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Real-time monitoring of key water quality parameters is essential for the
scientific management and effective maintenance of aquatic ecosystems. Water
quality monitoring networks equipped with multiple low-cost electrochemical
and optical sensors generate abundant spatiotemporal data for water
authorities. However, large-scale missing data in wireless sensor networks
is inevitable due to various factors, which may introduce uncertainties
in downstream mathematical modeling and statistical decisions, potentially
leading to misjudgments in water quality risk assessment. A high-dimensional
and incomplete (HDI) tensor can specifically quantify multi-sensor data, and
latent factorization of tensors (LFT) models effectively extract multivariate
dependencies and spatiotemporal correlations hidden in such a tensor to
achieve high-accuracy missing data imputation. Nevertheless, LFT models fail
to adequately account for the inherent fluctuations in water quality data,
limiting their representation learning ability. Empirical evidence suggests that
incorporating bias schemes into learning models can effectively mitigate
underfitting. Building on this insight, this study proposes an adaptive biases-
incorporated LFT (ABL) model with four-fold ideas: basic linear biases to describe
constant fluctuations in water quality data; weighted pretraining biases to
capture historical prior information of data fluctuations; time-aware biases to
model long-term patterns of water quality fluctuations; and hyperparameter
adaptation via particle swarm optimization (PSO) to enhance practicality.
Empirical studies on large-scale real-world water quality datasets demonstrate
that the proposed ABL model achieves significant improvements in both
prediction accuracy and computational efficiency compared with state-of-
the-art models. The findings highlight that integrating multiple bias schemes
into tensor factorization models can effectively address the limitations of
existing LFT models in capturing inherent data fluctuations, thereby enhancing
the reliability of missing data imputation for water quality monitoring. This
advancement contributes to more robust downstream applications in water
quality management and risk assessment.

multi-sensor data processing, water quality monitoring, machine learning,
highdimensional and incomplete tensor, latent factorization of tensors, bias scheme,
particle swarm optimization
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1 Introduction

Due to massive industrial production and individual activities,
phytoplankton have proliferated rapidly, disrupting the balance
of marine and freshwater ecosystems, which is recognized as
a matter of global concern [1, 2]. Researchers deploy multi-
sensor monitoring networks to assess real-time variation trends
of water quality parameters. Indeed, sensor-based monitoring data
is precious for water quality prediction and assessment, since
continuous observed values with high spatiotemporal resolution
is essential to detect slight changes in the ecosystem [3, 4].
However, the issue of missing data is still ubiquitous in real-time
monitoring networks, owing to sensor failure, equipment routine
maintenance, data corruption, breakdown of data communication,
data refinement, and otherwise reasons [5, 6]. The large-scale
missing data severely affect the subsequent tasks of statistical
analyses and modelling efforts, and even result in misleading
decisions to water authorities. Therefore, how to find efficient ways
for handling missing data in water quality monitoring networks is
urgently needed.

Data reconstruction is an essential strategy to substitute missing
values in water quality data. Most current studies attempt to develop
prediction approaches for imputing missing water quality data [7].
These techniques range from single imputations that replace each
missing value with a precise value to multiple imputations that
require consideration of the conditional distribution of missing
values within observed data. Recently, machine-learning techniques
that can handle multivariate inputs have been adopted to predict
large-scale spatiotemporal data [8, 9]. Nevertheless, few works
are involved in predicting relevant water quality parameters,
especially for real-time monitoring data. It is well known that in-
situ online water quality monitoring values are often considered
less quantitative than manual measurements due to the inherent
fluctuation and nonstationarity of high-frequency readings. For
this reason, large-scale missing data from sensor-based networks
is a great challenge to solve with conventional machine-learning
methods, such as random forest [10], k-nearest neighbors [11], and
support vector regression [12]. Moreover, although sophisticated
deep-learning techniques can effectively capture multidimensional
information and possess strong representation learning abilities,
their high computational and storage costs make them impractical
in real-world water quality monitoring scenarios, like multi-
directional recurrent neural network [13], sequence-to-sequence
imputation model [14], and transfer learning-based long short
term memory [5]. Hence, there is a significant demand for robust
and high-efliciency approaches to predict unobserved values from
online monitoring data.

The water quality data generated by a multi-sensor monitoring
network can be expressed as a high-dimensional and incomplete
(HDI) tensor. Such a tensor can adequately preserve multivariate,
spatiotemporal and structural patterns of the original data, giving
it inherent advantages in describing water quality parameters [15,
16]. Moreover, a tensor factorization method is gaining attention
due to its ability to extract various desired patterns hidden in
an HDI tensor [17-20]. To date, a tensor factorization method
is successfully applied in diversified areas like quality of service,
link prediction, and intelligent transportation system [21-23].
Representative models of this kind include a Candecomp/Parafac
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(CP) weighted optimization model [17], a fused CP factorization
model [18], a regularized tensor decomposition model [19], a non-
negative tensor factorization model [20], and a coupled graph-
tensor factorization model [56]. Few studies have explored their
environmental monitoring applications. To do so, exploring their
performance in handling large-scale missing water quality data
becomes meaningful.

In general, existing tensor factorization models are efficient in
predicting large-scale missing data. However, water quality data
display strong fluctuations due to variable transformations and
spatiotemporal changes, thereby vastly limiting the representation
learning ability of these models. As unveiled by prior studies
[24-26], bias schemes can precisely capture inherent fluctuations
of complex data to prevent a learning model from underfitting.
These methods can handle systematic measurement errors or
baseline shifts, enabling a learning model adaptive adjustments to
localized anomalies [53, 54]. Specifically, Luo et al. [24] incorporate
a basic linear bias scheme into a latent factorization of tensors
(LFT) model for perceiving constant data fluctuations. Wu et al.
[22] introduce pretraining biases for pre-calculating the statistical
deviations between sampled averages and observed values. Xu
etal. [54] extend the linear biases on each dimension of tensor
for describing more complex data fluctuations. However, existing
studies typically employ a single bias scheme to capture data
fluctuations caused by a singular factor, fundamentally limiting their
representation learning ability in addressing complex water quality
data with coupled fluctuation mechanisms. To this end, Yuan et al.
[25] prove that the linear combination of different bias schemes
can further improve the prediction accuracy of a learning model.
Koren et al. [26] integrate time-changing bias scheme and gradual
drift bias scheme into a learning model to capture the time-varying
fluctuations. Therefore, it is essential to systematically integrate bias
schemes into the learning objective.

Inspired by the above studies, this work aims to incorporate
reasonable bias schemes into a tensor factorization-based model
for achieving accurate prediction of missing water quality data.
On the other hand, the hyper-parameters of current tensor
factorization-based models are mostly tuned manually through
grid-search strategy that consumes immense computing resources
and human efforts. Therefore, practical hyper-parameter adaptation
mechanism is also desired [27]. To address the above issues,
this study innovatively proposes an adaptive biases-incorporated
latent-factorization-of-tensors (ABL) model. It seamlessly combines
diversified bias schemes with the tensor factorization method to
perceive inherent fluctuations of water quality parameters, thereby
achieving a robust model with high prediction accuracy for large-
scale missing data. Moreover, it designs a reasonable hyper-
parameter self-adaptation mechanism to alleviate the resource waste
caused by grid-search. By doing so, this work makes the following
contributions:

o An ABL model. It combines the merits of diversified bias
approaches to integrate three bias schemes into a latent
factorization of tensors (LFT) model for ensuring accurate
prediction. Furthermore, its hyper-parameters are self-adaptive
following the principle of particle swarm optimization (PSO) to
enhance practicability.
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« Algorithm design and analysis. It offers a specific explanation
for researchers to accomplish an ABL model for analyzing large-
scale HDI data.

o Detailed empirical studies. We execute experiments on real-
world water quality datasets to illustrate that an ABL model
exceeds other state-of-the-art models in terms of efficiency and
accuracy for predicting missing values.

The rest of this paper consists of the following parts. Section 2
gives the preliminaries. Section 3 provides a detailed description of
ABL. Section 4 reports the experimental results. Finally, Section 5
concludes this paper.

2 Preliminaries
2.1 Symbol appointment

Adopted symbols in this study are concluded in Table 1. A
variable-station-time tensor is taken as an elementary input data
resource when performing missing water quality data prediction.
Note that as mentioned in Section 1, the target water quality tensor
Y possesses HDI nature, and contains numerous unknown entries
due to unobserved monitoring values, the schematic diagram of an
HDI water quality tensor is displayed in Figure 1. Thus, we define
the target water quality tensor as:

Definition 1: (HDI variable-station-time water quality tensor):
Given entity sets I, J, and K, let YHXUXKIeR be a variable-
station-time tensor where each entry Yijk represents a water quality
parameter value by variable i€l on station jeJ at time point
keK [22, 24]. Y is an HDI tensor if it contains amounts of
unknown entries.

2.2 Latent factorization of tensors

In this paper, we achieve LFT on Y in the form of CP tensor
factorization, which is actually a special case of Tucker tensor
factorization [28, 29]. Compared with CP, although Tucker takes
into account entries of a core tensor to realize higher representation
ability of a target tensor than CP does, it has the following
disadvantages: Tucker consumes more computing resources by
noting the extra computational cost proportional to the size of
a core tensor, the mathematical form of Tucker is much more
complicated to understand than CP [28, 29]. Hence, this work
adopts CP tensor factorization as a basic scheme for deriving
an LFT model.

With CP tensor factorization, Y is decomposed into R rank-
.., and X, where R is the
rank of the achieved approximation Y to Y. Identifying R on

one tensors, that is, X, X,,

a given tensor is a nondeterministic polynomial problem [24],
it is generally predefined. Specifically, a rank-one tensor is
defined as:

Definition 2: (Rank-one Tensor): X!*VIXIKl ¢R is a three-way rank-
one tensor if it can be written as the outer product of three latent
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TABLE 1 Adopted symbols and their descriptions.

Symbol Description

Y Target three-way HDI tensor
X Rank-one tensor to form the approximation to Y
Y Low-rank approximation to Y
Vi Xijeo qu A single entry in Y, X, and Y
LJ,K Sets of variables, sites, and time points
R Rank of Y and dimension of the latent factor space
V,S, T Latent factor matrices
VoS, t, The rth latent factor vectors in V, S, and T
Vips Sip> Lir Single entries in V, S, and T
bv;, bs;, bt Single basic linear biases
PVi PS> Pty Single pretraining biases
v tsjp, tyg Single time-aware biases
R Real number domain
| 1& Frobenius norm of an enclosed tensor
° Outer product of two vectors
[ Cardinality of an enclosed set
o, f Regularization coefficients
n Learning rate
|- aps Absolute value of an enclosed number
AAQ Training, validation, and testing sets
[N Acceleration coefficients in PSO.
I, 1, Uniformly distributed random numbers in [0, 1]
M, m The number of particles, mth paricle
D, d The search space, d-dimensional space
w Inertia weight
Sna Velocity of the mth particle in dth dimension
Pomd Position of the mth particle in dth dimension
Pba Best position of the mth particle in dth dimension
gb, Best position of the whole swarm in dth dimension
f > fd Upper and lower bounds for a particle’s velocity
P pPa Upper and lower bounds for a particle’s position
n Training iteration count
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An HDI tensor Y of variable-site-time showing water quality parameter values.

factor (LF) vectors v,,
[28,30],as X, =
Thus, we get the detailed expression of each entry P

. t, with length |I|, |J|, and |K]|, respectively

=v]s; t,

(r)
ik 1n X, as qu

ViSjrtir- Subsequently, LF matrices VIR GUXR and TIKMR consist
of R LF vectors, where the rth column vector in V, S, and T is coupled

to form the rth rank-one tensor X,, as shown in Figure 2. With

-
these R rank-one tensors, we accomplish Y’s rank-R approximation
Y as Equation 1:

=) X, 1)

M =

I
—

T

where each entry ; in Y is formulated as:

yz;k zxz]k Z VirS ]rtkr (2)

To gain the expected LF matrices V, S, and T, we construct an
objective function ¢ to measure the difference between Y and Y,
which relies on the frequently-used Euclidean distance [21, 26]. It
is worth noting that LFT is also compatible with other objective
functions [24], such as Lp’q—norms or KL-divergences. With it, the
objective function ¢ is defined as:

11 1]l K| 2
€_"Y Y" _Zzz<yzjk thr]rtkr> .

i=1j=1k=1

©)

As drawn in Figurel, Y contains numerous unknown

entries. Thus, we define ¢ on known entry set A to denote Y’s
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known information exactly [30, 31]. Following this, Equation 3
is reformulated into:

)

2
Z <y1]k thr ]rtkr> .

Vi€

Previous studies have shown that ¢ is ill-posed due to the
imbalanced distribution of Y’s known entries [24, 31]. Thus, we
integrate Tikhonov regularization into Equation 4 to enhance its
generality:

- 3

Vi€

R
<()’ijk —yljk)z + ocz; (vfr + sjzr + tlz(r) ), (5)
=
where « denotes the regularization coeflicient for each LF in
V, S, and T. Note that ¢ adopts the density-oriented strategy to
build the regularization terms, enabling the model to achieve
further generality [32]. By employing a reasonable learning
algorithm to minimize the loss in ¢ [33], an LFT model is
achieved. Figure 3 illustrates the process of predicting missing data
adopting an LFT model.

2.3 Particle swarm optimization

A PSO algorithm establishes a swarm of M independent
particles searching in a D-dimensional space [27, 34]. Each particle

[fml’ fmZ’ e me] and
..» P,up] to find the optimal solution.

is controlled by its velocity vector f,, =
position vector p,, = [P,1> Pmz> --
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Following the principle of PSO, the update process of the mth
particle at the nth iteration is as follows:

Vme{l,..,.M},de{l,..,D}:

(n) (n-1) (n—1) (n-1) (n-1) (n-1)
Fond = WS pa +C1r1<pbmd P )+C2r2(gbd P )

(n) _ _(n-1) (n)
pmd_pmd +fmd'

(6)

where w denotes inertia weight, ¢, and c, are acceleration
coefficients, r; and r, are uniformly distributed random numbers
in [0, 1], pb,,; denotes best position of the mth particle in dth
dimension, gb, represents best position of the whole swarm in dth
dimension, and PSO iteratively updates the velocity f,,; and position
Poma Of each particle until it meets the convergence conditions.

3 Proposed ABL model

3.1 Diversified bias schemes modeling in
LFT

Due to a series of external factors such as seasonal characteristics
of parameters, variable transformations, and spatiotemporal
changes, water quality data exhibit inherent fluctuations, as shown
in Figure 4. According to prior studies [24-26], the representation
learning ability and stability of a learning model can be improved by
integrating bias schemes into its learning objective, when analyzing
such fluctuating data. To this end, we introduce three types of bias
schemes into an LFT model for capturing water quality fluctuations.

In HDI data analysis tasks, the basic linear bias method is
commonly employed to prevent a learning model from underfitting
[24, 35, 36], which effectively characterizes constant fluctuations of
historical data. In our context, for a three-way water quality tensor
YIPUIXIKT the basic linear biases can be modeled through three
bias vectors bv, bs, and bt with length |I|, |J|, and |K]|, respectively.
By incorporating the corresponding elements in these vectors into
Equation 2, we obtain the new entry ; in Y as Equation 7:

7

R
Vi = Z ViySjpliy + bV; + bsj + bl
r=1
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Therefore,  the
reformulated as Equation 8:

R 2
&€= Z <<J’ijk - (z VireSirtir + by, + bsj + btk>>
yijkEA r=1

R
+ay (v2 +s £ )+B(bv? + bs} + bti))

r=1

learning  objective = Equation5 s

(®)

Note that the regularization on biases in ¢ is also connected to
each known entry y;; €A to reflect the density-oriented strategy.

As indicated in previous research [25, 37, 38], the pretraining
bias approach perceives non-stationary fluctuations of known data
based on historical prior information before the training process,
thereby diminishing the initial error between unobserved values
and their corresponding estimates. We reasonably infer that such a
method is also applicable for integration into an LFT model. Notice
that pretraining biases are not trained together with LFs, but rely on
a prior estimator, which may cause their effects on a learning model
to be negative in certain iterations. To eliminate the negative effects,
we introduce weighted pretraining biases into an LFT model. Thus,
each entry ;. in Equation 2 is reformulated into Equation 9:

R
Vi = Z; VirSirtir + AiPV; + Q;pS; + YDty )

=

It is worth noting that weight coefficients A;, ¢;, and y; are

trained together with LFs. Since pretraining biases can be acquired
by various statistical estimators, and a reasonable estimator is able to
enhance the prediction accuracy of a learning model [22, 25]. With
it, pv;, psj, and pt; are formulated as Equation 10:

pvi= Y (ge—w)/6, +IAG)D,

€A
psi= % (r=)/G+ 1A, 0
yijkEA(j)
p= Y (vp—#)/(6:+1AK)),
P eAk)

where A(i), A(j), and A(k) denote subsets of A linked with
entities i€l, jeJ, keK, respectively. 0,, 6,, and 0; denote the
threshold constants associated with the average of A(i), A(j), and
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FIGURE 3
Missing data prediction by performing LFT on a water quality tensor.
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FIGURE 4
Water quality data fluctuation: (a) values of a particular variable collected by a particular station at different time points, (b) values of a particular variable
collected by different sites at the same time point.

A(k). The global average y represents the statistical characteristics Generally speaking, water quality data fluctuate slowly over
of A [22, 25]. By introducing weighted pretraining biases into  time. Such a phenomenon indicates that fluctuations of a specific
Equation 5, yielding Equation 11: water quality variable between two consecutive collection time
points are usually small, while fluctuations between peaks and

valleys are commonly obvious, as drawn in Figure 3a. Hence, it

is significant to capture the time-changing fluctuation patterns

of water quality data to perceive their seasonal and periodic

R (11) " characteristics. Inspired by previous studies [26], this work
+az (V?r+ sjzr+ tir) + ﬁ()tf + ‘sz + yi) . introduces a time-aware bias approach to describe long-term
r=1 fluctuations in water quality data. Accordingly, we construct L bins

R 2
€= Z ( Yijk Z VigSiplir + APV + P;psj + VPl )
r=1

yxjkeA
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to hold a number of |K| time points, where each bin /€L puts
|K|/L consecutive time points. By doing so, we incorporate these
time-aware biases into Equation 2 as Equation 12:

Vi = Z"zr Sjpthy TtV + I8y + thy. (12)

Notice that leL corresponds to the bin k€K belongs to. The
objective function ¢ is obtained as Equation 13:

2
&= z <<yijk_<zvlr]rtkr+tvl+tsl+ttkl>>

V€A
R
2 2 2 2 2
+ay (vi+ s+ £) +ﬁ(tvil 15+ ttkl) >
r=1

Overall, by modeling basic linear biases, weighted pretraining

(13)

biases, and time-aware biases into an LFT model, we achieve the
biases-incorporated learning objective as:

-3

Yik €A

(+/3(Af + gof + yi) +[§’<tvfl + tsfl + ttzl)),

R

()’ijk‘f’zjk)z+“2(" +5; 248 )+ [J’(bvf+bsf+bti)

r=1

(14)
where each entry j;; is unfolded as Equation 15:
yr]k szr thkr (bvi + bsj + btk)
( iPvi+@;ps;+ ykptk) + (tv,-, +is;+ ttk,). (15)

With Equation 14, we derive the objective function of an ABL
model. It should be noted that the ABL model only requires
approximately (|I| x R+|J| x R+|K| x R) training parameters
to represent (|I| x |J| x |K|) samples, significantly saving the
computational and storage costs. Next, we present its hyper-
parameter adaptation.

3.2 Adaptive parameter learning scheme

When constructing an LFT model, stochastic gradient descent
(SGD) is predominantly employed as the learning algorithm to
optimize the non-convex objective function of the model by
extracting desired LFs and biases, owing to its lightweight structure
and efficient implementation [39, 40]. Therefore, we choose SGD as
a base algorithm to solve Equation 14. With it, the learning scheme
for LFs and biases is derived as:

VielLje,keKleLre{l,.,R}

Vir < Vi1 = 10) + eyt bv; < bvi(1 = nB) + nejjps
S < S; (1 -na)+ HeijkVirtkrs bs; < bs;(1-np) + N
by tkr( ’7“) + NeijkVirSirs btk - btk (1- ’1[5’) + NCijk> (16)
Ai = (L =nP) + neypvy tvy — tvy(1 = 1) + nejjp
¢; = ¢(1=np) +negps tsjp — ts;(1 = 1) + ey
LY V(1= 1) + nepty, thy — thy(1—np) + negs
where €ijk yijk—)”/ljk represents the instant error on

Vi Based on Equation 16, we arrive at an SGD-based parameter

Frontiers in Physics

07

10.3389/fphy.2025.1587012

learning scheme. Notice that a group of controllable hyper-
parameters, i.e., 77, @, and S, require to be tuned trough grid-search
strategy, which is time-consuming and weakens the practicality.

Existing studies indicate that sophisticated optimization
algorithms are capable of achieving self-adaptation for a set of
hyper-parameters [41-43]. The main advantages of PSO are fast
convergence and high compatibility. It is suitable for learning
models with multiple hyper-parameters and expensive optimization
costs, like an improved LFT model defined on an HDI tensor.
Hence, we select PSO to implement hyper-parameters adaptation
in Equation 16. To do so, we construct a swarm of M particles
in a D-dimensional space, where D = 3 corresponds to 7, a, and
B. Note that mth particle is applied to the same group of LFs
and biases. Equation 17 gives the velocity vector f,, and position
vector p,,, of mth particle:

[F11> fts fB,]-
[ﬂm"xm’IB ]

fm = [fm1’fm2’fm3] =

17)
Pm = [Pml’pm2’pm3]

By substituting it into Equation 6, we realize the evolution
strategy of the hyper-parameters. As illustrated in Equation 6, the
mth particle evolves based on its personal best position vector pb,,
and the global best position vector gb during each iteration, with its
update scheme formulated as Equation 18:

Vm e {1,...,M}:
S P l>)>F(p:;:>), 19)
AN EL ot CLaE F(ph),
gb" =

(n)

P Fgb" V) > F(pl).

To enhance the adaptability of whole swarm to HDI water
quality data, we employ the following fitness function as a
performance criterion for PSO:

FWJZ@MMWWHPMZWVMMMLU%
Y

€Y V€Y

In Equation 19, the balance coefficient p is typically set to 0.5 [44],
A denotes the validation set. Moreover, the velocity and position
of each particle need to be constrained within a predefined range,
as shown in Equation 20:

vd € {1,...,D}:

f(n) 3 Jv‘dff,’fi > fa

md ~ T oAn 7

fd’f(md < fp
- (n) -
PaPmg”> Pa
—~ (f’l) —_
PaP g <Pa

(20)

(n) _
pmd_

Furthermore, we set fd =0.2x (ﬁd —ﬁd) and fd = - fd based
on prior research [41].

As a swarm consists of M particles, each evolution iteration is
composed of M sub-iterations. Specifically, in the mth sub-iteration
of the (n+1) th iteration, the learning rule for LFs and biases is
expressed as Equation 21:
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| Initialization: LFs and biases | —>| Update pb,, and gb with (18) |
! !
| While not converge or n <N do | | Make p,, and f;, evolve with (6) |
' '
| For m=1 to M | I Constrain p,, and f;, with (20) |
! y
| Update LFs and biases with (21) | | End For |
'
| End For | | n=n+1 |
} !
| For m=1to M | | End While |
! !
| Compute £ with (19) I— | Desired LFs and biases |

FIGURE 5
Flowchart of an ABL model.

VzeI,]e],keKleLre ,ew R, me{1,.., M}
Lo 17% ) e 0 ) 0 17% B el Vi = Zvl, Sirlkr = ¥ e T bv; +bs; + bt (23)

mir 1 m x]k mr b ke mijk’
oy _e

ﬂ) (n) (n) (n+1) (rz) () p(n) (n) (w)
myjr m]r Mm m)* Mm mtjk mnmkrb —bs,,;(1- mﬁ Flm € i
1 ( 1) ( . .
o (1l ,;‘ +rue” Uk r:" e bt(“+ b, l—q(" ) +:7,,',‘)eﬁ;‘),1k, Since by}, bsj’: and by are essentially rank-one tensors [31], non-
n+l) (n) (n) (n) (n (n+l) (n) (1) H(n) n) (n) . . .
Ao /lmr + 1 mng mr’ Vit < Vi ( = P )+ M € 1o biased LFT needs at least R > (R +3) to accurately characterize y;,
(n+l) (n) (n+l) (n) (1) (1) (n) (n)
Pm,j 1- o s = 5y (1= B ) otherwise it inevitably suffer from underfitting. In contrast, a biased
o+ (n) (n) r](rx) (n) ot (n) (n+1) — n) ( ?1(”),3(”))+11(W)EW . . .
mk ( T T Y] S K R A (1) LFT model explicitly builds bias terms, and v,, s,, and ¢, only need

to fit yj; as Equation 24:
where the subscript m on each parameter denotes that its current
state is linked with the mth particle. Consequently, we accomplish T = Zvﬂ Sirtiy + bV, + bs; + bty = 7 et by + bs +bt:. (24)
an adaptive parameter learning scheme for an ABL model. To clearly
d trate the traini f ABL, desi flowchart .
emons r? € ) ¢ fraining process o we design a Howchar Hence, a biased LFT model only requires R = R to achieve
as shown in Figure 5. . . .
the approximate prediction accuracy as a non-biased LFT model.
Consequently, the required rank of LFs in a biased LFT model is

. . reduced, thus intrinsically mitigating underfitting risks.
3.3 Theoretical proof of a bias scheme

Step 3: since LFs and biases undergo decoupled optimization, where

This study establishes a rigorous theoretical proof to the bias term governs rapid fitting of systematic biases by},

demonstrate how the bias schemes fundamentally enhance the bs;, and b, while LFs focus on interaction term yj, thereby
ensuring a stable and efficient optimization process.
Step 4: under the premise that step 1 holds, the error upper bound

for a biased LFT model is defined as Equation 25:

prediction accuracy of an ABL model. Specially, we employ a basic
linear bias scheme as an example. The theoretical proof consists of
the following four steps.

Step 1: assuming that an observed value y;; in Y can be

decomposed into Equation 22: "Y_?"i - "Y* B Y||;+||bv* byl + [bs — bl + bt* ~ b2,

(25)
Vik = Vi + by +bsT + bty (22)  while the error upper bound for a non-biased LFT model is defined
; ,
’ ! ! as Equation 26:
where yj is a low-rank interaction term, bvj bs; and b are true 2 2
: YY) < (Y +bv* +bs" + bt") - Y. (26)
systematic biases. Thus, we have rank (yj;) = R . " F F
Step 2: in anon-biased LFT model, alow-rank approximation value Therefore, under equivalent rank settings in R, a biased LFT

Jij requires three factor vectors v,, s,, and ¢, to fit both  model demonstrates strictly lower error upper bound through
systemic biases and interaction term as Equation 23: systematic biases integration.
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Input: A, I, J, K, M, R

Operation Cost
while #<N and not converge do Xn
for m=1to M <M
for each y;;in A x|A|
compute an instant error e;x with ~ O(R+4)
for =1 to R xR
update LFs with (21) 03)
end for -
update biases with (21) 09)
end for -
end for -
for m=1to M xM
compute F with (19) O(JAXR)
update pb,, and gb with (18) 0(2)
evolve f,, and p,, with (6) 09(2)
constrain f, and p,, with (20) 0(2)
end for -
n=n+1 (1)
end while -

Output: Desired LFs and biases

Algorithm 1. ABL.

In summary, this methodological framework fundamentally
establishes a biased LFT model’s enhanced imputation accuracy
relative to a non-biased LFT model. The derivation methodology
extends analogously to the remaining bias schemes.

3.4 Algorithm design and analysis

According to the above inferences, we design the algorithm
of an ABL model, as displayed in Algorithm 1, the primary task
in each iteration is to update LFs and biases. Consequently, its
computational complexity is given as:

Crpr = O(nx Mx Rx (JA] +|A])). (27)

Equation 27 utilizes the condition that max{|I|, |J|, |K|}<|A],
which is usually satisfied in real applications. Since #, M, and R are
positive constants in practice, the computational complexity of an
ABL model is linear with (|A|+|A|) in an HDI tensor. Additionally,
according to prior research [30], the computational complexity of
an LFT-based model is generally ®(n x R x (|A|+|A])), the only
difference is the constant M. The primary reason is that the hyper-
parameters in ABL are self-adaptive following the principle of PSO
algorithm, whose swarm is made up by M particles. Nevertheless,
ABL consumes less iterations to converge. Thus, the proposed model
is competitive in computational complexity, which is supported by
the experiment results in Section 4.

Its storage complexity relies on three factors: arrays caching the
input (JA|+|A|) and the corresponding estimates, auxiliary arrays
caching M independent LFs and biases, and auxiliary arrays caching
the storage costs required for hyper-parameter adaptation in PSO.
Therefore, by reasonably ignoring lower-order terms and constant
coeflicients, we achieve the storage complexity of ABL as:

Sapr = O+ 1+ [K]) x Mx R+ (|A] +|A]). (28)
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Equation 28 is linear with an HDI tensor’s input count, the
swarm size in PSO, and LF count. Section 4 executes experiments
to verify the performance of an ABL model.

4 Experimental results and analysis
4.1 General settings

4.1.1 Evaluation metrics

To prevent gradient explosion or disappearance of a learning
model caused by inconsistent data magnitude and unit of different
water quality parameters, we first adopt a logarithmic normalizer
to improve the stability of test models [31]. Then, the evaluation
protocol is set as the missing data prediction, which is a widely-
used protocol for testing the performance of learning models
on HDI tensors. To do so, we adopt root mean squared error
(RMSE) and mean absolute error (MAE) as the evaluation metrics
(24, 44]:

RMSE = \/ Y (yzjk—y‘ijk)z/lﬂl,
J’xjkEQ

(29)

MAE= ) |y,jk _?ijk|abs/|0|'
y,.]keQ

In Equation 29, for a tested model, the smaller RMSE and MAE
stand for the higher prediction accuracy.

4.1.2 Experimental data

The online water quality data was collected from 22 monitoring
stations in the Three Gorges Reservoir, China. Such a multi-
sensor monitoring network obtains eight important water quality
parameters, including water temperature (°C), pH, dissolved oxygen
(mg/L), electrical conductivity (uS/cm), turbidity (NTU), chemical
oxygen demand (mg/L), total phosphorus (mg/L), and total nitrogen
(mg/L). Their collected frequency was set to every 4 hours from
1 January 2020 to 30 June 2023, resulting in 7662 consecutive
sampling points. Subsequently, we get a water-quality tensor with
the size of 22 x 8 x 7662. The dataset contains 1,248,061 samples,
and the data density is about 92.55%, which is high compared
with most practical applications. Thus, in the experiments, we build
four simulated testing cases, their detailed information is shown
in Table 2. Notice that the data density in Table 2 is calculated by
Equation 30:

[Al+]A|

————— x 100%.
[VIx|S|x|T|

Density = (30)

Specifically, considering D1, its |A|:|A[:|Q] is 40%:40%:20%,
representing that we randomly choose 40% from 1,248,061 samples
as training set A and 40% as validation set A to establish a learning
model, the remaining 20% as testing set Q to verify the performance
of each model. For each testing case, the random splitting of |A|,
|A] and |Q] is repeated for 50 times to obtain 50 independent
experimental sets for eliminating possible deviations caused by
data splitting. Moreover, the standard deviations metric is included
in the analysis [30]. As one of the core metrics for quantifying
prediction uncertainty, it specifically characterizes the dispersion of
prediction values around their mean. A larger standard deviation
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TABLE 2 Detailed settings of testing cases.

Case  [ALALQl | 1Al 1Al lql ’ ey
D1 40%:40%:20% 499,224 499,224 249,613 74.04%
D2 30%:30%:40% 374,418 374,418 499,225 55.53%
D3 20%:20%:60% 249,612 249,612 748,837 37.02%
D4 10%:10%:80% 124,806 124,806 998,449 18.51%

TABLE 3 Searching range and optimal values via grid-search.

Setting Range D1 D2 D3 ‘ D4
n [0.0001,0.001] | 0.0005 | 0.0008 | 0.0006  0.0003
« (0.001,0.01] 0.003 0.001 0.008 0.005
B [0.01,0.1] 0.06 0.04 0.07 0.01

indicates lower reliability of the prediction values. This metric
directly determines the width of the confidence interval, thereby
quantifying the confidence range of the prediction results. For all
tested models, the LF space dimension R is fixed at 20 to balance the
computational cost and prediction accuracy [31], and PSO-related
parameters are consistent with empirical values [34], i.e., M = 10, w
=0.729, and cl = c2 = 2. Moreover, to avoid gradient disappearance
or explosion of learning models caused by inconsistent value ranges
of different water quality variables, we employ a normalizer for each
entry y;; to improve the stability of the experimental results [31].

4.1.3 Training settings

The training process of a tested model terminates if its expended
iteration count arrives 1,000, or the training error difference between
two consecutive iterations is less than 107>, The training error of
a model is tested on A. Its output RMSE and MAE are tested on
Q. All tested models are executed on a server equipped with a
3.2 GHz i5 CPU and 128 GB RAM, adopting JAVA SE 7U60 as the
operating platform.

4.2 Hyper-parameter sensitivity

In this section, we validate the effects of hyper-parameter
adaptation in an ABL model. For this purpose, we omit the
hyper-parameter adaptation component from an ABL model, and
tune these hyper-parameter through manual grid-search to obtain
the optimal predictive performance. The searching range and its
optimal hyper-parameters for the grid-search strategy are recorded
in Table 3. Subsequently, we compare the performance of manual
grid-search and PSO-based adaptation, with the comparison results
presented in Table 4. The experimental results clearly demonstrate
the positive effects by the hyper-parameter adaptation in an ABL
model. From it, we get some important findings.

With hyper-parameter adaptation, an ABL model substantially
improves its prediction accuracy. For instance, as shown in Table 4,
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the MAE of an ABL model with PSO-based adaptation is 0.1739
on D4, while the MAE of an ABL model with manual grid-search
is 0.1843. Hence, the hyper-parameter adaptation enables an ABL
model to accomplish the accuracy gain at 5.64%. Similar results are
encountered on other testing cases. The primary reason is that the
grid-search strategy fixes hyper-parameters throughout the training
process, potentially causing the model to converge to suboptimal
local minima. Conversely, PSO-based adaptation dynamically adjust
hyper-parameters at a finer granularity, enabling the model to escape
local optima and realize superior solutions.

An ABL model’s hyper-parameter adaptation alleviates the time
cost immensely. It can be seen from Table 4 that the time cost of an
ABL model with manual grid-search is comparable with that of an
ABL model with PSO-based adaptation. Nevertheless, seeking the
optimal hyper-parameters through grid-search is time-consuming.
For instance, on D1, the grid-search strategy consumes 7683 s to
choose the optimal hyper-parameters to arrive the lowest RMSE,
which is about 452 times of that by PSO-based adaptation. Other
testing cases yield similar results, as recorded in Table 4.

It should be noted that the time cost per iteration for an ABL
model with PSO-based adaptation is significantly higher than that
of an ABL model with manual grid-search, whereas its convergence
iteration count is substantially lower. This is attributed to the
PSO algorithm’s structure, where each iteration comprises M sub-
iterations to evolve hyper-parameters. Consequently, the time cost
per iteration is approximately M times that of grid-search, but the
iteration count and overall time cost are dramatically reduced.

4.3 Comparison with state-of-the-art
models

This set of experiments compares an ABL model with several
state-of-the-art models to verify its performance. Their details
are as follows:

MI: A CP-weighted optimization model [17]. It adopts a first-
order optimization method to solve the weighted least squares issue.

M?2: A non-negative tensor factorization model [20]. It adopts
CP to complete an HDI tensor with the consideration of non-
negativity, and updates LFs via a multiplicative update scheme.

M3: A high-dimension-oriented prediction model [21]. It
models multi-dimensional data via concepts of tensor, and predicts
the missing data via reconstructed optimization algorithms.

M4: A tensor completion model [45]. It employs a gradient
descent-based mechanism to enhance the prediction accuracy by
imputing the missing entries in an HDI tensor.

MS5: A depth-adjusted non-negative LFT model [30]. It presents
a joint learning-depth-adjusting strategy to escape frequent training
fluctuation and weak model convergence.

M6: A biased non-negative LFT model [24]. It integrates linear
biases into the model for describing fluctuations, and designs a non-
negative multiplicative update rule to update LFs and biases.

M7: An SGD-based LFT model [36]. It utilizes SGD algorithm
as its parameter learning scheme, and incorporates bias terms to
improve its prediction accuracy.

M8: An ABL model proposed in this paper. It presents diversified
biases to capture inherent fluctuations in water quality data, and
introduces PSO-based adaptation to boost its practicability.
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TABLE 4 Performance comparison between two methods in RMSE and MAE.

Case Method RMSE Iterations aTotal ’ bTune ’ MAE Iterations aTotal 5Tune
Manual 0.2727 30002 177, 15,, 7683 0.1494., 00y 326,0 27, 13,831
DI
PSO-based 0.2709,0,0015 18,, 17,, — 0.1473 0 000 63,55 58,50 —
Manual 0.2871,0,0055 179, 11,, 5618 0.1584.1 0pso 274, 17,, 8733
D2
PSO-based 0.2838,,0016 19,, 13,, — 0.1552, 001, 61,5, 4, —
Manual 0.3009, 0035 144, , 6. 3043 0.1652, pony 28, 18, 9115
D3
PSO-based 0.2976,0,0017 16,, 7. — 0.1618, 0000 Tl 30,4 —
Manual 0.3211,0,0059 259, ,, 7 3217 0.1843,.0 005 541, 14,, 7046
D4
PSO-based 0.3068,,0000 15,, 4, — 0.1739,5 0014 470 13,, —

“Total: Total time cost in Seconds.
"Tune: Tuning time cost in Seconds.
The bold values denote the optimal values.
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FIGURE 6
Convergence iteration count of eight models on four testing cases: (a) iteration count on D1, (b) iteration count on D2, (c) iteration count on D3, (d)
iteration count on D4.

Figure 6 records each compared model’s convergence iteration MS, i.e., a proposed ABL model, converges much faster than
count. Table 5 illustrates their time costs. Table 6 depicts the its peers do. According to Figure 6a, M8 only takes 18 iterations to
RMSE and MAE of the compared models. From these results, we complete the convergence in RMSE, while M1-M7 takes 212, 100,
draw several interesting findings. 775, 559, 256, 145 and 556 iterations to achieve the convergence
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TABLE 5 Time cost of each compared model in seconds.

10.3389/fphy.2025.1587012

RMSE-Cost 4614, 165, 5 1760,y 891,46 391,55 244, 74,, 17,
D1
MAE-Cost 458, 379,20 17555, 974,45 940,15 4685 74, 58,50
RMSE-Cost 467,35, 73,, 1160,,56 719,56 483,156 168, 5 62,6 13,,
D2
MAE-Cost 410,54 242,46 115854 835, 967 1107 330,35 63,5 42,5,
RMSE-Cost 514,54 33,, 785,566 554, 5 678,26 74,, 55, 7
D3
MAE-Cost 506,179 83,10 784,55 576,14 749, 156 198,,, 57,5 30,
RMSE-Cost 351, 19,4 335,,, 405,,5 447,, 24,, 40,, 4,,
D4
MAE-Cost 346,45 27,4 335, 429,, 449, 52,6 40,, 13,,
Loss/Win 0/8 0/8 0/8 0/8 0/8 0/8 0/8 »
The bold values denote the optimal values.
TABLE 6 Lowest RMSE and MAE of each compared model.
Case M1 M2 M3 M4 ’ M5 M6 M7 ‘ M8
RMSE 0.3586..0,9061 0.3377 40,0067 0.3349., 965 0.3093..6,0009 0.33014, 9015 0.3179., 0011 0.30319, 914 0.2709.,0,0013
D1
MAE 0180399016 01777 0. 0012 0.1716. 0045 0.1699..,9011 0.17244 015 0.1665., 0912 0.1674.49. 01 0.1473.,9,0008
RMSE 0.3951.,0029 0.3622,,0135 0.344 1 95> 0.3205.,9011 0.3608., 951 0.3352.4,0075 0.31319 921 0.2838,0,0016
D2
MAE 0'215310,0034 0‘1945i0.0058 0'17911:()‘0034 0'17631:0,0013 0‘1876i0.0017 0'17951:00021 0'1727t0,0017 0‘155210.(}011
RMSE 04477 19 0251 0.3988.2234 0.3797.0.0254 03408 0015 0-3933.0,0026 036680064 0.3325,0,0031 0.2976.¢.0017
D3
MAE 0.2374..0 0069 0.2238,0.0114 0.2019,4,9304 018939011 0.2125,,0033 0.1978.,,032 0.1819., 921 0.1618,,9,0009
RMSE 06489, 0445 0.5054.0,0463 04493 196 0393300024 0.4809..0,0035 04098 ggs1 0.3809..0,0061 0.3068.¢,9009
D4
MAE 0.3127.9.0571 0.2883, 231 0.2562. 9151 0.2201.,9921 0.2864., 036 0.2323 1,054 0.2112, 0949 0.1739.,0,0014
Loss/Win 0/8 0/8 0/8 0/8 0/8 0/8 0/8 -

The bold values denote the optimal values.

TABLE 7 Average ranking of all compared models.

Rank M1 M2 M3 M4 M5 M6 M7‘M8

Efficiency 5.3 2.6 7.2 6.6 6.8 4.0 2.5 1.0

Accuracy 8.0 7.0 5.0 3.1 59 3.9 2.1 1.0

The bold values denote the optimal values.

in RMSE on DI, respectively. As for MAE, as shown in Figure 6b,
M1-M7 consume 304, 208, 833, 689, 810, 249 and 667 iterations,
respectively, to ensure model convergence on D2. By contrast, M8
requires only 61 iterations. Similar results can be found on D3 and
D4, as displayed in Figures 6¢,d. From these results, we can clearly
see that the convergence rate of an ABL model is significantly higher
than its peers. Therefore, utilizing the PSO-based adaption in an
LFT-based model is feasible and high-efficiency.

Frontiers in Physics

M8 achieves remarkable efficiency gain over the advanced
models. As depicted in Table 5, M8 realizes the lowest time cost on
four testing cases. For instance, on D4, M8 consumes about 13 s to
converge in MAE, which is 3.76% of 346 s by M1, 48.15% of 27 s by
M2, 3.88% of 335 s by M3, 3.03% of 429 s by M4, 2.90% of 449 s by
M5, 25% of 52 s by M6, and 32.50% of 40 s by M7. Similar outputs are
gained on D1-D3. As shown in Algorithm 1, the computational cost
of an ABL model chiefly depends on an HDI water quality tensor’s
known entries. Moreover, its PSO-based adaptation possesses fast
convergence and high compatibility. Hence, we can conclude that
such a modeling strategy is highly appropriate for analyzing large-
scale water quality data.

M8 exhibits strong competitiveness in predicting large-scale
missing water quality data. As recorded in Table 6, M8 acquires the
lowest predication error across all testing cases. For instance, on D1,
MS8 realizes the lowest MAE at 0.1473, which is about 18.30% lower
than 0.1803 by M1, 17.11% lower than 0.1777 by M2, 14.16% lower
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Efficiency Ranking
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M6

FIGURE 7

Results of Nemenyi analysis: (a) efficiency of M1-8, (b) accuracy of M1-8.

than 0.1716 by M3, 13.50% lower than 0.1699 by M4, 14.56% lower
than 0.1724 by M5, 11.53% lower than 0.1665 by M6, and 12.01%
lower than 0.1674 by M7. Furthermore, on D4, M8 achieves the
lowest RMSE at 0.3068, which is about 52.72% lower than 0.6489
by M1, 39.30% lower than 0.5054 by M2, 31.72% lower than 0.4493
by M3, 21.99% lower than 0.3933 acquired by M4, 36.20% lower
than 0.4809 acquired by M5, 25.13% lower than 0.4098 acquired by
M6, 19.45% lower than 0.3809 by M7. A similar phenomenon are
achieved on D2 and D3. The primary reason for M8s performance
gain lies in its integration of diversified biases to characterize
inherent fluctuations in water quality data, combined with a PSO-
based hyper-parameter adaptation mechanism that enhances the
fitting for an HDI tensor. Thus, M8 possesses highly competitive
prediction accuracy for large-scale missing water-quality data.

The performance gain of M8 is statistically significant in our
experiments. To further measure the performance of the above
compared models, we employ the Friedman test [46] to verify their
statistical significance given in Tables 5, 6. The average rankings of
efficiency and accuracy across compared models are compiled in
Table 7. Assuming that go p is the ranking of the compared model
on corresponding testing case, where o represents the oth one of
O compared models and p represents the pth one of P testing
cases. The Friedman test calculates the average ranking of each
model’s performance on all testing cases, i.e., H, = Zﬁ:l gl’;/P. Then,
we compute the Friedman value as Equation 31:

o 2
12P , O(0+1)
=—= |Ymp-=="" | 31
Xlzc 0(0+1) o; ¢ 4 (1)
Subsequently, the testing score is given as Equation 32:
(P-Dxz
= (32)
P(O-1)-yx

Notice that the testing score conforms to the F-distribution with
(O-1) and (O-1) (P-1) degrees of freedom [44]. Thus, if Fy is higher
than the corresponding critical, we can reject the null hypothesis
with the critical level o.

For instance, to compare accuracy, eight models are tested on
eight testing cases, i.e., O=P=8, and the degrees of Friedman freedom
for Fris (7,49). If we set 0 = 0.05, the critical value of F (7,49) is 2.20.
Hence, the null hypothesis is rejected if the testing score Fy, is greater
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Accuracy Ranking

T
M6 M7 M8

(b)

than 2.20. According to Tables 5, 6, we calculate that the testing score
of efficiency is 61.67, which is obviously higher than the critical value
of 2.20. Similarly, when we set ¢ = 0.05, the critical value of F (7,49)
for accuracy is also 2.20 and the testing score is 240.58. Therefore,
we prove that M1-M8 have a remarkable performance difference at
the 95% confidence level. As recorded in Table 7, we can accurately
deduce that M8 has the lowest average ranking values, which denotes
that it outperforms its peers in terms of prediction accuracy and
computational efficiency.

For further validating M8’s performance gain, we consider the
Nemenyi analysis [46], whose main idea is that if the ranking
difference between arbitrary two models is more significant than
the critical value, the performance of the two models is significantly
different. The critical value is formulated as Equation 33:

O(0+1)
CD=gq, ~ep

where the constant g, is based on the studentized range statistics

(33)

[46]. With eight compared models, we get a critical value g,
2.78 with the critical level o = 0.1 [25]. Regarding efficiency, by
substituting O=P=8, we gain CD = 3.40, which means that two
models with a ranking difference greater than 3.40 have significantly
different in performance with a confidence level at 90%.

From the Nemenyi analysis results depicted in Figure 7,
M8 obviously outperforms M1, M3, M4, and M5 according to
computational efficiency. Considering prediction accuracy, M8
significantly outperforms all compared models except M4, M6 and
M?7. Therefore, we conclude that an ABL model is competitive in
prediction accuracy and computational efficiency.

5 Conclusion

This study aims at precisely representing an HDI water quality
data, thereby realizing high efficiency and accuracy for large-scale
missing water quality data prediction. To do so, we propose an
ABL model. It incorporates diversified biases into an LFT model to
precisely describe the inherent fluctuations hidden in water quality
data. Moreover, it executes PSO-based adaptation to reduce the time
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costs caused by hyper-parameter tuning. Compared to state-of-the-
art models designed for HDI data, an ABL model achieves higher
computational efficiency and prediction accuracy.

Considering the future plans, the following issues need to
be addressed. Firstly, more advanced hyper-parameter adaptation
algorithms [47, 48] may be compatible with an ABL model to achieve
better performance gain. Secondly, due to the diversity of bias schemes
[49, 50], how to design a robust ensemble framework to further
perceive the inherent fluctuations in water quality data is still a
meaningful challenge. Additionally, the computational efficiency of an
ABL model may be significantly improved through parallel computing
techniques [51, 52], enabling its application to high-volume online
water quality monitoring datasets. Moreover, since real-world water
quality data generally contain additional attributes like depth profile,
which a higher-order tensor can naturally describe [55], extending
the proposed model to handle such a tensor can further validate the
model’s applicability in complex environments. We plan to address
these issues in our future work.
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