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Perceptual objective evaluation
for multimodal medical image
fusion

Chuangeng Tian1, Juyuan Zhang1 and Lu Tang2*
1School of Information Engineering (School of Big Data), Xuzhou University of Technology, Xuzhou,
China, 2School of Medical Imaging, Xuzhou Medical University, Xuzhou, China

Multimodal medical Image fusion (MMIF) has received widespread attention
due to its promising application in clinical diagnostics and treatment. Due to
the inherent limitations of fusion algorithms, the quality of obtained medical
fused images (MFI) varies significantly. An objective evaluation of MMIF can
quantify the visual quality differences in fused images and facilitate the rapid
development of advanced MMIF techniques, thereby enhancing fused image
quality. However, rare research has been dedicated to the MMIF objective
evaluation. In this study, we present a multi-scale aware attention network
for MMIF quality evaluation. Specifically, we employ a Multi-scale Transform
structure that simultaneously processes these multi-scale images using an
ImageNet pre-trained ResNet34. Subsequently, we incorporate an online class
activation mapping mechanism to focus visual attention on the lesion region,
enhancing representative discrepancy features closely associated with MFI
quality. Finally, we aggregate these enhanced features and map them to the
quality difference. Due to the lack of dataset for the objective evaluation
task, we collect 129 pairs of source images from public datasets, namely, the
Whole Brain Atlas, and construct a MMIF quality database containing 1,290
medical fused images generated using MMIF algorithms. Each fused image
was annotated with a subjective quality score by experienced radiologists.
Experimental results demonstrate that our method produces a satisfactory
consistent with subjective perception, superior to the state-of-the-art quality
evaluation methods. The source images dataset is publicly available at: http://
www.med.harvard.edu/AANLIB/home.html.

KEYWORDS

multimodal medical image fusion, objective evaluation, multi-scale transform, class
activation mapping mechanism, region of interest

1 Introduction

Multimodal medical image fusion (MMIF) is increasingly common in clinical
diagnostics. MMIF algorithms aim to generate high-quality fused images from
multimodal input images [1–3]. However, most existing MMIF algorithms struggle
to achieve optimal fusion due to inherent model limitations. Even worse, instead of
promoting, fused image quality declined during the fusion process, even increasing
the risk of misdiagnosis. Figure 1 illustrates fusion results from different MMIF
algorithms, where the first four images exhibit lower quality compared to the last
one, with the first image being the worst. As observed, low-quality fused images
fail to convey the critical information of the original images, contradicting the very
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FIGURE 1
A case of fused images via different Multimodal medical image fusion (MMIF) algorithms.

purpose of image fusion. Conversely, high-quality fused images
provide clinicians with more reliable information, enhancing
diagnostic confidence and decision-making. Hence, it is natural to
consider how to achieve a fairer evaluation of these fused images.

In previous work, researchers generally compare the fusion
results using both subjective and objective assessments [4–8].
Subjective quality evaluation refers to the visual judgment of image
quality by human observers based on perceptual impressions,
typically using scoring or ranking methods to quantify visual
performance [9]. While this approach closely reflects clinical
perception, it is labor-intensive and not scalable for large volumes of
medical data. To address this limitation, objective quality assessment
methods have been extensively developed to automatically evaluate
fused images through computational models and algorithms
[10–16]. These methods avoid human bias and enable large-scale
assessment by quantifying image quality using well-defined criteria.
Generally, objective evaluation methods can be classified into full-
reference, reduced-reference, and no-reference approaches [17–19].
Since no ground-truth fused images exist, the no-reference approach
is the most suitable for this task. This approach is not only
more theoretically realistic but also exhibits higher applicability
in clinical settings, as physicians are the ultimate beneficiaries of
quality evaluation, the results of image quality assessment can
vary depending on the scenario (e.g., the presence or absence of
lesion regions in the image), leading to potential instability. No
reference evaluation algorithms are roughly divided into hand-
crafted metrics and deep learning-based metrics. For instance, Yang
et al. [11] gauged structural similarity information of fused images.
Qu et al. [15] used mutual information to measure fused images.
Tang et al. [17] adopted non-subsampled contourlet transform
(NSCT) and pulse coupled neural network (PCNN) for medical
fusion image evaluation. However, these studies are limited in their
ability to effectively capture hand-crafted features. To alleviate this
limitation, deep learning-based metrics have been reported for
MMIF quality assessment. Tian et al. [20] exploited a generative
adversarial network (GAN) to implement objective evaluation of
MMFI. However, such models often face criticism for being “black-
box” approaches, making it difficult to gain sufficient trust from
radiologists.

In this study, we construct amedical image fusion quality dataset
and utilize it to evaluate the performance of the proposed MS-ANN
model for MMIF quality assessment. We first conduct multi-scale
transform to capture different scale information of fused images.

Meanwhile, input these multi-scale images to fine-tuned ImageNet
pre-trained ResNet34. Then, we utilize an online class activation
mapping mechanism (CAM) to capture visualization attention to
the lesion regions, such operation is highly related to radiologists
making decisions. Finally, by aggregating the multi-scale streams
to complement each other, we obtain richer, enhanced discrepancy
features that are subsequently mapped to the quality differences of
the fused images.

The key contributions of the proposed MS-AAN are
summarized as follows.

(1) Given the limited research on objective evaluation for
MMIF, we propose a no-reference fused image quality
assessment method based on a multi-scale aware attention
network, termed MS-AAN. MS-AAN not only automatically
predicts the quality of fused images but also enhances model
interpretability.

(2) To characterize quality discrepancies in fused images, we
capture and aggregate multi-scale features by utilizing multi-
scale transformer and ImageNet pre-trained ResNet34. Such
multi-scale streams complement each other and can obtain
plentiful details of quality discrepancy-related cues.

(3) To locate lesion clews and enhance feature representation, we
propose a CAM attention network, which can pay attention to
the lesion regions via generating localization heat maps. It is
highly related to radiologistsmaking decisions. In this way, our
MS-AAN earns the trust of radiologists.

2 Related work

2.1 Objective evaluation of multimodal
medical image fusion

Multimodal medical image fusion (MMIF) plays an important
role in clinical diagnostics and treatment. For radiologists, high-
quality fused images can enhance diagnostic confidence and aid in
follow-up treatment planning. Plenty of MMIF quality evaluation
algorithms have been reported. For instance, Xydeas et al. [10] used
gradient information from source images to evaluate fused images.
Yang et al. [11] gauged structure similarity information of fused
images. Li et al. [12] adopted edge information from the source
image to the fused image for objective assessment. Zhao et al. [13]
proposed phase congruency to evaluate fused images. Zheng et al.
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[14] designed perceptual evaluation via a ratio of spatial frequency
error. Qu et al. [15] used mutual information to measure fused
images. Liu et al. [16] adopted entropy for fused image objective
assessment. Tang et al. [17] adopted non-subsampled contourlet
transform and pulse coupled neural network for medical fusion
image evaluation. However, these handcrafted methods often lack
the ability to effectively capture complex representation features.
As a result, deep learning-based metrics for MMIF evaluation have
attracted much attention. Tian et al. [20] introduced a generative
adversarial network to implement MMIF evaluation. Wang et al.
[21] proposed a no-reference image quality assessment framework
that incorporates an adaptive graph attention module to enhance
both local and contextual information. Liu et al. [9] developed a
CNN-based multi-focus image fusion quality assessment model
using hierarchical semantic features to better capture focus-level
details. Additionally, Yue et al. [18] introduced a pyramid-based
framework for assessing the quality of retinal images, which
improves robustness to various types of distortions commonly found
in clinical data. However, such studies often face challenges in
addressing the “black-box” nature of the model. This limits the
ability to sufficient trust from radiologists. Despite the growing
interest in MMIF evaluation, few studies have focused on objective
evaluation, and there is a lack of high-quality fused images. As a
result, no reference metric demonstrates significant practical value
for this task.

2.2 Multi-scale aware network

In recent years, multi-scale transform has achieved progress in
the field of multimodal medical image fusion [22, 23], especially
non-subsampled contourlet transform (NSCT) has displayed
tremendous results [24, 25]. Specifically, Huang et al. [25] proposed
SPECT and CT image fusion based on NSCT and PCNN. Yin et al.
[24] used NSCT and PCNN for medical image fusion. Tang et al.
[17] proposed a medical fusion image evaluation method based
on NSCT and PCNN. Therefore, the combination of NSCT and
PCNN has been proven to be a highly effective strategy for MMIF
and MMIF quality evaluation. Inspired by this, can we replace
PCNN with deep learning? Recent advancements in pre-trained
CNNs on ImageNet have demonstrated their ability to extract richer
features [26–28]. Motivated by the above fact, we employ a simple
yet effective approach by combining NSCT with a pre-trained CNN
to capture richer multi-scale feature representations.

2.3 CAM attention mechanism

Recent years have witnessed that the CAM is an effective tool
for model interpretability. Zhou et al. used CAM to locate class-
relevant objects [29]. Subsequently, gradient-weighted CAM was
further extended to obtain better localization [30]. Ouyang et al.
adopted gradient-weighted CAM to learn chest X-ray abnormality
localization [31]. Tang et al. utilized an online CAM mechanism to
concentrate on thyroid nodule localization, improving the model
interpretability [32]. Thus, in this paper, we further extend the CAM
attention mechanism to guide the network in focusing on lesion

regions, enhancing the representative discriminative features, which
ensures alignment with radiologists’ decision-making.

3 Methods

The proposed MS-ANN model is designed to comprehensively
capture perceptual quality information from multimodal fused
medical images. Its architecture comprises three main components:
a multi-scale transform module, an ImageNet pre-trained
ResNet34 backbone, and a CAM attention mechanism, as
illustrated in Figure 2. First, we construct a multi-scale stream
network with NSCT by down-sampling the input fused images
to generate representations at four different scales. Each scale is
processed by four ResNet34 backbone, which is selected for its
efficiency and strong feature representation ability. Using a pre-
trained model also facilitates robust learning with limited data. To
enhance model interpretability and ensure the network emphasizes
diagnostically relevant regions, we incorporate a CAM-based
attention mechanism after feature extraction. Finally, the attention-
refined features from all scales are concatenated and mapped to a
quality score through fully connected layers.

3.1 Multi-scale aware neural network

We adopt the NSCT to perform multi-scale and multi-
directional decomposition on the medical fused image. NSCT
is a shift-invariant extension of the contourlet transform that
enables rich representation of image features across different scales
and directions, which is particularly beneficial for medical image
analysis. Specifically, the medical fused image F is transformed into
multiple sub-band {Fm,α} at each level m ∈ [1,4] and direction. This
decomposition allows the network to capture structural details at
various resolutions, which is formulated as Equation 1:

Fm,α =MST(F) (1)

Where MST(·) repents the MST functions. Following this
transformation, we use an ImageNet pre-trained ResNet34 as
the backbone to extract high-level semantic features from the
decomposed components. Particularly, these multiple sub-bands
are input to ResNet34, and we use Rectified Linear Unit (ReLU) as
the activation function, which is formulated as Equation 2:

Fom,α = ReLU(conv(Fm,α,K)) = ReLU(
t

∑
n=1

Fnm,α ⊙K+A) (2)

Where Fom,α stands for output features. K represents a kernel of
convolutional layer. Fnm,α is nth channel of Fm,α with totally t channels,
A and ⊙ represent the bias and convolution operation, respectively.

3.2 Aggregation of multi-scale feature

Considering the advantages of multi-scale transform, we
aggregate the output features of multi-scale streams for MMIF
quality evaluation. Firstly, we perform concatenate operations on
four multi-scale stages, as shown in Equation 3:

fo = Fo1,α ⊕ F
o
2,α ⊕ F

o
3,α ⊕ F

o
4,α (3)
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FIGURE 2
Flowchart of the proposed MS-AAN.

where ⊕ stands for concatenate operation. Then, we
compute global average pooling (GAP), as shown in
Equation 4:

IG =
1

WIc ∗HIc

WIc∗HIc

∑
j=1

Ijc (4)

Where Ijc denotes the pixel value of j-th in Ic, Ic stands for
output of the last layer. WIc and HIc represent the width and
height of Ic, respectively. The enhancement feature transfers
to a convolution layer, and we conduct GAP and global
max pooling (GMP). Finally, a simple addition operation is
carried out to aggregate GAP and GMP, which is formulated as
Equation 5:

ftotal = GAP( fo) +GMP( fo) (5)

3.3 CAM attention mechanism

To capture quality discrepancy features of lesion region from
the whole medical fused images, we introduce the CAM attention
mechanism. Specifically, we generate the attention feature map M
by applying a nonlinear activation function to the final aggregated
featuremap ftotal,whichisdescribedinEquation 5.Thisrepresentation
integrates multi-scale semantic information and is more suitable for
highlighting perceptually important regions. The resulting attention
map has a spatial resolution of 1/16 relative to the input image {Fm,α}
andguides thenetwork to focusondiagnostically relevantareasduring
quality assessment. Then, conducting a normalization on M to [0, 1].
After that, performing the sigmoid operation for softmasking, named
S(M), is formulated as Equation 6:
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FIGURE 3
Some examples of source images.

TABLE 1 Comparison performance of MS-ANN with other six metrics.

Metric PLCC SRCC KRCC RMSE

MPRI 0.3031 0.3167 0.2375 0.2611

TE 0.1797 0.1946 0.1407 0.3909

MI 0.2270 0.1738 0.1071 0.3712

OEFP 0.3064 0.3367 0.2342 0.2810

NSCT-PCNN 0.6252 0.6420 0.4166 0.2480

RSFE 0.4054 0.2275 0.1700 0.2663

AGA 0.6956 0.6871 0.5721 0.3669

SBA 0.5861 0.6012 0.4156 0.4266

PNQC 0.8106 0.8016 0.7681 0.2119

Proposed MS-ANN 0.9131 0.9061 0.8560 0.1166

Bold values represent the best results.

S(M) = 1
1+ exp(−μ(M− β))

(6)

Where μ and β stand for hyper-parameters. Dice loss is used as the
attention loss function, denoted as La, and is defined as shown in
Equation 7:

La = Dice(S(M),G) (7)

Where G is the ground truth of the lesion mask. Finally, in the
fully connected layer, we conduct Cross Entropy loss for quality
classification, dubbed Lc, as shown in Equation 8:

Lc = −∑[ f log( ̂fx) − (1− f)(1− log ̂fx))] (8)

Where f stands for class label, ̂fx = [ ̂f1, ̂f2, ̂f3, ̂f4, ̂f5], x = 1,2,3,4,5,
which denote the five classes quality results of medical fused images.

3.4 Total loss function

As observe in Figure 2, total loss function of our MS-ANN,
comprise of attention La and classification Lc, which is denoted
as shown in Equation 9:

Lt = La+γLc (9)

4 Experiments

4.1 Dataset

In this study, we perform medical fused data for appraising
the developed MS-ANN in MMIF quality assessment. Specifically,
we collect 129 pairs of source images from public datasets, i.e.,
Whole Brain Atlas, which include CT and MR, MR-T1 and MR-
T2, MR-T2 and PET, MR-T2 and SPECT, as shown in Figure 3.
The selected images span a wide range of anatomical structures and
clinical conditions (e.g., tumors, lesions, and degenerative changes),
ensuring that the dataset is both diverse and representative of real-
world clinical fusion scenarios. We then apply ten representative
state-of-the-art MMIF algorithms [16, 24, 33–40], resulting in a
total of 1,290 fused images. This dataset construction process is
consistent with our previous work, where more technical details of
the fusion methods can be found [20, 41]. For subjective quality
assessment, each fused image is annotated with a Mean Opinion
Score (MOS) ranging from 1 (lowest quality) to 5 (highest quality),
as independently rated by two experienced radiologists. To ensure
the reliability and consistency of the subjective assessment, a senior
radiologist further reviewed and validated the assigned scores.

To rigorously evaluate the effectiveness of the proposed MS-
ANN, we adopt four widely recognized quantitative assessment
metrics [42, 43]: Pearson’s Linear Correlation Coefficient (PLCC),
Spearman’s Rank Correlation Coefficient (SRCC), Kendall’s Rank
Correlation Coefficient (KRCC), and Root Mean Square Error
(RMSE). These metrics are designed to measure the alignment
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TABLE 2 Ablation studies on the proposed MS-ANN.

Model Pre Multi-scale CAM PLCC SRCC KRCC RMSE

Baseline 0.7971 0.8022 0.7199 0.2936

Proposed ResNet34 ★ 0.8633 0.8571 0.7761 0.1696

Proposed ResNet34 ★ ★ 0.8916 0.8811 0.8256 0.1301

Proposed ResNet34 ★ ★ ★ 0.9131 0.9061 0.8560 0.1166

Bold values represent the best results.

FIGURE 4
Generated attention maps of our methods on four medical fused images.

TABLE 3 The result of the external validation.

Model PLCC SRCC KRCC RMSE

Our 0.8591 0.8388 0.7916 0.1721

between the predicted quality scores generated by the model and
the ground-truth MOS provided by expert radiologists. Specifically,
PLCC, SRCC, and KRCC are used to evaluate the consistency
between the predicted quality scores and the ground-truth MOS,
with higher values indicating better consistency with human
perception. RMSE measures the absolute prediction error, where
lower values represent better performance. These metrics are widely
used in the field and ensure comparability with previous IQA studies
[9, 18, 19, 21, 44].

4.2 Performance comparison

To validate the effectiveness of the proposed MS-ANN, we
compare it with sixmainstreammethods, includingmultiple pseudo
reference images-based quality metric (MPRI) [44], Tsallis entropy-
based quality metric (TE) [45], mutual information-based quality
metric (MI) [46], the objective evaluation of fusion performance
(OEFP) [10], the ratio of spatial frequency error-based quality
metric (RSFE) [14], the NSCT-PCNN-based quality metric (NSCT-
PCNN) [17], the adaptive graph attention (AGA) for blind image
quality assessment method [21], statistically based approach (SBA)
for multi-focus image fusion quality assessment [9], and pyramid
networks with quality-aware contrast loss (PNQC) for retinal image

quality assessment [18]. Among these metrics, higher values of
MPRI, TE,MI,OEFP,NSCT-PCNN,AGA, SBA, andPNQC indicate
better quality, whereas lower values of RSFE denote better quality.

We compute the PLCC, SRCC, KRCC and RMSE values of
six mainstream methods and MS-ANN, as shown in Table 1. The
highest scores are highlighted in bold. Based on Table 1, our MS-
ANN achieves the best performance, significantly outperforming
the six competing models. Specifically, compared to the second-
ranked RIQA, our proposedmethod improves PLCC from 0.8106 to
0.9131, SRCC from 0.8016 to 0.9061, KRCC from 0.7681 to 0.8560,
while declining RMSE 0.2119 from to 0.1166.

4.3 Ablation study

We conduct ablation studies to discuss the contribution
of each important part of the MS-ANN. We first train each
component independently on the medical fused dataset and then
jointly optimize all components of MS-ANN. The results are
presented in Table 2.

First, the baseline model refers to ResNet34 without ImageNet
pre-training, achieving a PLCC of 0.7971, SRCC of 0.8022, KRCC
of 0.7199, and RMSE of 0.2936. Second, we apply a pre-training
strategy to enhance the ability to capture features. As shown in the
second row of Table 2, performance significantly improves, with
PLCC increasing from 0.7971 to 0.8633, SRCC from 0.8022 to
0.8571, and KRCC from 0.7199 to 0.7761, while RMSE decreases
from 0.2936 to 0.1696. These results demonstrate that the ImageNet
pre-trained model outperforms the baseline model without pre-
training. This improvement may be attributed to the effective use of
pre-trained knowledge, which helpsmitigate the challenge of limited
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training data. Third, we further introduce NSCT to capture more
multi-scale features. With the addition of multi-scale transform,
the results show noticeable improvements when comparing baseline
+ Pre and baseline + Pre + multi-scale: PLCC increases by
2.83% (0.8633 vs. 0.8916), SRCC by 2.40% (0.8571 vs. 0.8811),
and KRCC by 4.95% (0.7761 vs. 0.8256), while RMSE decreases
by 3.95% (0.1696 vs. 0.1301). Moreover, we integrate the CAM
mechanism to guide the model’s attention toward lesion regions,
thereby enhancing both feature representation and interpretability.
As shown in Table 2, the proposed MS-ANN (Baseline + Pre +
multi-scale + CAM) achieves superior performance compared to
the variant without CAM (Baseline + Pre +multi-scale). Specifically,
PLCC increases from 0.8916 to 0.9131, SRCC from 0.8811 to 0.9061,
KRCC from 0.8256 to 0.8560, and RMSE decreases from 0.1301 to
0.1166. These improvements demonstrate that CAM significantly
enhances themodel’s ability to capture quality-related features.More
importantly, the lesion-focused attention maps provide intuitive
visual explanations, which can assist radiologists in verifying
model predictions and build greater confidence in clinical use.
As shown in Figure 4, the CAM-based heatmaps illustrate the
model’s ability to concentrate on diagnostically relevant regions,
offering visual support for the model’s quantitative superiority.

4.4 External validation

To further validate the generalization ability of ourMS-ANN,we
conduct an external independent evaluation using the multimodal
medical image fusion database [17]. It is important to note that
the performance metrics reported in Table 3 differ from those
in Table 2 because they are obtained under different evaluation
settings. Specifically, Table 2 reports results from ablation studies
conducted on the training dataset to analyze the contribution of
each model component, whereas Table 3 presents results from a
separate external dataset. As shown in Table 3, our model achieves
promising performance, with a PLCC of 0.8591, SRCC of 0.8388,
KRCCof 0.7916, and RMSE of 0.1721.These results demonstrate the
robustness and effectiveness of MS-ANN in assessing multimodal
medical image fusion quality across different datasets.

5 Conclusion

In this paper, we develop a quality evaluation metric for
multimodal medical image fusion, called no reference multi-scale
aware attention network (MS-ANN). Specifically, we first apply
a multi-scale transform to extract different scale information
from fused images and feed these transformed images into an
ImageNet pre-trained ResNet34. This multi-scale strategy enables
complementary feature extraction, capturing rich details relevant to
quality assessment. Then, we propose a CAM attention network,
which captures visualization attention to the lesion regions to
facilitate model interpretability. Finally, we employ a concatenation
operation to refine quality discrepancy features and map them to
the quality differences in multimodal fusion images. However, the
dataset used in this study exhibits an imbalance between MRI-
PET and MRI-SPECT image pairs, with MRI-SPECT images being
more prevalent. Moreover, the diversity of medical conditions

and anatomical regions is somewhat limited, which may affect
the model’s generalization to other clinical settings or imaging
modalities. In future work, we aim to address these limitations by
expanding the dataset to cover a broader range of organs and clinical
conditions, thereby improving the robustness and generalization
capability of the proposed MS-ANN model. Additionally, while
our study adopts widely accepted statistical metrics to evaluate
image quality prediction, it is important to recognize the potential
influence of MMIF quality on downstream clinical tasks such
as diagnosis accuracy or treatment decisions. High-quality fused
images can provide clearer lesion boundaries, improved structural
detail, and more reliable functional information, which are crucial
in radiological assessment and therapy planning. In future work,
we intend to design user studies or integrate radiologist-in-the-loop
evaluations to measure the actual diagnostic utility of images rated
by our model. Such assessments would offer a more comprehensive
validation of the model’s clinical value and help bridge the gap
between objective image quality assessment and practical medical
outcomes. Despite these limitations, the proposed MS-ANN shows
strong consistency with subjective perception, offering potential to
facilitate clinical diagnosis and guide the development of advanced
multimodal medical image fusion techniques.

Data availability statement

Theoriginal contributions presented in the study are included in
the article/supplementarymaterial, further inquiries can be directed
to the corresponding author.

Author contributions

CT: Conceptualization, Methodology, Supervision, Validation,
Writing – original draft. JZ: Methodology, Validation, Writing
– original draft. LT: Conceptualization, Project administration,
Supervision, Validation, Writing – original draft, Writing – review
and editing.

Funding

The author(s) declare that financial support was received for the
research and/or publication of this article. This work was supported
by the Xu Zhou Science and technology Program, China (KC22466)
and National Natural Science Foundation of China (82001912).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Frontiers in Physics 07 frontiersin.org

https://doi.org/10.3389/fphy.2025.1588508
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Tian et al. 10.3389/fphy.2025.1588508

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

References

1. Birkfellner W, Figl M, Furtado H, Renner A, Hatamikia S, Hummel J. Multi-
modality imaging: a software fusion and image-guided therapy perspective. Front Phys
(2018) 6:66. doi:10.3389/fphy.2018.00066

2. Azam MA, Khan KB, Salahuddin S, Rehman E, Khan SA, Khan MA A review
on multimodal medical image fusion: compendious analysis of medical modalities,
multimodal databases, fusion techniques and quality metrics. Comput Biol Med (2022)
144:105253. doi:10.1016/j.compbiomed.2022.105253

3. Zhou T, Cheng Q, Lu H, Li Q, Zhang X, Qiu S. Deep learning methods
for medical image fusion: a review. Comput Biol Med (2023) 160:106959.
doi:10.1016/j.compbiomed.2023.106959

4. Cheng S, Liu R, He Y, Fan X, Luo Z. Blind image deblurring via hybrid deep priors
modeling. Neurocomputing (2020) 387:334–45. doi:10.1016/j.neucom.2020.01.004

5. Shao W-Z, Lin Y-Z, Liu Y-Y, Wang L-Q, Ge Q, Bao B-K, et al. Gradient-
based discriminative modeling for blind image deblurring. Neurocomputing (2020)
413:305–27. doi:10.1016/j.neucom.2020.06.093

6. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: from
error visibility to structural similarity. IEEE Trans Image Process (2004) 13:600–12.
doi:10.1109/TIP.2003.819861

7. Shen L, Chen X, Pan Z, Fan K, Li F, Lei J. No-reference stereoscopic image quality
assessment based on global and local content characteristics. Neurocomputing (2021)
424:132–42. doi:10.1016/j.neucom.2020.10.024

8. Ma K, Liu W, Zhang K, Duanmu Z, Wang Z, Zuo W. End-to-End blind image
quality assessment using deep neural networks. IEEE Trans Image Process (2018)
27:1202–13. doi:10.1109/TIP.2017.2774045

9. Liu Y, Qi Z, Cheng J, Chen X. Rethinking the effectiveness of objective evaluation
metrics inmulti-focus image fusion: a statistic-based approach. IEEETrans PatternAnal
Mach Intell (2024) 46:5806–19. doi:10.1109/TPAMI.2024.3367905

10. Xydeas CS, Petrović V. Objective image fusion performance measure. Electron
Lett (2000) 36:308–9. doi:10.1049/el:20000267

11. Yang C, Zhang J-Q, Wang X-R, Liu X. A novel similarity based quality metric for
image fusion. Inf Fusion (2008) 9:156–60. doi:10.1016/j.inffus.2006.09.001

12. Li S, Kwok JT, Wang Y. Combination of images with diverse focuses using the
spatial frequency. Inf Fusion (2001) 2:169–76. doi:10.1016/S1566-2535(01)00038-0

13. Zhao J, Laganiere R, Liu Z. Performance assessment of combinative pixel-level
image fusion based on an absolute feature measurement. Int J Innovat Comput Inf
Control (2006) 3. doi:10.1109/ICICIC.2006.296

14. Zheng Y, Essock EA, Hansen BC, Haun AM. A new metric based on extended
spatial frequency and its application toDWTbased fusion algorithms. Inf Fusion (2007)
8:177–92. doi:10.1016/j.inffus.2005.04.003

15. Qu G, Zhang D, Yan P. Information measure for performance of image fusion.
Electron Lett (2002) 38:313–5. doi:10.1049/el:20020212

16. Liu Y, Liu S, Wang Z. A general framework for image fusion based on
multi-scale transform and sparse representation. Inf Fusion (2015) 24:147–64.
doi:10.1016/j.inffus.2014.09.004

17. Tang L, Tian C, Li L, Hu B, Yu W, Xu K. Perceptual quality assessment for
multimodal medical image fusion. Signal Process Image Commun (2020) 85:115852.
doi:10.1016/j.image.2020.115852

18. Yue G, Zhang S, Zhou T, Jiang B, Liu W, Wang T. Pyramid network with quality-
aware contrastive loss for retinal image quality assessment. IEEE Trans Med Imaging
(2025) 44:1416–31. doi:10.1109/TMI.2024.3501405

19. GuoY,HuM,MinX,WangY,DaiM, ZhaiG, et al. Blind image quality assessment
for pathological microscopic image under screen and immersion scenarios. IEEE Trans
Med Imaging (2023) 42:3295–306. doi:10.1109/TMI.2023.3282387

20. Tian C, Zhang L. G2NPAN: GAN-guided nuance perceptual attention network
for multimodal medical fusion image quality assessment. Front Neurosci (2024)
18:1415679. doi:10.3389/fnins.2024.1415679

21. Wang H, Liu J, Tan H, Lou J, Liu X, Zhou W, et al. Blind image quality
assessment via adaptive graph attention. IEEE Trans Circuits Syst Video Technol (2024)
34:10299–309. doi:10.1109/TCSVT.2024.3405789

22. Duan H, Wang W, Xing L, Xie B, Zhang Q, Zhang Y. Identifying geological
structures in the Pamir region using non-subsampled shearlet transform and
gravity gradient tensor. Geophys J Int (2025) 240:2125–43. doi:10.1093/gji/
ggaf036

23. Ma J, Chen Y, Chen L, Tang Z. Dual-attention pyramid transformer network
for no-reference image quality assessment. Expert Syst Appl (2024) 257:125008.
doi:10.1016/j.eswa.2024.125008

24. YinM, Liu X, Liu Y, ChenX.Medical image fusionwith parameter-adaptive pulse
coupled neural network in nonsubsampled shearlet transform domain. IEEE Trans
Instrum Meas (2019) 68:49–64. doi:10.1109/TIM.2018.2838778

25. HuangC, TianG, LanY, PengY,Ng EYK,HaoY, et al. A newpulse coupled neural
network (PCNN) for brain medical image fusion empowered by shuffled frog leaping
algorithm. Front Neurosci (2019) 13:210. doi:10.3389/fnins.2019.00210

26. Norouzi M, Hosseini SH, Khoshnevisan M, Moshiri B. Applications of pre-
trained CNN models and data fusion techniques in Unity3D for connected vehicles.
Appl Intell (2025) 55:390. doi:10.1007/s10489-024-06213-3

27. Swamy MR, P V, Rajendran V. Deep learning approaches for online signature
authentication: a comparative study of pre-trainedCNNmodels. Eng Res Express (2025)
7:015230. doi:10.1088/2631-8695/ada86d

28. Arnia F, SaddamiK, Roslidar R,Muharar R,Munadi K. Towards accurate diabetic
foot ulcer image classification: leveraging CNN pre-trained features and extreme
learning machine. Smart Health (2024) 33:100502. doi:10.1016/j.smhl.2024.100502

29. Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A. Learning deep
features for discriminative localization. In: 2016 IEEE conference on computer
vision and pattern recognition (CVPR). Las Vegas, NV: IEEE (2016). p. 2921–9.
doi:10.1109/CVPR.2016.319

30. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-CAM:
visual explanations from deep networks via gradient-based localization. Venice: IEEE:
2017 IEEE International Conference on Computer Vision ICCV (2017). p. 618–26.
doi:10.1109/ICCV.2017.74

31. Ouyang X, Karanam S, Wu Z, Chen T, Huo J, Zhou XS, et al. Learning
hierarchical attention for weakly-supervised chest X-ray abnormality localization
and diagnosis. IEEE Trans Med Imaging (2021) 40:2698–710. doi:10.1109/TMI.2020.
3042773

32. Tang L, Tian C, Yang H, Cui Z, Hui Y, Xu K, et al. TS-DSANN: texture
and shape focused dual-stream attention neural network for benign-malignant
diagnosis of thyroid nodules in ultrasound images. Med Image Anal (2023) 89:102905.
doi:10.1016/j.media.2023.102905

33. Min X, Zhai G, Gu K, Yang X, Guan X. Objective quality evaluation
of dehazed images. IEEE Trans Intell Transport Syst (2019) 20:2879–92.
doi:10.1109/TITS.2018.2868771

34. Liu Y, Chen X, Ward RK, Jane Wang Z. Image fusion with
convolutional sparse representation. IEEE Signal Process Lett (2016) 23:1882–6.
doi:10.1109/LSP.2016.2618776

35. Das S, Kundu MK. NSCT-based multimodal medical image fusion using pulse-
coupled neural network and modified spatial frequency. Med Biol Eng Comput (2012)
50:1105–14. doi:10.1007/s11517-012-0943-3

36. Li S, Kang X, Hu J. Image fusion with guided filtering. IEEE Trans Image Process
(2013) 22:2864–75. doi:10.1109/TIP.2013.2244222

37. Shen R, Cheng I, Basu A. Cross-scale coefficient selection for
volumetric medical image fusion. IEEE Trans Biomed Eng (2013) 60:1069–79.
doi:10.1109/TBME.2012.2211017

38. Du J, Li W, Xiao B, Nawaz Q. Union Laplacian pyramid with multiple
features for medical image fusion. Neurocomputing (2016) 194:326–39.
doi:10.1016/j.neucom.2016.02.047

39. Tang L, Tian C, Xu K. Exploiting quality-guided adaptive optimization
for fusing multimodal medical images. IEEE Access (2019) 7:96048–59.
doi:10.1109/ACCESS.2019.2926833

40. Das S, Kundu MK. A neuro-fuzzy approach for medical image
fusion. IEEE Trans Biomed Eng (2013) 60:3347–53. doi:10.1109/TBME.2013.
2282461

41. Tang L, Hui Y, Yang H, Zhao Y, Tian C. Medical image fusion quality assessment
based on conditional generative adversarial network. Front Neurosci (2022) 16:986153.
doi:10.3389/fnins.2022.986153

42. Hu B, Wang S, Gao X, Li L, Gan J, Nie X. Reduced-reference image
deblurring quality assessment based on multi-scale feature enhancement and
aggregation. Neurocomputing (2023) 547:126378. doi:10.1016/j.neucom.2023.
126378

Frontiers in Physics 08 frontiersin.org

https://doi.org/10.3389/fphy.2025.1588508
https://doi.org/10.3389/fphy.2018.00066
https://doi.org/10.1016/j.compbiomed.2022.105253
https://doi.org/10.1016/j.compbiomed.2023.106959
https://doi.org/10.1016/j.neucom.2020.01.004
https://doi.org/10.1016/j.neucom.2020.06.093
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1016/j.neucom.2020.10.024
https://doi.org/10.1109/TIP.2017.2774045
https://doi.org/10.1109/TPAMI.2024.3367905
https://doi.org/10.1049/el:20000267
https://doi.org/10.1016/j.inffus.2006.09.001
https://doi.org/10.1016/S1566-2535(01)00038-0
https://doi.org/10.1109/ICICIC.2006.296
https://doi.org/10.1016/j.inffus.2005.04.003
https://doi.org/10.1049/el:20020212
https://doi.org/10.1016/j.inffus.2014.09.004
https://doi.org/10.1016/j.image.2020.115852
https://doi.org/10.1109/TMI.2024.3501405
https://doi.org/10.1109/TMI.2023.3282387
https://doi.org/10.3389/fnins.2024.1415679
https://doi.org/10.1109/TCSVT.2024.3405789
https://doi.org/10.1093/gji/ggaf036
https://doi.org/10.1093/gji/ggaf036
https://doi.org/10.1016/j.eswa.2024.125008
https://doi.org/10.1109/TIM.2018.2838778
https://doi.org/10.3389/fnins.2019.00210
https://doi.org/10.1007/s10489-024-06213-3
https://doi.org/10.1088/2631-8695/ada86d
https://doi.org/10.1016/j.smhl.2024.100502
https://doi.org/10.1109/CVPR.2016.319
https://doi.org/10.1109/ICCV.2017.74
https://doi.org/10.1109/TMI.2020.3042773
https://doi.org/10.1109/TMI.2020.3042773
https://doi.org/10.1016/j.media.2023.102905
https://doi.org/10.1109/TITS.2018.2868771
https://doi.org/10.1109/LSP.2016.2618776
https://doi.org/10.1007/s11517-012-0943-3
https://doi.org/10.1109/TIP.2013.2244222
https://doi.org/10.1109/TBME.2012.2211017
https://doi.org/10.1016/j.neucom.2016.02.047
https://doi.org/10.1109/ACCESS.2019.2926833
https://doi.org/10.1109/TBME.2013.2282461
https://doi.org/10.1109/TBME.2013.2282461
https://doi.org/10.3389/fnins.2022.986153
https://doi.org/10.1016/j.neucom.2023.126378
https://doi.org/10.1016/j.neucom.2023.126378
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Tian et al. 10.3389/fphy.2025.1588508

43. Sim K, Yang J, Lu W, Gao X. Blind stereoscopic image quality evaluator based on
binocular semantic and quality channels. IEEE Trans Multimedia (2022) 24:1389–98.
doi:10.1109/TMM.2021.3064240

44. Min X, Zhai G, Gu K, Liu Y, Yang X. Blind image quality estimation via
distortion aggravation. IEEETrans Broadcast (2018) 64:508–17. doi:10.1109/TBC.2018.
2816783

45. Sholehkerdar A, Tavakoli J, Liu Z. In-depth analysis of Tsallis entropy-
based measures for image fusion quality assessment. Opt Eng (2019) 58:1.
doi:10.1117/1.OE.58.3.033102

46. Hossny M, Nahavandi S, Creighton D. Comments on ‘Information measure
for performance of image fusion. Electron Lett (2008) 44:1066–7. doi:10.1049/el:
20081754

Frontiers in Physics 09 frontiersin.org

https://doi.org/10.3389/fphy.2025.1588508
https://doi.org/10.1109/TMM.2021.3064240
https://doi.org/10.1109/TBC.2018.2816783
https://doi.org/10.1109/TBC.2018.2816783
https://doi.org/10.1117/1.OE.58.3.033102
https://doi.org/10.1049/el:20081754
https://doi.org/10.1049/el:20081754
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org

	1 Introduction
	2 Related work
	2.1 Objective evaluation of multimodal medical image fusion
	2.2 Multi-scale aware network
	2.3 CAM attention mechanism

	3 Methods
	3.1 Multi-scale aware neural network
	3.2 Aggregation of multi-scale feature
	3.3 CAM attention mechanism
	3.4 Total loss function

	4 Experiments
	4.1 Dataset
	4.2 Performance comparison
	4.3 Ablation study
	4.4 External validation

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References

