ratio

0.1 0.1 45.2 7.8 12.3 0.63

0.1 5.0 46.5 6.9 9.8 0.70

0.1 10.0 47.1 6.1 8.2 0.74

0.5 0.1 58.3 7.2 11.5 0.63

0.5 5.0 60.8 6.5 9.1 0.71

0.5 10.0 61.2 5.8 7.5 0.77

1.0 0.1 72.4 6.6 10.7 0.62

1.0 5.0 75.9 6.1 8.7 0.70

1.0 10.0 77.3 5.3 7.0 0.76

FIGURE 2
The Weighted Portfolio Optimization framework integrates financial returns with sustainability considerations through an ESG-adjusted portfolio
selection model. The figure illustrates a multi-scale investment strategy, where asset dependencies are analyzed at different scales. The Driven Return
Adjustment module modifies asset returns based on ESG impact and risk constraints, ensuring compliance with sustainable finance policies. A
combination of MaxPooling, Repetition, and Concatenation operations refines the financial features, leading to an optimal portfolio allocation. The
mathematical formulation supports constrained quadratic programming, balancing risk, return, and ESG preferences to achieve sustainability-aware
capital allocation.

The influence of policy mechanisms on the risk-adjusted
portfolio return can be captured as Equation 14

R̃ (w,π) = w⊤gπ (r+ λs) −
γ
2
w⊤Σw (14)

Where the modified return vector gπ(r+ λs) reflects
policy-induced changes in financial and sustainability-adjusted
returns. Regulatory frameworks impose constraints on capital
allocation to ensure compliance with sustainability standards,
formalized as Equation 15

C (w, s,π) ≤ τ (15)

Where C(⋅) represents the regulatory compliance
function and τ is the threshold requirement for policy

adherence. Policies can also introduce systemic risk mitigation
mechanisms by enforcing stricter capital requirements on
high-risk assets, modeled as an ESG-weighted risk constraint
(Equation 16)

n

∑
i=1

wiσ
2
i + β

n

∑
i=1

wisi ≤ κ (16)

Where σ2i represents asset-specific risk, β is the risk-
sustainability trade-off coefficient, and κ is the regulatory limit.
By integrating policy interventions into portfolio optimization,
financial systems adapt to evolving sustainability regulations,
ensuring efficient capital allocation while aligning with
environmental and social objectives.
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3.3.3 Sustainable market equilibrium
The optimal sustainable investment strategy is formulated as an

optimization problem that maximizes ESG-adjusted returns while
accounting for risk aversion and regulatory constraints.The investor
seeks to solve Equation 17

max
w

n

∑
i=1

wi [r
′
i + λsi] −

γ
2
w⊤Σw (17)

subject to the conditions (Equation 18)
n

∑
i=1

wi = 1, wi ≥ 0, C (w, s,π) ≤ τ (18)

where r′i represents the policy-adjusted return of asset i, λ is the
ESG preference coefficient, and C(w, s,π) quantifies compliance
with sustainability policies under constraint threshold τ. The first-
order optimality condition for market equilibrium is obtained by
differentiating the objective function with respect to w, leading to
the system of equations (Equation 19)

∇w(
n

∑
i=1

wi [r
′
i + λsi] −

γ
2
w⊤Σw) = 0 (19)

which results in the optimal asset allocation (Equation 20)

w∗ = Σ−1 (r′ + λs) (20)

ensuring that capital is allocated in a way that balances financial
performancewith sustainability goals. Given that policy adjustments
dynamically alter asset returns, the stability of the financial
system requires that equilibrium conditions remain robust under
policy perturbations. This can be captured through an equilibrium
adjustment function (Equation 21)

w∗ (π) = Σ−1 (gπ (r) + λs) (21)

where gπ(r) reflects the policy-driven transformation of
asset returns. To evaluate the effectiveness of sustainability
policies, an ESG-adjusted efficiency metric is introduced,
measuring the aggregated performance across all investors in
the market (Equation 22)

Φ (π) =
m

∑
j=1

n

∑
i=1

wji [r
′
i + λjsi] −

γ
2

m

∑
j=1

w⊤j Σwj (22)

where m represents the number of investors, wji is the portfolio
weight of investor j in asset i, and λj denotes individual sustainability
preferences. The efficiency function provides a quantitative
measure of how regulatory policies influence capital allocation,
risk management, and ESG integration, ensuring that the financial
market evolves towards a stable and sustainable equilibrium.

The assumption of a stable covariance matrix Σ in the portfolio
optimization framework is a simplification that may not fully
capture the dynamic and nonlinear risk dependencies introduced
by ESG factors. ESG-related risks, such as climate policy changes,
social impact shifts, and corporate governance irregularities, often
exhibit time-varying behavior that standard covariance matrices
struggle to model effectively. To address this limitation, we extend
our approach by incorporating dynamic covariance estimation
techniques that adjust to evolving ESG risk structures. We adopt
a multivariate GARCH (Generalized Autoregressive Conditional

Heteroskedasticity) model to estimate the time-varying covariance
matrix, allowing the risk dependencies among assets to dynamically
adapt to changing market and ESG conditions. This approach
ensures that sudden shifts in sustainability risks, such as regulatory
changes or reputational shocks, are reflected in portfolio risk
assessments. We integrate Copula-based modeling, which enables
the capture of nonlinear dependencies between ESG-adjusted asset
returns. Unlike traditional correlation-based approaches, Copula
functions model tail dependencies, ensuring that extreme ESG-
drivenmarket events—such as abrupt regulatory interventions—are
properly accounted for in risk estimations. To validate the
effectiveness of these dynamic risk modeling techniques, we
compare the portfolio performance under a static covariance matrix
with that of a time-varying covariance approach.The results indicate
that incorporating dynamic risk adjustments significantly improves
the portfolio’s ability to mitigate ESG-induced financial shocks
while maintaining stable returns. We conduct an empirical test
using rolling-window estimation, where the covariance structure
is continuously updated based on the most recent market and
ESG data. This enhances the model’s adaptability to evolving risk
conditions and ensures that portfolio allocations remain optimal
in rapidly changing sustainability landscapes. By integrating these
advanced risk estimation methodologies, our framework provides a
more comprehensive representation of ESG-driven financial risks,
ensuring that investment decisions are informed by dynamic and
nonlinear dependencies rather than static historical correlations.
This enhancement strengthens the model’s applicability in real-
world sustainable finance scenarios, where ESG risks are inherently
complex and evolving.

3.4 Strategic mechanism for sustainable
finance

To effectively implement sustainable finance policies, we
propose the Strategic Mechanism for Sustainable Finance (SMSF),
a novel approach that aligns financial incentives with sustainability
goals through regulatory interventions, incentive structures, and
risk-adjusted investmentmechanisms (As shown in Figure 3). SMSF
optimally integrates market dynamics, ESG constraints, and policy
instruments to enhance the effectiveness of sustainable finance
strategies.

3.4.1 Responsive investment strategy
Investors dynamically adjust their portfolio allocations based

on ESG-weighted returns, regulatory constraints, and the financial
costs of non-compliance with sustainability policies. The adjusted
return function that integrates sustainability incentives andpenalties
is formulated as Equation 23

r′i = ri + λsi − βCi (23)

Where ri represents the financial return of asset i, si is the
ESG impact score, λ is the investor’s ESG preference coefficient,
Ci denotes the financial cost associated with non-compliance (such
as carbon taxation or ESG disclosure penalties), and β quantifies
the sensitivity to regulatory costs. Given these adjusted returns,
the investor seeks to maximize a utility function incorporating
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FIGURE 3
The diagram illustrates the Strategic Mechanism for Sustainable Finance (SMSF), which integrates Responsive Investment Strategy, Guided Capital
Allocation, and Aware Market Stabilization through advanced machine learning and financial modeling. The framework leverages cross-modal blocks,
transformer encoders, and multimodal fusion to optimize capital allocation while aligning financial returns with ESG (Environmental, Social, and
Governance) principles. By incorporating regulatory constraints, risk-adjusted returns, and policy instruments, SMSF ensures market stability, mitigates
systemic risks, and enhances sustainability-oriented investments.

both ESG-adjusted returns and risk management considerations
(Equation 24)

max
w

n

∑
i=1

wi [r
′
i + λsi] −

γ
2
w⊤Σw (24)

subject to portfolio constraints ensuring full capital allocation and
compliance with sustainability policies (Equation 25)

n

∑
i=1

wi = 1, wi ≥ 0, Ctotal (w,π) ≤ τ (25)

where τ represents the maximum allowable non-compliance level
under policy π. The optimal investment weights satisfying market
conditions and regulatory requirements are derived by solving the
equilibrium equation (Equation 26)

∇w(w⊤ (r′ + λs) −
γ
2
w⊤Σw) = 0 (26)

which results in the closed-form optimal allocation (Equation 27)

w∗ = Σ−1 (r′ + λs− βC) (27)

indicating that portfolio allocation shifts dynamically in response
to ESG incentives, risk factors, and regulatory interventions. By
incorporating ESG compliance constraints and regulatory penalties
into investment decisions, this framework ensures that capital is
allocated efficiently while aligning with sustainability objectives and
mitigating systemic risks.

3.4.2 Guided capital allocation
Sustainable finance policies reshape market dynamics

by incentivizing investment in ESG-compliant assets while

discouraging capital flows toward non-sustainable sectors (As
shown in Figure 4). Let P denote the set of policy instruments,
including tax incentives, green bond subsidies, and carbon penalties,
which modify asset returns through a policy adjustment function
(Equation 28)

r′i = gπ (ri, si,Ci) (28)

where gπ(⋅) captures the return transformation induced by policy
π, incorporating the asset’s original return ri, ESG score si,
and compliance cost Ci. Policies aim to reallocate capital by
altering the relative attractiveness of assets based on sustainability
considerations, leading investors to optimize their portfolio
allocations accordingly. Given a policy-induced return structure,
the market-wide capital distribution is determined by solving the
policy optimization problem (Equation 29)

max
π

n

∑
i=1

w∗i gπ (ri, si,Ci) (29)

subject to regulatory constraints ensuring compliance and
minimum sustainability thresholds (Equation 30)

𝔼[Ci] ≤ τ, 𝔼[si] ≥ θ (30)

where τ represents the maximum allowable compliance cost under
policy π, and θ defines the minimum ESG score required for an
asset to qualify as sustainable.The equilibriumasset allocationunder
policy intervention satisfies Equation 31

w∗ (π) = argmax
w
[w⊤gπ (r+ λs) −

γ
2
w⊤Σw] (31)

indicating that optimal investment weights adjust dynamically
in response to policy changes. The overall effectiveness of
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FIGURE 4
Responsive Investment Strategy is A Hybrid Deep Learning and Optimization Approach. The diagram illustrates a hybrid investment decision framework
integrating convolutional and transformer-based deep learning branches to dynamically adjust portfolio allocations. The mathematical model
formalizes ESG-weighted returns, regulatory constraints, and financial costs of non-compliance, optimizing capital allocation through an
equilibrium-based approach. The responsive strategy ensures sustainability-aligned investment decisions while mitigating systemic risks.

policy intervention is evaluated through a capital reallocation
efficiency function (Equation 32)

Ψ (π) =
m

∑
j=1

n

∑
i=1

w∗jigπ (ri, si,Ci) −
γ
2

m

∑
j=1

w⊤j Σwj (32)

which quantifies the net impact of policy π on market-wide
sustainability-oriented capital flows. The optimization framework
ensures that policy instruments are designed to maximize ESG
investment impact while maintaining economic stability, leading to
a sustainable and efficient financial ecosystem.

3.4.3 Aware market stabilization
The stability of a sustainable financial market relies on aligning

capital allocation with ESG considerations while controlling
systemic financial risks. Investors optimize portfolios based on ESG-
adjusted returns, leading to the equilibrium allocation (Equation 33)

w∗ = Σ−1 (r′ + λs) (33)

which balances financial returns, sustainability preferences, and risk
exposure. In real-world financial markets, the covariance matrix
Σ is not always invertible or well-conditioned, particularly during
periods of high volatility or market stress. To ensure numerical
stability and practical applicability, we adopt regularization
techniques such as the Ledoit-Wolf shrinkage estimator, which
modifies Σ as Σreg = (1− δ)Σ+ δI, where I is the identity matrix and
δ is a shrinkage parameter that controls the trade-off between the
original covariance structure and a more stable, well-conditioned
form. In cases where Σ is near-singular, we employ principal

component analysis (PCA) to extract the most informative
components while reducing dimensionality. These approaches
ensure that the optimization framework remains robust, even
under extreme market conditions, allowing for a more reliable and
adaptable asset allocation strategy.

When ESG considerations are integrated into investment
strategies, market behavior shifts as investors adjust their capital
allocation to favor assets with higher sustainability scores. However,
unchecked market behavior can lead to greenwashing, where
firms misrepresent their ESG performance to attract investments.
To prevent this, regulatory mechanisms introduce compliance
measures that enforce genuine ESG commitment through financial
penalties. The penalty for holding a portfolio with insufficient ESG
performance is expressed as Equation 34

Cpenalty = αmax(0,θ−𝔼[si]) (34)

Where α is the penalty coefficient and θ is the minimum ESG
requirement. If a portfolio’s expected ESG score falls below the
threshold, investors face financial repercussions, incentivizing them
to align with sustainable finance principles.

To ensure a more balanced approach to ESG compliance while
still encouraging sustainable investment, we refine the penalty
function Cpenalty to introduce a gradual penalty curve rather than
an abrupt threshold. Instead of applying a strict penalty for any
deviation below θ, we incorporate a buffer zone ϵ, creating a soft
penalty region. The revised function takes the form:

Cpenalty = αmax(0, (θ−E[si] − ϵ)
p)
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where ϵ defines a tolerance range within which minor deviations do
not trigger significant penalties, and p is an exponent controlling
the smoothness of the penalty curve. For instance, setting p =
2 results in a quadratic penalty, gradually increasing as ESG
compliance falls further below the buffer zone. This modification
ensures that investments just below the threshold are not excessively
penalized, promoting a more stable transition toward higher
ESG commitment while maintaining regulatory incentives for
sustainable finance.

The total systemic risk of the market is influenced by
both financial volatility and ESG non-compliance, requiring
an equilibrium condition to stabilize investment flows. A
market stability constraint ensures that the overall portfolio
risk does not exceed regulatory limits while promoting ESG
integration (Equation 35)

n

∑
i=1

wiσ
2
i + β

n

∑
i=1

wisi ≤ κ (35)

Where β represents the trade-off between financial risk
and sustainability, and κ is the systemic risk threshold. This
formulation ensures that capital is allocated to assets that balance
profitability with sustainability, reducing financial instability while
promoting long-term ESG adherence. A well-regulated financial
system integrating ESG risk factors contributes to overall economic
resilience, creating an investment environment where sustainability
and financial performance are not mutually exclusive but mutually
reinforcing.

Our model is built on several key assumptions that facilitate
the integration of ESG factors into financial decision-making
while maintaining mathematical tractability. One of the primary
assumptions is that ESG impacts on financial returns can be
represented through linear or piecewise-linear transformations,
allowing for the construction of an ESG-adjusted risk-return
framework. This simplification enables the use of multi-objective
optimization techniques, where financial performance and
sustainability objectives are balanced systematically. We assume
that regulatory policies, such as carbon pricing and ESG disclosure
mandates, exert deterministic influences on investment returns,
enabling a structured incorporation of policy-driven constraints
into the optimization model. However, we acknowledge that
these assumptions may not fully capture the complexities of
real-world financial markets, particularly under non-linear or
stochastic ESG-impact scenarios. In practice, ESG factors often
exhibit dynamic interactions with macroeconomic conditions,
investor sentiment, and regulatory shifts, leading to potential
non-linearities in their influence on asset pricing and portfolio
performance. ESG data is often subject to noise, inconsistencies,
and evolving disclosure standards, which can introduce uncertainty
into model predictions. To address these limitations, future
research could explore stochastic modeling approaches that
account for uncertainty in ESG impacts, such as probabilistic
risk-adjusted return functions or reinforcement learning-based
adaptive portfolio strategies. Incorporating real-time ESG sentiment
analysis and dynamic regulatory updates may further enhance the
robustness of our framework in capturing the evolving nature of
sustainable finance.

4 Experimental setup

4.1 Dataset

The ESG Ratings Dataset [40] provides environmental, social,
and governance (ESG) scores for publicly traded companies. The
dataset aggregates information from multiple sources, including
financial disclosures, sustainability reports, and third-party rating
agencies. It includes historical ESG scores, company identifiers,
sector classifications, and sub-scores related to environmental
impact, social responsibility, and corporate governance. The dataset
is widely used in responsible investing, corporate sustainability
analysis, and regulatory compliance assessments. Researchers utilize
it to evaluate ESG performance trends and their relationship
with financial metrics and risk factors. The CSR Reports Dataset
[41] consists of corporate social responsibility (CSR) reports
published by various organizations. It includes textual data,
structured ESG disclosures, and quantitative sustainability metrics.
The dataset spans multiple industries and regions, capturing
companies’ commitments to ethical practices, environmental
stewardship, and social engagement. Researchers analyze this
dataset for sentiment analysis, ESG compliance assessment, and
automated extraction of sustainability-related insights. It serves as
a crucial resource for studying corporate transparency, stakeholder
engagement, and the impact of CSR initiatives on firm reputation
and financial performance. The FRED Dataset [42] originates
from the Federal Reserve Economic Data (FRED) repository,
containing macroeconomic indicators such as GDP growth,
inflation rates, employment figures, and financial market data. The
dataset aggregates time-series data from central banks, government
agencies, and international organizations. It is extensively used
for economic forecasting, policy analysis, and financial modeling.
Researchers leverage this dataset to study macroeconomic trends,
assess monetary policy impacts, and develop predictive models
for economic stability and growth. The Nasdaq Market Index
Dataset [43] consists of historical price data, trading volumes,
and financial indicators for Nasdaq-listed securities. It includes
information on market indices, individual stock performance, and
sector-specific trends. The dataset is used for quantitative finance
research, algorithmic trading, and risk management. Analysts apply
it to model market volatility, identify trading patterns, and evaluate
the influence of macroeconomic factors on stock performance. It
serves as a fundamental resource for financial economists, portfolio
managers, and data-driven investment strategies. The datasets used
in this study cover varying time periods to ensure a comprehensive
evaluation of our proposed model. The ESG Ratings Dataset spans
from 2015 to 2023, capturing the evolution of ESG performance
metrics across different industries. The CSR Reports Dataset
includes corporate sustainability disclosures from 2010 to 2022,
providing insights into long-term corporate social responsibility
trends. The FRED Dataset comprises macroeconomic indicators
from 2000 to 2023, sourced from the Federal Reserve Economic
Data repository, ensuring a broad coverage of economic cycles and
financial market fluctuations. The Nasdaq Market Index Dataset
includes historical price movements, trading volumes, and financial
indicators from 2012 to 2023, allowing us to assess the impact of
market trends on investment decisions. These datasets have been
widely used in prior research, including studies on ESG-driven
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TABLE 2 Comparison of our method with SOTA methods on ESG ratings dataset and CSR reports dataset.

Model ESG ratings dataset CSR reports dataset

RMSE ↓ MAE ↓ R2 ↑ MAPE ↓ RMSE ↓ MAE ↓ R2 ↑ MAPE ↓

LSTM [44] 2.31±0.04 1.89±0.03 0.72±0.02 5.13±0.04 2.78±0.03 2.21±0.02 0.68±0.03 5.92±0.03

GRU [45] 2.45±0.03 1.95±0.02 0.69±0.02 5.30±0.03 2.61±0.04 2.10±0.03 0.71±0.02 5.79±0.03

Transformer [46] 2.18±0.02 1.76±0.03 0.75±0.02 4.98±0.03 2.55±0.03 2.03±0.02 0.73±0.02 5.65±0.04

XGBoost [47] 2.62±0.03 2.04±0.02 0.67±0.03 5.45±0.03 2.81±0.03 2.29±0.02 0.66±0.02 6.10±0.03

LightGBM [48] 2.40±0.04 1.88±0.02 0.70±0.02 5.22±0.03 2.73±0.03 2.19±0.02 0.69±0.02 5.95±0.03

MLP [49] 2.55±0.03 2.02±0.02 0.68±0.03 5.35±0.03 2.66±0.03 2.14±0.02 0.70±0.02 5.85±0.03

Ours 1.97±0.03 1.62±0.02 0.81±0.02 4.56±0.03 2.32±0.03 1.85±0.02 0.78±0.02 5.42±0.03

The values in bold are the best values.

TABLE 3 Comparison of our method with SOTA methods on FRED dataset and Nasdaq market index dataset.

Model FRED dataset Nasdaq market index dataset

RMSE ↓ MAE ↓ R2 ↑ MAPE ↓ RMSE ↓ MAE ↓ R2 ↑ MAPE ↓

LSTM [44] 3.21±0.05 2.75±0.04 0.63±0.03 6.42±0.04 4.12±0.04 3.08±0.03 0.58±0.03 7.14±0.03

GRU [45] 3.45±0.04 2.81±0.03 0.60±0.02 6.55±0.04 3.98±0.04 3.02±0.03 0.61±0.03 7.02±0.03

Transformer [46] 2.97±0.04 2.51±0.03 0.67±0.02 6.18±0.03 3.79±0.03 2.85±0.02 0.64±0.02 6.85±0.03

XGBoost [47] 3.72±0.03 2.93±0.03 0.58±0.02 6.78±0.03 4.25±0.03 3.19±0.02 0.55±0.02 7.31±0.03

LightGBM [48] 3.29±0.04 2.67±0.03 0.62±0.02 6.35±0.03 4.05±0.03 3.10±0.02 0.59±0.02 7.08±0.03

MLP [49] 3.58±0.03 2.89±0.02 0.59±0.02 6.61±0.03 4.02±0.03 3.06±0.02 0.60±0.02 6.96±0.03

Ours 2.78±0.03 2.35±0.02 0.72±0.02 5.92±0.03 3.54±0.03 2.72±0.02 0.68±0.02 6.61±0.03

The values in bold are the best values.

portfolio optimization [40], corporate sustainability assessment
[41], macroeconomic forecasting [42], and financial market
prediction [43]. By incorporating these well-established datasets
with clearly defined time periods, we ensure that our findings are
generalizable and relevant to the evolving landscape of sustainable
finance.

4.2 Experimental details

Our experiments are conducted on a high-performance
computing cluster equipped with NVIDIA A100 GPUs, utilizing
PyTorch as the primary deep learning framework. The training
process follows a standardized pipeline with hyperparameter tuning
to optimize model performance. The batch size is set to 128, and
training is conducted for 100 epochs with early stopping based on
validation loss. The Adam optimizer is employed with a learning
rate of 10−4, utilizing a cosine annealing schedule to ensure adaptive

learning rate decay. Weight decay is set to 5× 10−4 to prevent
overfitting. The loss function is task-specific, with categorical
cross-entropy used for classification tasks and mean squared error
(MSE) for regression. For model evaluation, we employ a standard
train-validation-test split of 70%-15%-15%. All datasets undergo
preprocessing steps, including normalization, outlier removal, and
data augmentation where applicable. In the case of textual datasets,
tokenization is performed using a transformer-based tokenizer,
and embeddings are initialized with pre-trained models such as
BERT or RoBERTa. For tabular datasets, missing values are imputed
using KNN or mean imputation strategies. Feature scaling is
applied using min-max normalization for neural network inputs.
Baseline models include traditional machine learning algorithms
such as random forests, gradient boosting (XGBoost), and support
vector machines (SVMs). Deep learning architectures include
fully connected networks, recurrent neural networks (RNNs) for
sequential data, and convolutional neural networks (CNNs) for
structured image-based inputs. Transformer-based models are
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FIGURE 5
Performance comparison of state-of-the-art methods on ESG ratings dataset and CSR reports dataset.

FIGURE 6
Performance comparison of state-of-the-art methods on FRED dataset and Nasdaq market index dataset.
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TABLE 4 Comparison of our method with SOTA methods on ESG ratings classification and market risk classification.

Model ESG ratings classification Market risk classification

AUC-
ROC ↑

Accuracy
↑

Precision
↑

Recall ↑ AUC-
ROC ↑

Accuracy
↑

Precision
↑

Recall ↑

LSTM [44] 0.81±0.02 75.4±0.5 74.1±0.4 72.8±0.3 0.78±0.02 73.6±0.5 72.3±0.4 71.2±0.3

GRU [45] 0.79±0.02 74.2±0.5 73.0±0.4 70.9±0.3 0.76±0.02 72.5±0.5 71.1±0.4 69.8±0.3

Transformer
[46]

0.84±0.02 76.8±0.5 75.6±0.4 74.9±0.3 0.82±0.02 75.2±0.5 74.1±0.4 73.5±0.3

XGBoost
[47]

0.77±0.02 73.0±0.5 71.8±0.4 70.5±0.3 0.75±0.02 71.6±0.5 70.2±0.4 69.1±0.3

LightGBM
[48]

0.80±0.02 74.5±0.5 73.2±0.4 71.8±0.3 0.78±0.02 73.1±0.5 71.9±0.4 70.4±0.3

MLP [49] 0.78±0.02 74.0±0.5 72.5±0.4 71.2±0.3 0.77±0.02 72.9±0.5 71.4±0.4 70.1±0.3

Ours 0.89±0.02 81.2±0.5 80.4±0.4 79.1±0.3 0.87±0.02 79.8±0.5 78.5±0.4 77.3±0.3

The values in bold are the best values.

TABLE 5 Ablation study results on ESG ratings dataset and CSR reports dataset.

Model ESG ratings dataset CSR reports dataset

RMSE ↓ MAE ↓ R2 ↑ MAPE ↓ RMSE ↓ MAE ↓ R2 ↑ MAPE ↓

w/o Weighted Portfolio
Optimization

2.15±0.03 1.78±0.02 0.77±0.02 4.89±0.03 2.45±0.03 1.96±0.02 0.74±0.02 5.58±0.03

w/o Driven Return Adjustment 2.32±0.03 1.91±0.02 0.74±0.02 5.12±0.03 2.59±0.03 2.08±0.02 0.71±0.02 5.76±0.03

w/o Responsive Investment
Strategy

2.28±0.03 1.86±0.02 0.75±0.02 5.03±0.03 2.52±0.03 2.02±0.02 0.72±0.02 5.65±0.03

Ours 1.97±0.03 1.62±0.02 0.81±0.02 4.56±0.03 2.32±0.03 1.85±0.02 0.78±0.02 5.42±0.03

The values in bold are the best values.

TABLE 6 Ablation study results on FRED dataset and Nasdaq market index dataset.

Model FRED dataset Nasdaq market index dataset

RMSE ↓ MAE ↓ R2 ↑ MAPE ↓ RMSE ↓ MAE ↓ R2 ↑ MAPE ↓

w/o Weighted Portfolio
Optimization

3.05±0.04 2.61±0.03 0.68±0.02 6.08±0.03 3.72±0.03 2.89±0.02 0.65±0.02 6.78±0.03

w/o Driven Return Adjustment 3.24±0.03 2.75±0.02 0.64±0.02 6.32±0.03 3.85±0.03 2.98±0.02 0.62±0.02 6.92±0.03

w/o Responsive Investment
Strategy

3.18±0.03 2.68±0.02 0.66±0.02 6.21±0.03 3.79±0.03 2.93±0.02 0.63±0.02 6.85±0.03

Ours 2.78±0.03 2.35±0.02 0.72±0.02 5.92±0.03 3.54±0.03 2.72±0.02 0.68±0.02 6.61±0.03

The values in bold are the best values.

leveraged for natural language processing tasks. All models are
evaluated using standard performance metrics, including accuracy,
precision, recall, F1-score for classification tasks, and root mean
square error (RMSE) for regression tasks. To ensure reproducibility,

all experiments are executed using fixed random seeds and cross-
validation techniques. The implementation is containerized using
Docker to maintain consistency across computing environments.
Performance benchmarks are conducted with five independent
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FIGURE 7
Performance comparison of state-of-the-art methods on ESG ratings dataset and CSR reports dataset. Weighted portfolio Optimization (WPO); driven
return Adjustment (DRA); responsive investment Strategy (RIS).

FIGURE 8
Performance comparison of state-of-the-art methods on FRED dataset and Nasdaq market index dataset. Weighted portfolio Optimization (WPO);
driven return Adjustment (DRA); responsive investment Strategy (RIS); Nasdaq market index Dataset (NMI dataset).

runs, and statistical significance is assessed using paired t-tests.
Hardware utilization, including GPU memory consumption and
training time, is logged for efficiency analysis. Experimental results
are reported with confidence intervals to highlight statistical
robustness. To ensure data quality and consistency, we applied
a structured data cleaning process to all datasets, including the
ESG Ratings Dataset. Missing values in the ESG Ratings Dataset
were handled using a combination of imputation techniques
based on the nature and distribution of the missing data. For

numerical ESG scores, we employed K-nearest neighbors (KNN)
imputation, where missing values were estimated based on the
weighted average of the most similar data points. If missingness was
significant and systematic, we usedmean imputation for continuous
variables and mode imputation for categorical ESG classifications.
Extreme outliers were identified using the interquartile range
(IQR) method, and data inconsistencies were resolved by cross-
referencing multiple data sources. These preprocessing steps
ensured that the ESG Ratings Dataset remained robust and
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reliable, minimizing biases in subsequent model training and
evaluation.

4.3 Comparison with SOTA methods

To evaluate the effectiveness of our proposedmethod, we conduct
acomprehensivecomparisonwithstate-of-the-art (SOTA)approaches
on four datasets: ESG Ratings Dataset, CSR Reports Dataset, FRED
Dataset, and NasdaqMarket Index Dataset. Our method consistently
outperforms baseline models across all datasets, achieving lower
RMSE andMAEwhile attaining higher R2 scores, indicating superior
predictive accuracy and robustness. In Tables 2, 3, on the ESG
Ratings Dataset and CSR Reports Dataset, our method achieves
an RMSE of 1.97 and 2.32, respectively, significantly outperforming
Transformer-based models, which achieve RMSE values of 2.18 and
2.55, respectively. Traditional machine learning models, such as
XGBoost and LightGBM, exhibit weaker performance, highlighting
the effectiveness of deep learning models in capturing complex ESG
patterns. Our method’s improvement is attributed to its ability to
integratetemporaldependenciesandcontextualembeddings,enabling
more accurate ESG score prediction. Additionally, the lower MAPE
values indicate that our model minimizes relative percentage errors,
making it more reliable for financial decision-making.

For the FRED Dataset and Nasdaq Market Index Dataset,
our method achieves the lowest RMSE values of 2.78 and 3.54,
respectively, outperforming Transformer-based approaches (2.97 and
3.79, respectively) and traditional models like XGBoost (3.72 and
4.25, respectively). The higher R2 values demonstrate our method’s
ability to explain a greater proportion of variance in economic and
financial indicators. The superior performance can be attributed
to our model’s architecture, which incorporates attention-based
mechanisms and multi-scale feature fusion, capturing both short-
termmarket fluctuations and long-termmacroeconomic trends. Our
method’s reduced MAE and MAPE further confirm its robustness
in financial forecasting tasks. The comparative analysis underscores
the effectiveness of our proposed approach in ESG analysis and
financial forecasting. The integration of deep learning techniques,
attentionmechanisms, andmulti-scale feature representations enables
our model to outperform conventional SOTA models consistently.
The experimental results in Figures 5, 6 provide empirical evidence of
our method’s superiority, demonstrating its potential for real-world
financial and ESG applications.

The experimental results in Table 4 demonstrate the superior
performance of our proposed SFOM model in both ESG ratings
classification and market risk classification. Compared to state-of-
the-art baseline models, SFOM consistently achieves higher AUC-
ROC scores, indicating its strong ability to distinguish between
high and low ESG-rated assets, as well as between high-risk
and low-risk financial instruments. The model attains an AUC-
ROC of 0.89 for ESG classification and 0.87 for market risk
classification, surpassing traditional machine learning approaches
such as XGBoost and LightGBM, as well as deep learning-
based models like LSTM and Transformer. The improvement in
accuracy, precision, and recall highlights the model’s robustness in
classification tasks, ensuring both higher correctness in identifying
sustainable investments and enhanced recall in detecting market
risks. These results further validate SFOM’s adaptability and

explainability in financial decision-making. The superior recall
values suggest that our model effectively captures sustainability
and risk-related patterns in financial data, reducing the likelihood
of misclassification. The precision scores indicate that SFOM
maintains a high level of reliability, minimizing false positives in
ESG and risk evaluations. The observed performance gain can be
attributed to SFOM’s ability to integrate ESG-aware multi-objective
optimization with dynamic risk assessment, allowing it to make
more informed investment decisions under sustainable finance
policies. By incorporating policy-adjusted return functions and
ESG-weighted constraints, the model optimally balances financial
performance with regulatory compliance, ensuring alignment with
evolving sustainability mandates.

4.4 Ablation study

To investigate the contribution of key components in our
proposed method, we conduct an ablation study by systematically
removing different modules and evaluating the performance on
four datasets: ESG Ratings Dataset, CSR Reports Dataset, FRED
Dataset, and Nasdaq Market Index Dataset. The results, presented
in Tables 5, 6, demonstrate the significance of each module in
improving prediction accuracy and robustness. We define three
ablation settings including w/o Weighted Portfolio Optimization,
w/o Driven Return Adjustment, and w/o Responsive Investment
Strategy. Across all datasets, the removal of any single module
leads to a decline in performance, indicating the importance of
each component in our model. Removing Weighted Portfolio
Optimization results in a significant increase in RMSE and MAE,
suggesting that attention plays a crucial role in capturing important
features and enhancing predictive accuracy. Excluding Driven
Return Adjustment leads to degraded R2 scores, highlighting the
necessity of combining information at different levels for robust
financial and ESG analysis.

In Figures 7, 8, On the ESG Ratings Dataset and CSR Reports
Dataset, our complete model achieves an RMSE of 1.97 and
2.32, outperforming all ablation settings. The performance drop is
particularly noticeable in the w/o Weighted Portfolio Optimization
setting, where RMSE increases to 2.15 and 2.45, respectively. This
suggests that attention-based mechanisms significantly enhance
the model’s ability to extract meaningful patterns from ESG-
related text and numerical indicators. Excluding Responsive
Investment Strategy results in higher MAPE values, indicating that
capturing time-series trends is critical for ESG score prediction.
For the FRED Dataset and Nasdaq Market Index Dataset, the
trend remains consistent. Our full model attains an RMSE of
2.78 and 3.54, surpassing all ablated variants. Removing Driven
Return Adjustment leads to an RMSE increase to 3.24 and
3.85, suggesting that integrating information across multiple
levels significantly improves financial forecasting performance.
The ablation study confirms that each component in our model
contributes meaningfully to its overall effectiveness. The superior
results of our full method provide strong empirical support for its
design, reinforcing the importance of attention mechanisms, multi-
scale feature extraction, and temporalmodeling in ESGandfinancial
forecasting tasks.
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5 Conclusions and future work

In this study, we address the optimization of bank investment
portfolios and debt structures within the framework of sustainable
finance policies. Traditional financial models often neglect the
complexities introduced by environmental, social, and governance
(ESG) factors, leading to suboptimal decision-making in an
increasingly regulated financial environment. To bridge this
gap, we propose a novel mathematical modeling approach
that integrates ESG-adjusted risk-return dynamics, regulatory
compliance constraints, and policy-driven investment incentives.
Our framework incorporates ESG-weighted utility functions,
policy-adjusted return functions, and systemic sustainability
constraints to ensure capital allocation aligns with both financial
performance and sustainability goals. Through experimental
simulations, we validate the model’s efficacy in enhancing financial
resilience, reducing exposure to greenwashing risks, and optimizing
debt structures under evolving regulatory scenarios. This study
contributes to the growing body of literature on sustainable
finance by providing an integrated approach that accounts
for both financial performance and sustainability constraints.
Compared to existing studies that primarily focus on either
risk-return trade-offs or ESG factors in isolation, our approach
offers a holistic framework that dynamically incorporates policy-
driven incentives and systemic risk mitigation mechanisms. The
findings are consistent with previous research that highlights
the increasing role of ESG considerations in financial decision-
making, while also extending these insights by demonstrating the
importance of regulatory interactions in optimizing investment and
debt structures.

Despite these contributions, this study has certain limitations.
The model relies on the availability and consistency of ESG-
related financial data, which can vary across regions and industries,
potentially affecting optimization outcomes. The rapidly evolving
nature of sustainable finance regulations presents challenges in
maintaining the model’s adaptability over time. Future research
could explore methods to enhance the model’s responsiveness to
policy changes through adaptive learning mechanisms and real-
time data integration. Incorporating unstructured data sources, such
as corporate sustainability reports and news sentiment analysis,
could refine ESG assessments and investment decision-making.
Another potential avenue is extending the framework to analyze the
effects of cross-border sustainable finance policies on multinational
banking strategies. By addressing these challenges, future studies
can contribute to a more resilient and sustainable financial system,

ensuring that financial institutions can align profitability with
long-term sustainability objectives while maintaining regulatory
compliance and economic stability.
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