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Introduction: Multi-sensor fusion has emerged as a transformative approach
in AI-driven behavior planning for medical applications, significantly enhancing
perception, decision-making, and adaptability in complex and dynamic
environments. Traditional fusion methods primarily rely on deterministic
techniques such as Kalman Filters or rule-based decisionmodels. While effective
in structured settings, these methods often struggle to maintain robustness
under sensor degradation, occlusions, and environmental uncertainties. Such
limitations pose critical challenges for real-time decision-making in medical
applications, where precision, reliability, and adaptability are paramount.

Methods: To address these challenges, we propose an Adaptive Probabilistic
Fusion Network (APFN), a novel framework that dynamically integrates multi-
modal sensor data based on estimated sensor reliability and contextual
dependencies. Unlike conventional approaches, APFN employs an uncertainty-
aware representation using Gaussian Mixture Models (GMMs), effectively
capturing confidence levels in fused estimates to enhance robustness against
noisy or incomplete data. We incorporate an attention-driven deep fusion
mechanism to extract high-level spatial-temporal dependencies, improving
interpretability and adaptability. By dynamically weighing sensor inputs and
optimizing feature selection, APFN ensures superior decision-making under
varying medical conditions.

Results: We rigorously evaluate our approach on multiple large-scale medical
datasets, comprising over one million trajectory samples across four public
benchmarks. Experimental results demonstrate that APFNoutperforms state-of-
the-artmethods, achieving up to 8.5% improvement in accuracy and robustness,
while maintaining real-time processing efficiency.

Discussion: These results validate APFN’s effectiveness in AI-driven medical
behavior planning, providing a scalable and resilient solution for next-generation
healthcare technologies, with the potential to revolutionize autonomous
decision-making in medical diagnostics, monitoring, and robotic-assisted
interventions.
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1 Introduction

The integration of artificial intelligence (AI) in medical
applications has significantly transformed the landscape of
healthcare, offering new possibilities for diagnosis, treatment, and
patientmonitoring [1]. One of the critical challenges inmedical AI is
behavior planning, which requires accurate perception, prediction,
and decision-making capabilities [2]. Multi-sensor fusion has
emerged as a crucial approach to enhance the robustness and
accuracy of AI-driven behavior planning by integrating information
from various sensors, such as cameras, LiDAR, wearable devices,
and physiological monitors [3]. Not only does multi-sensor fusion
improve data reliability by mitigating the limitations of individual
sensors, but it also enables a more comprehensive understanding
of patient states and medical conditions [4]. It facilitates real-time
decision-making in complex environments such as surgical robotics,
rehabilitation systems, and elderly care monitoring. Despite these
advantages, traditional behavior planning approaches often struggle
with data inconsistencies, sensor noise, and dynamic medical
scenarios [5]. To address these limitations, researchers have explored
multiple generations of AI-driven multi-sensor fusion techniques,
evolving from rule-based symbolic AI to data-driven machine
learning methods and, more recently, deep learning and pre-trained
models. This paper reviews the progression of these techniques and
discusses their respective strengths, weaknesses, and applications in
medical behavior planning.

To provide a formal mathematical foundation for multi-sensor
fusion, we define the general state estimation problem. Let the true
environmental state be denoted as (Equation 1):

x ∈ ℝn (1)

where x represents the system state vector. Each sensor i provides
an observation zi ∈ ℝdi , which relates to the true state through the
sensor model (Equation 2):

zi = hi (x) + vi (2)

where hi(⋅) is the observation function for sensor i, and vi
is zero-mean Gaussian noise with covariance matrix Ri. The
posterior distribution of the state given all sensormeasurements Z =
{z1,z2,…,zM} can be obtained using Bayes’ theorem (Equation 3):

p (x|Z) ∝ p (Z|x)p (x) (3)

In our framework, we model this posterior using Gaussian
Mixture Models (GMMs) to account for uncertainty (Equation 4):

p (x|Z) =
M

∑
i=1

βiN (x|μi,Σi) (4)

where βi represents the reliability weight of each sensor, and μi, Σi are
the mean and covariance estimated from each sensor’s observation.

Traditional approaches primarily relied on symbolic AI and
knowledge representation for behavior planning in medical
applications [6]. These methods aimed to encode expert knowledge
into rule-based systems and leveraged logical inference to make
decisions based on multi-sensor inputs [7]. Common techniques
included ontology-based frameworks and expert systems, which
were used to integrate different sensor modalities, ensuring

interpretability and transparency in medical decision-making. For
example, in robotic-assisted surgery, symbolic AI was employed to
model surgical workflows and predict surgeon intentions based on
sensor inputs [8]. In patient monitoring, rule-based systems utilized
physiological sensor data to trigger alerts for abnormal health
conditions [9]. These methods offered advantages such as strong
interpretability and transparency, ensuring the reliability of medical
decision-making. However, they suffered from poor scalability
and limited ability to handle uncertain or incomplete data [10].
The rigid nature of predefined rules restricted their adaptability to
novel medical scenarios, while the reliance on human-engineered
knowledge made system development labor-intensive and difficult
to generalize across different medical domains. As a result,
researchers gradually shifted towards data-driven approaches to
overcome these challenges.

To address the limitations of rule-based AI, data-driven
machine learning techniques were introduced to enable adaptive
behavior planning based on large-scale medical datasets [11].
Machine learning models, such as decision trees, support vector
machines (SVMs), and Bayesian networks, demonstrated improved
flexibility in fusing multi-sensor data by learning patterns
and statistical correlations [12]. These methods were widely
applied in medical applications, such as automated diagnosis,
rehabilitation guidance, and fall detection for elderly patients
[13]. For instance, machine learning-based sensor fusion enabled
personalized patient monitoring by learning from historical
data and predicting potential health risks. Probabilistic models
enhanced the robustness of decision-making by accounting for
sensor uncertainties and environmental variability [14]. Traditional
machine learning approaches often required handcrafted feature
extraction, making them less efficient when handling high-
dimensional sensor data [15]. These models struggled with real-
time processing in complex medical environments, limiting their
applicability in scenarios such as robotic-assisted interventions
and emergency response systems. The emergence of deep learning
and pre-trained models provided a promising solution to these
challenges.

To address the limitations of statistical and machine learning-
based algorithms in feature extraction and data fusion, deep
learning-based algorithms have been widely applied in AI-driven
behavior planning, primarily by leveraging end-to-endmulti-sensor
fusion techniques [16]. This approach offers the advantage of
automatically extracting complex features from raw sensor data,
eliminating the need for manual feature engineering and improving
both accuracy and efficiency [17]. For example, Convolutional
Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and
Transformer-based models have been extensively used in medical
applications such as surgical assistance, AI-driven diagnostics, and
patient rehabilitation systems [18]. Deep learning models trained
on multimodal data—including video feeds, biomedical signals,
and environmental sensors—have achieved remarkable success in
predicting patient behaviors and providing personalized treatment
recommendations [19]. Pre-trained models and transfer learning
techniques have enhanced generalization across different medical
settings, reducing the dependence on large labeled datasets [20].
Deep learning approaches also face challenges such as high
computational costs, data privacy concerns, and the need for robust
interpretability in clinical applications. Despite these drawbacks,
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their ability to handle complex, real-time, and large-scale medical
sensor fusion tasks has made them the dominant approach
in the field.

Based on the limitations of previous methods, we propose
a novel AI-driven multi-sensor fusion framework tailored for
behavior planning in medical applications. Our approach aims
to enhance robustness, adaptability, and efficiency by integrating
advanced deep learning techniques with domain-specific medical
knowledge. Unlike traditional symbolic AImethods, our framework
does not rely solely on predefined rules, making it more adaptable
to dynamic medical scenarios. It surpasses conventional machine
learning approaches by leveraging automatic feature extraction and
real-time processing. To address the challenges of deep learning,
our method incorporates explainable AI techniques to enhance
interpretability and ensure clinical trustworthiness. By combining
sensor fusion with reinforcement learning and transformer-based
architectures, our approach achieves superior performance in real-
time medical behavior planning. This framework is particularly
beneficial for applications such as robotic-assisted surgery,
intelligent patient monitoring, and AI-driven rehabilitation, where
precision and adaptability are critical.

• Our method introduces a hybrid deep learning and
reinforcement learning framework, integrating transformer-
based architectures with multi-sensor fusion to improve
decision-making in medical behavior planning.
• Unlike traditional methods, our approach efficiently processes

multimodal sensor data in real-time, making it highly suitable
for diverse medical applications such as elderly care, robotic
surgery, and personalized rehabilitation.
• Experimental results demonstrate that our method

outperforms existing approaches in terms of accuracy,
response time, and robustness, ensuring reliable AI-driven
behavior planning in complex medical environments.

2 Related work

In recent years, multi-sensor fusion has emerged as a critical
technique in enhancing the robustness and accuracy of AI-driven
behavior planning across various medical applications in Table 1.
Early approaches predominantly relied on rule-based symbolic
AI, where expert knowledge was encoded into predefined
rules to interpret multi-sensor inputs. These methods offered
strong interpretability and transparency but lacked scalability
and adaptability in dynamic medical scenarios, especially when
confronted with uncertain or incomplete data. Subsequently,
traditional machine learning techniques, such as decision trees,
support vector machines, and Bayesian networks, were employed
to enable more flexible data fusion by learning patterns from large-
scale medical datasets. While these methods improved adaptability,
they often required manual feature extraction and struggled
with high-dimensional sensor data and real-time processing
constraints. The emergence of deep learning further advanced
multi-sensor fusion by enabling end-to-end learning directly from
raw sensor inputs. Models such as convolutional neural networks
(CNNs), recurrent neural networks (RNNs), and Transformer-
based architectures have been widely adopted in surgical assistance,

patient monitoring, and rehabilitation systems. These models
exhibit remarkable capabilities in extracting complex features
and modeling temporal dependencies; however, they often suffer
from high computational demands, data privacy concerns, and
limited interpretability, which are critical considerations in clinical
settings. Our proposed Adaptive Probabilistic Fusion Network
(APFN) seeks to bridge these gaps by dynamically estimating
sensor reliability, incorporating probabilistic state representations
via Gaussian Mixture Models, and leveraging attention-driven
deep fusion mechanisms. Through this integration, APFN offers
enhanced robustness, real-time processing capabilities, and
improved interpretability, addressing key limitations of existing
methodologies.

2.1 AI-enhanced surgical guidance systems

The integration of multi-sensor fusion with artificial intelligence
(AI) has significantly advanced surgical guidance systems,
enhancing precision and safety in medical procedures. By
amalgamating data from various imaging modalities—such as
preoperative computed tomography (CT) scans and intraoperative
video feeds—AI-driven platforms provide surgeons with real-time,
comprehensive views of the operative field. This fusion enables
accurate tracking of anatomical structures and seamless overlay
of critical information onto live surgical visuals [21]. A notable
example is the system developed by ImFusion, which combines
preoperative 3D imaging data with intraoperative endoscopic video.
Utilizing NVIDIA Holoscan, this system processes multiple data
streams with minimal latency, allowing for the real-time projection
of 3D anatomical models onto live video feeds. This capability
assists surgeons in navigating complex anatomical regions with
enhanced accuracy, potentially reducing the risk of intraoperative
complications. The system employs deep learning models for
stereo depth estimation, optical flow calculation, and segmentation,
ensuring precise alignment and tracking of anatomical structures
during surgery. The integration of these technologies results in a
median frame rate of approximately 13.5 Hz and an end-to-end
latency below 75 milliseconds, meeting the stringent requirements
for real-time surgical applications 22 [22].The fusion ofmulti-modal
imaging data is pivotal in providing surgeons with a comprehensive
understanding of patient anatomy. By overlaying preoperative
imaging data onto intraoperative views, surgeons can visualize
subsurface structures that are not visible to the naked eye, facilitating
more informed decision-making. This approach is particularly
beneficial in minimally invasive and robotic-assisted surgeries,
where the operative field is limited, and precision is paramount
[23]. AI-enhanced sensor fusion systems are designed to adapt
to dynamic surgical environments. They can account for tissue
deformation, patient movement, and other intraoperative changes,
maintaining accurate alignment of overlaid images throughout
the procedure. This adaptability is achieved through advanced
algorithms that continuously analyze and adjust to the incoming
data from multiple sensors, ensuring consistent and reliable
guidance [24]. The development and implementation of such
systems require a multidisciplinary approach, involving expertise
in computer science, biomedical engineering, and clinical practice.
Collaboration between these fields is essential to design systems that
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TABLE 1 Comparison of multi-sensor fusion approaches.

Approach Advantages Limitations

Rule-based Symbolic AI High interpretability; Transparent decision-making Poor scalability; Sensitive to incomplete data;
Labor-intensive rule design

Traditional Machine Learning Learns from data patterns; Improved flexibility Requires manual feature engineering; Limited
real-time processing; High-dimensional data
challenges

Deep Learning-Based Fusion End-to-end learning; Handles complex features; High
accuracy

High computational cost; Data privacy issues; Limited
interpretability

Proposed APFN Framework Adaptive sensor weighting; Probabilistic uncertainty
modeling; Enhanced robustness and real-time
performance; Improved interpretability

Computational complexity remains; Domain
adaptation challenges in diverse medical scenarios

are not only technically robust but also user-friendly and seamlessly
integrable into existing surgical workflows [25]. Ongoing research
and clinical trials are crucial to validate the efficacy and safety of
AI-driven multi-sensor fusion systems, paving the way for their
broader adoption in surgical practice.

2.2 Wearable sensor networks for health
monitoring

Wearable sensor networks, enhanced bymulti-sensor fusion and
AI, have revolutionized health monitoring by enabling continuous,
real-time assessment of physiological and behavioral parameters.
These systems integrate data from various wearable devices—such
as accelerometers, gyroscopes, heart rate monitors, and pressure
sensors—to provide a comprehensive evaluation of an individual’s
health status. The fusion of data from multiple sensors enhances the
accuracy and reliability of health monitoring systems, facilitating
early detection of potential health issues and personalized medical
interventions [26]. A pertinent study demonstrated the efficacy
of a multi-sensor fusion approach in assessing infant motor
patterns. Researchers combined data from pressure sensors, inertial
measurement units (IMUs), and visual inputs to classify infant
movements with high accuracy. The study employed deep learning
techniques to analyze the fused data, achieving a classification
accuracy of 94.5%, which was significantly higher than that
obtained from any single sensor modality. This approach holds
promise for early detection of neurodevelopmental disorders,
enabling timely interventions [27]. In the context of adult health
monitoring, wearable sensor networks are utilized to track a
range of physiological parameters, including heart rate variability,
respiratory rate, and physical activity levels. By integrating data from
multiple sensors, these systems can detect anomalies indicative of
health issues such as cardiac arrhythmias, respiratory disorders, or
decreased mobility. AI algorithms analyze the fused data to identify
patterns and trends, providing actionable insights to healthcare
providers and enabling proactive management of health conditions
[28]. The implementation of wearable sensor networks extends
beyond individual health monitoring to public health applications.
For instance, during pandemics, these systems can be employed
to monitor symptoms and track the spread of infectious diseases

in real-time. Aggregated data from multiple users can inform
public health decisions and resource allocation, contributing to
more effective management of public health crises [29]. Despite
the advancements, challenges remain in ensuring the seamless
integration of data from diverse sensors, maintaining user privacy,
and managing the vast amounts of data generated. Future research
is directed towards developing standardized protocols for data
fusion, enhancing the energy efficiency of wearable devices, and
implementing robust data security measures [30]. The convergence
of multi-sensor fusion and AI in wearable technology continues to
hold significant potential for transforming health monitoring and
personalized medicine.

2.3 Robotic-assisted endoscopic
procedures

Robotic-assisted endoscopic procedures have benefited
immensely from the integration of multi-sensor fusion and AI,
leading to enhanced localization, navigation, and operational
efficiency within the complex environment of the gastrointestinal
(GI) tract. Accurate localization of endoscopic capsules is critical
for effective diagnosis and treatment, and the fusion of data from
multiple sensors addresses the challenges posed by the GI tract’s
dynamic and unstructured nature [31]. A notable advancement in
this domain is the development of EndoSensorFusion, a particle
filtering-based approach that combines data from magnetic sensors
and visual odometry to estimate the pose of endoscopic capsules
[32]. This method incorporates an online estimation of sensor
reliability and a non-linear kinematic model learned by a recurrent
neural network, enabling real-time, accurate localization even in
the presence of sensor noise or failure. Experimental evaluations
using ex-vivo porcine stomach models have demonstrated high
translational and rotational accuracies, underscoring the potential
of this approach in clinical settings [33]. Further enhancing this
field, the Endo-VMFuseNet framework employs deep learning
to fuse uncalibrated, unsynchronized, and asymmetric data from
visual and magnetic sensors [34]. This approach addresses the
limitations of traditional sensor fusion techniques by learning a
unified representation of the sensor data, achieving sub-millimeter
precision in both translational and rotational movements.
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3 Methods

3.1 Overview

Multi-Sensor Fusion (MSF) has become a cornerstone
technique in various domains, including autonomous driving,
robotics, and remote sensing. The integration of multiple sensors
enables systems to exploit complementary information, enhancing
robustness and accuracy beyond what single-sensor approaches can
achieve. This section provides a comprehensive overview of our
proposed methodology, outlining the fundamental principles, the
mathematical formulation, and the novel contributions introduced
in this work.

In Section 3.2, we introduce the preliminaries necessary
to formalize the MSF problem. This includes defining the
sensor models, the fusion architecture, and the mathematical
representations that describe the relationships between different
sensor modalities. A crucial aspect of our formulation is the
consistency and calibration between heterogeneous sensors, which
ensures reliable data integration. In Section 3.3, we present our
novel sensor fusion model, which extends conventional approaches
by incorporating adaptive weighting mechanisms and uncertainty
modeling. Unlike traditional deterministic fusion techniques, our
model dynamically adjusts the contribution of each sensor based on
its estimated reliability. This is particularly important in real-world
scenarios where sensor degradation, occlusion, or environmental
factors may lead to varying sensor performance. In Section 3.4, we
propose a new fusion strategy that refines the integration process
through a learned optimization scheme. By leveraging deep learning
and probabilistic inference, our strategy improves decision-making
by accounting for spatial-temporal correlations across different
sensor streams. The integration of physics-based models with data-
driven learning allows our approach to generalize effectively across
different application domains.

Medical applications present several domain-specific challenges
that strongly motivate the architectural design choices in our
Adaptive Probabilistic Fusion Network (APFN). Multi-sensor
systems in healthcare often integrate heterogeneous modalities,
including wearable physiological monitors, imaging devices,
audio inputs, and environmental sensors, each producing data
streams with different sampling rates, noise characteristics, and
reliability profiles. Traditional fusion frameworks that assume
homogeneous and stationary sensor behavior often fail to capture
these variabilities. Real-world medical environments are highly
dynamic. Patient conditions may change rapidly, sensor occlusions
or disconnections are common, and environmental disturbances
introduce non-stationary noise. These factors demand a sensor
fusion strategy capable of continuously adapting sensor weighting
and uncertainty modeling in real time. APFN addresses this need by
employing reliability-aware sensor weighting based on covariance
and entropy estimations, allowing the system to down-weight
unreliable sensors dynamically. Medical decision-making involves
safety-critical considerations where interpretability and robustness
are essential. APFN incorporates probabilistic state representations
via Gaussian Mixture Models (GMMs), attention-driven deep
fusion for adaptive feature integration, and graph-based feature
propagation to capture complex spatial-temporal dependencies

while maintaining transparency in reliability estimation. Patient-
specific variability introduces further complexity, where the fusion
model must generalize across diverse demographics, disease states,
and comorbidities. By combining data-driven feature extraction
with probabilistic reasoning, APFN achieves both adaptability
and generalizability, making it particularly suitable for AI-driven
behavior planning in complex medical applications such as robotic
surgery, intelligent monitoring, and personalized rehabilitation.

3.2 Preliminaries

Prior studies have proposed various probabilistic frameworks
for multi-sensor fusion, each exhibiting specific strengths and
limitations. Welch and Bishop introduced the Kalman Filter,
which remains a classical approach for linear Gaussian systems
but faces challenges when addressing nonlinearities and non-
Gaussian uncertainties that are common in complex real-world
scenarios [35]. To overcome these nonlinear challenges, Julier,
Uhlmann, and Durrant-Whyte developed the Sigma-point Kalman
Filter, which improves estimation accuracy by approximating
nonlinear transformations through unscented transformations
[36]. Although both methods are computationally efficient, they
rely heavily on strong assumptions about noise distributions
and system dynamics, which may not hold under dynamic
and heterogeneous sensor environments. Bayesian sensor fusion
methods have also been adopted for heterogeneous sensing
environments. Rashidi andCook applied Bayesian fusion to context-
aware human activity recognition, demonstrating its ability to
integrate diverse sensor types [37]. However, Bayesian models often
depend on accurate prior distributions and may exhibit degraded
performance when such priors are poorly estimated or when sensor
reliability fluctuates unexpectedly. Castanedo further reviewed
multisensor data fusion approaches in smart manufacturing,
emphasizing that many Bayesian solutions struggle to maintain
robustness when sensor characteristics change dynamically during
deployment [38]. To model multi-modal uncertainties, Gaussian
Mixture Models (GMMs) have been applied in autonomous
driving scenarios. Horn et al. employed GMM-based fusion
for urban automated driving, capturing complex distributions
across diverse sensors [39], while Zhang et al. extended GMM
fusion to multi-modal environment perception, highlighting its
ability to handle high-dimensional sensory data [40]. Despite
their effectiveness in representing uncertainty, these GMM-based
methods generally assume static mixture weights and independent
sensor observations, which limits their ability to dynamically
adjust to real-time variations in sensor reliability. In contrast, the
proposed Adaptive Probabilistic Fusion Network (APFN) explicitly
addresses these limitations by introducing dynamic reliability-aware
sensor weighting, which continuously adapts based on real-time
covariance and entropy estimations. Furthermore, APFN integrates
deep learning-based multi-modal feature extraction and attention
mechanisms that capture complex nonlinear dependencies across
heterogeneous sensors. These design innovations enable APFN
to enhance robustness and adaptability in dynamic, uncertainty-
prone environments, particularly within medical behavior planning
tasks where sensor degradation, noise, and patient variability
frequently occur.
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Multi-Sensor Fusion (MSF) aims to integrate information
from multiple heterogeneous sensors to improve the accuracy,
robustness, and reliability of perception and decision-making
systems. Mathematically, MSF can be formulated as a state
estimation problemwhere the true state of the environment, denoted
as x ∈ ℝn, is inferred from a set of sensor observations. Given a set
of M sensors, each sensor i provides an observation zi ∈ ℝdi , which
is related to the true state through a sensor model (Equation 5):

zi = hi (x) + vi, (5)

where hi(⋅) is the observation function of sensor i, and vi represents
the sensor noise, typically modeled as a zero-mean Gaussian with
covariance Ri.

The fusion process involves estimating x given multiple sensor
measurements Z = {z1,z2,…,zM}. This can be expressed as a
probabilistic inference problem, where the posterior distribution of
x is computed using Bayes’ theorem (Equation 6):

p (x|Z) ∝ p (Z|x)p (x) . (6)

For effective fusion, sensors must be spatially and temporally
calibrated. Let Ti represent the transformation matrix that maps
sensor i’s local coordinate frame to a global frame. Temporal
synchronization is handled by interpolating sensor data to a
common timestamp t, ensuring consistency across modalities.

Uncertainty plays a crucial role in MSF. A common
representation is the covariance matrix Σ, which captures the
confidence in each sensor measurement (Equation 7):

Σ = (
M

∑
i=1

R−1i )
−1

. (7)

This allows the fusion process to weigh sensor contributions
based on their reliability.

Several approaches exist for state estimation in MSF: For linear
Gaussian systems, the Kalman filter provides an optimal recursive
estimation method (Equation 8):

xt = Axt−1 +wt, wt ∼N (0,Q) . (8)

When the system is nonlinear, the observation model is
linearized using a first-order Taylor expansion.

A Bayesian fusion framework is commonly used (Equation 9):

p (x|z1,z2) =
p (z1|x)p (z2|x)p (x)

p (z1,z2)
. (9)

While our method leverages the probabilistic modeling
capabilities of Gaussian Mixture Models (GMMs), it introduces
several critical structural innovations that differentiate it from
traditional GMM-based fusion techniques. Conventional GMM-
based fusion approaches generally employ fixed or heuristically
determined mixture weights that fail to account for dynamic
sensor reliability fluctuations and contextual variations in real-
worldmedical environments. In contrast, our Adaptive Probabilistic
Fusion Network (APFN) integrates a hierarchical reliability
modeling framework that dynamically estimates sensor weights
based on covariance matrices, entropy measures, and attention-
based contextual relevance. This allows the fusion process to

adaptively prioritize more reliable sensors while suppressing
the influence of degraded or noisy inputs. Unlike standard
GMM models that treat sensor outputs independently, APFN
incorporates deep learning-based feature extractionmodules—such
as convolutional neural networks (CNNs) for spatial data and
recurrent neural networks (RNNs) for temporal signals—to
transform raw sensor measurements into richer, high-dimensional
feature spaces. These features are further integrated using attention-
driven fusion mechanisms that capture nonlinear dependencies
and cross-modal interactions, enhancing the expressiveness of
the fused representation. Furthermore, APFN employs graph-
based feature propagation to model the structural relationships
among sensor modalities, enabling context-aware information
exchange that classical GMM models cannot achieve. The multi-
stage optimization framework iteratively refines state estimates
through residual correction networks, providing an additional
layer of adaptive refinement absent in conventional methods.
These architectural innovations collectively allow APFN to achieve
superior robustness, adaptability, and real-time performance in
complex medical behavior planning tasks.

3.3 Adaptive probabilistic fusion network
(APFN)

To address the challenges in multi-sensor fusion, we propose
the Adaptive Probabilistic Fusion Network (APFN), a novel model
that dynamically integrates sensor data based on their reliability
and contextual dependencies. Unlike conventional fusion methods
that rely on fixed weighting or handcrafted rules, APFN leverages
probabilistic modeling and deep learning to achieve adaptive fusion.
The core of APFN consists of three key components: sensor
reliability estimation, probabilistic state representation, and a deep
fusion network (As shown in Figure 1).

The design of the Adaptive Probabilistic Fusion Network
(APFN) is motivated by the unique challenges inherent in
medical multi-sensor fusion tasks, where heterogeneous sensors
generate noisy, partially missing, and dynamically fluctuating data.
Traditional deterministic fusion approaches often fail to handle such
variability robustly. Therefore, we adopt a reliability-aware sensor
weighting mechanism to dynamically estimate the confidence of
each sensor based on its measurement uncertainty and entropy,
ensuring that degraded or noisy sensors have limited influence
on the final decision-making process. Gaussian Mixture Models
(GMMs) are utilized not simply as density estimators but as a
probabilistic framework to capture multi-modal uncertainties while
integrating dynamically updated sensor reliabilities. This enables
a more accurate probabilistic representation of the fused state
under heterogeneous and uncertain sensor conditions. To further
enhance the representation capacity, we employ deep learning-based
multi-modal feature extraction techniques, including convolutional
neural networks (CNNs) for spatial data and recurrent neural
networks (RNNs) for temporal sequences. These neural models
automatically extract complex hierarchical features from raw sensor
measurements, eliminating the need for handcrafted features and
better capturing high-dimensional dependencies across modalities.
The attention mechanism is incorporated to adaptively focus
on more informative features across different sensor modalities,
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FIGURE 1
The image represents the architecture of the Adaptive Probabilistic Fusion Network (APFN). It illustrates how acoustic, text, and visual modalities are
processed through dedicated feature extractors, followed by sensor reliability estimation and probabilistic state representation. The model integrates a
Reliability-Aware Sensor Weighting mechanism to dynamically adjust contributions based on uncertainty. A deep learning-based fusion module further
refines the representation using an attention mechanism, ultimately feeding into a regression model for final predictions. The diagram also highlights
history memory and entropy estimators, which help in dynamic reliability updates and adaptive weighting of sensor inputs.

improving robustness against noisy or irrelevant inputs. Graph-
based feature propagation allows contextual information exchange
among sensors by modeling inter-sensor correlations, which is
particularly important for capturing spatial-temporal dependencies
in multi-agent or multi-organ scenarios common in medical
applications. Collectively, these methodological choices ensure that
APFN maintains high accuracy, robustness, and adaptability in real-
time medical behavior planning, even under challenging operating
conditions.

The derivation of the measurement uncertainty covariance
matrix Ri is critical for accurately estimating sensor reliability.
In our framework, the initial covariance matrices are empirically
estimated from historical sensor data collected during the system
calibration phase. For each sensor modality, we compute the
empirical covariance by observing a sufficiently large number of
sensor readings under controlled and stable conditions where
the ground truth is either available or approximated with high
confidence. During online deployment, these initial estimates are
dynamically refined to account for real-time operating conditions.
We implement a moving window estimation strategy, where recent
sensor readings within a predefined time window are used to
continuously update the empirical covariance (Equation 10):

Ri (t) =
1
N

t

∑
k=t−N
(zki − ̄zi)(z

k
i − ̄zi)

T (10)

where N denotes the window size and ̄zi is the mean observation
within the window. This allows the model to capture non-stationary
sensor behavior due to degradation, environmental factors, or
dynamic interactions. Furthermore, to enhance robustness, we
incorporate entropy-based correction terms derived from the
sensor’s predictive distribution, as described in Section 3.4.3, which

further modulate the effective reliability scores. This hybrid strategy
of offline initialization combined with online adaptation ensures
that the covariance matrices accurately reflect both historical
characteristics and real-time reliability fluctuations of each sensor
during operation in complex medical environments.

3.3.1 Reliability-aware sensor weighting
In multi-sensor fusion, one of the fundamental challenges is

handling the varying reliability of different sensors. Factors such as
environmental disturbances, occlusions, or hardware limitations can
significantly impact sensor performance. Anaive fusion strategy that
assumes equal reliability among sensors may lead to suboptimal or
even erroneous state estimation. To address this issue, we introduce
a reliability-aware sensor weighting scheme that dynamically adjusts
sensor contributions based on their estimated reliability.

To quantify the reliability of each sensor, we define a
confidence score αi for sensor i based on its measurement
uncertainty covariance matrix Ri. The confidence score is
computed as (Equation 11):

αi = exp(−
1
2
tr(R−1i )) , (11)

where tr(⋅) denotes the trace operator. The term R−1i represents
the inverse of the measurement uncertainty covariance matrix,
capturing how precise the sensor is. A lower uncertainty (i.e., a
smaller Ri) results in a higher confidence score, indicating that the
sensor is more reliable.

To ensure that the fusion process remains balanced, we
normalize the confidence scores across all M sensors to obtain a
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relative reliability distribution (Equation 12):

βi =
αi
∑M

j=1
αj
. (12)

This formulation ensures that sensors with higher reliability
contributemore significantly to the final estimate, while sensorswith
lower reliability have a reduced influence.

Given the reliability scores, the fused measurement z f can be
computed as a weighted sum of individual sensor measurements
zi (Equation 13):

z f =
M

∑
i=1

βizi. (13)

This approach adaptively adjusts the sensor contributions,
allowing the system to prioritize more reliable measurements in
real-time.

To further refine the fusion process, we compute the fused
covariance matrix R f by considering the reliability-weighted sum of
individual sensor covariances (Equation 14):

R f =
M

∑
i=1

β2
iRi. (14)

The squared reliability weight β2
i ensures that the contribution

of less reliable sensors is further diminished while preserving
consistency in the fused estimate.

To make the system robust to changing sensor conditions,
we introduce a dynamic reliability update mechanism. The
reliability scores are iteratively updated based on a time-
decayed function (Equation 15):

αi (t+ 1) = γαi (t) + (1− γ)exp(−
1
2
tr(R−1i )) , (15)

where γ ∈ [0,1] is a forgetting factor that controls how quickly past
reliability scores decay. A higher γ retains past reliability information
longer, while a lower γ allows for faster adaptation to new sensor
conditions.

3.3.2 Probabilistic state representation
To effectively integrate multiple sensor measurements, we

represent the state x using a Gaussian Mixture Model (GMM),
capturing both the mean estimate and its associated uncertainty. We
define the posterior distribution of the state as (Equation 16):

p (x|Z) =
M

∑
i=1

βiN (x|μi,Σi) , (16)

where each sensor provides a Gaussian distribution N (μi,Σi),
with μi and Σi representing the measurement estimate and its
associated uncertainty. The adaptive weighting factor βi determines
the contribution of each sensor in the fusion process and satisfies the
normalization condition ∑Mi=1βi = 1.

To compute the fused estimate, we derive the global mean
estimate using a weighted sum (Equation 17):

x̂ =
M

∑
i=1

βiμi. (17)

This formulation ensures that sensor measurements with higher
confidence contribute more to the final state estimation, thereby
reducing the influence of unreliable measurements.

The fused covariancematrix accounts for both individual sensor
uncertainties and the additional uncertainty introduced by themean
deviation. It is computed as (Equation 18):

Σ̂ =
M

∑
i=1

βi (Σi + (μi − x̂)(μi − x̂)
⊤) . (18)

This equation consists of two components: the first term,
∑Mi=1βiΣi, represents the uncertainty contribution from individual
sensors, while the second term, ∑Mi=1βi(μi − x̂)(μi − x̂)

⊤, accounts for
the variance introduced by the mean estimate.

To enhance the robustness of sensor fusion, the weights βi
can be further optimized by maximizing the posterior probability
or minimizing an error criterion. A common approach is to
assign weights based on the inverse uncertainty of each sensor
measurement (Equation 19):

βi =
tr(Σ−1i )

∑M
j=1

tr(Σ−1j )
, (19)

where tr(⋅) denotes the trace operation of a matrix. This method
ensures that sensors with lower uncertainty are given higher weights
in the fusion process.

3.3.3 Deep learning-based fusion
Beyond probabilistic modeling, APFN incorporates a deep

learning module to capture nonlinear dependencies and extract
high-level features from multiple sensors. Given a set of sensor
observations Z = {z1,z2,…,zM}, where each zi corresponds to the
measurement from the i-th sensor, we employ amulti-modal feature
extractor to map raw sensor data into a feature space (Equation 20):

fi = ϕi (zi) , (20)

where ϕi(⋅) denotes a sensor-specific feature extraction function,
which can be implemented using convolutional neural networks
(CNNs) for spatial data or recurrent neural networks (RNNs) for
temporal sequences. This transformation enables the model to
extract rich and diverse features from heterogeneous sensor inputs
(As shown in Figure 2).

To achieve a robust fusion strategy, an attention-based
mechanism is employed to dynamically assign weights to different
sensors based on their informativeness. Each extracted feature fi
is first transformed using a learnable weight matrix W f and then
passed through a nonlinear activation function, followed by a
softmax normalization (Equation 21):

wi = softmax(w⊤ tanh(W ffi)) . (21)

Here, W f ∈ ℝd×d is a learnable transformation matrix, w ∈ ℝd

is a trainable vector, and the hyperbolic tangent function tanh (⋅)
introduces nonlinearity. This mechanism enables the model to
focus more on informative features while suppressing noisy or
irrelevant ones.

Once the attention weights are computed, the final fused
representation F is obtained as a weighted sum of the
extracted features (Equation 22):

F =
M

∑
i=1

wifi. (22)
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FIGURE 2
The image represents the Deep Learning-Based Fusion, integrates multi-modal feature extraction, attention mechanisms, temporal fusion, and spectral
transformations using FFT and IFFT to enhance the robustness and accuracy of sensor data integration.

This adaptive fusion scheme ensures that the most relevant
sensor signals contribute more significantly to the final prediction,
improving robustness in challenging environments with noisy or
missing data.

The model is trained in an end-to-end manner by
minimizing the negative log-likelihood (NLL) loss, which is
formulated as (Equation 23):

L = −∑
t
log p(xt|Zt) , (23)

where xt represents the ground truth state at time t, and p(xt|Zt)
denotes the probability distribution of the predicted state given the
sensor observations. The probability distribution is modeled using
a deep neural network, and the parameters are optimized using
stochastic gradient descent (SGD) or Adam optimizer.

To enhance the stability and generalization of the learned
representations, a regularization term is introduced to penalize large
parameter values and prevent overfitting (Equation 24):

Lreg = λ∑
j
‖θj‖2, (24)

where λ is a regularization coefficient, and θj represents the
trainable parameters of the deep learningmodel.This regularization
encourages smoothness in the parameter space and mitigates
overfitting risks in real-world deployment scenarios.

3.4 Hierarchical adaptive fusion strategy
(HAFS)

To further enhance the robustness and efficiency ofmulti-sensor
fusion, we propose a novel Hierarchical Adaptive Fusion Strategy
(HAFS). Unlike conventional fusion approaches that either rely

on static weighting or perform naive feature concatenation, HAFS
leverages a multi-level optimization framework that dynamically
refines sensor integration. The strategy consists of three key
components: hierarchical reliability modeling, context-aware fusion
refinement, and multi-stage optimization (As shown in Figure 3).

3.4.1 Multi-level confidence estimation
Sensor observations often exhibit varying levels of reliability

due to environmental disturbances, occlusions, or sensor-specific
noise. To model these variations effectively, we introduce a multi-
level confidence representation, where each sensor’s reliability is
estimated at both the local and global levels. This enables a more
adaptive sensor fusion process, ensuring that high-certainty sensors
have a greater influence on the final decision-making.

At the local level, each sensor i provides an uncertainty measure
Ri, which is a covariance matrix representing noise characteristics.
The inverse trace of this uncertainty matrix serves as an indicator of
confidence. The initial confidence score for each sensor is computed
as follows (Equation 25):

αi = exp(−
1
2
tr(R−1i )) . (25)

This formulation ensures that sensors with lower uncertainty
(higher certainty) contribute more significantly to the fusion
process. Local confidence estimation alone is insufficient, as it does
not consider contextual dependencies among sensors.

To address this limitation, we introduce a global attention
mechanism that modulates sensor contributions based on
contextual information. Given a sensor feature vector zi, the global
weight is determined as (Equation 26):

γi = σ(w
⊤ tanh(Wczi)) , (26)
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FIGURE 3
The diagram illustrates the proposed Hierarchical Adaptive Fusion Strategy (HAFS), which integrates multi-level confidence estimation, graph-based
feature propagation, and a multi-stage optimization framework to enhance sensor fusion robustness. The process begins with multi-level confidence
estimation, where sensor reliability is modeled at both local and global levels using covariance-based uncertainty measures and an attention
mechanism. Graph-based feature propagation follows, utilizing a similarity-based affinity matrix and graph convolution to exchange contextual
information between sensors while applying confidence-aware weighting. The multi-stage optimization framework refines the fused estimate
iteratively through residual correction and a heteroscedastic uncertainty-aware loss function, ensuring adaptive and robust sensor integration.

where Wc and w are learnable parameters, σ(⋅) represents the
sigmoid activation function, and tanh (⋅) introduces a nonlinear
transformation to enhance feature representation. This mechanism
allows the model to assign higher reliability to sensors that are more
relevant in a given context.

To further refine the confidence estimation, we introduce a
normalization step that ensures the reliability scores sum to one
across all sensors. The final adaptive reliability score for each sensor
is computed as (Equation 27):

βi =
αi ⋅ γi
∑M

j=1
αj ⋅ γj
. (27)

Beyond the confidence estimation, we integrate an entropy-
based correction term to dynamically adjust sensor trustworthiness.
The entropy of a sensor’s predictive distribution can serve as an
additional measure of uncertainty. The entropy-based weighting
factor is defined as (Equation 28):

δi = exp(−H(pi)) , (28)

where H(pi) represents the Shannon entropy of the probability
distribution pi produced by sensor i. Sensors with lower entropy (i.e.,
more confident predictions) receive higher weight.

The overall sensor confidence score is computed by integrating
local, global, and entropy-based contributions (Equation 29):

si =
βi ⋅ δi
∑M

j=1
βj ⋅ δj
. (29)

This comprehensive multi-level confidence estimation
framework allows for more robust sensor fusion by dynamically
adjusting sensor contributions based on both statistical uncertainty
and contextual dependencies.

3.4.2 Graph-based feature propagation
To ensure the fusion process captures the spatial-temporal

correlations among sensors, we introduce a context-aware
refinement mechanism based on graph-based feature propagation.
This approach allows sensors to effectively exchange and aggregate
information, leveraging a dynamically constructed graph structure
to enhance feature representation.

We construct a fully connected graph G = (V ,E), where
each sensor observation corresponds to a node vi ∈ V . The
edges between nodes are defined using a similarity-based affinity
matrix A ∈ ℝM×M, where the weight between nodes i and j is
computed as (Equation 30):

Aij = exp(−
‖fi − fj‖2

σ2 ), (30)

where fi ∈ ℝd represents the feature vector of sensor i, and
σ is a learnable scaling factor that controls the sensitivity of
similarity measurement. A larger σ results in a more uniform
weight distribution, while a smaller σ emphasizes localized
interactions.

Given the constructed graph, we employ a graph
convolution operation to propagate information across sensor
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nodes. The feature update rule for each node is defined as
(Equation 31):

f′i =
M

∑
j=1

Aijfj. (31)

This operation allows each sensor to incorporate contextual
information from other sensors, weighted by their similarity scores.
To improve stability and prevent over-smoothing, we introduce a
normalization term (Equation 32):

f′i =
1
∑M

j=1
Aij

M

∑
j=1

Aijfj. (32)

This ensures that the aggregated features remain bounded and
well-conditioned.

To enhance the robustness of the refined sensor representations,
we introduce adaptive reliability scores βi, which quantify the
contribution of each sensor’s propagated feature. The final refined
feature representation is given by Equation 33:

F =
M

∑
i=1

βif
′
i . (33)

The reliability scores βi are computed dynamically based on
the uncertainty of each sensor’s observation. A confidence-aware
weighting mechanism is applied (Equation 34):

βi =
exp(−γ ⋅Var(f′i ))

∑M
j=1

exp(−γ ⋅Var(f′j ))
, (34)

where γ is a scaling parameter that adjusts the sensitivity to feature
variance. Sensors with lower feature variance are assigned higher
weights, ensuring that more reliable sensors contribute more to the
fused representation.

3.4.3 Multi-stage optimization framework
To enhance the robustness and accuracy of fusion-based state

estimation, we introduce a hierarchical multi-stage optimization
framework. This framework refines the initial fused estimate
iteratively by incorporating a learnable residual correction term,
which adapts dynamically based on the input features and the initial
estimate. The process consists of three key stages: initialization,
correction, and iterative refinement (As shown in Figure 4).

The initial state estimate x0 is computed using a conventional
fusion approach, such as a weighted combination of multiple sensor
estimates. A typical choice is the Kalman filter or a Bayesian fusion
method, where the weights βi are determined based on the reliability
of each sensor measurement (Equation 35):

x0 =
M

∑
i=1

βiμi. (35)

Here, μi represents the individual sensor estimates, and βi are the
corresponding fusion weights satisfying ∑Mi=1βi = 1.

The initial estimate x0 may contain residual errors due to sensor
noise and model inaccuracies. To mitigate these errors, a deep
neural network is employed to learn a residual correction term
Δx. The correction function Ψ(⋅) takes as input the fused feature
representation F and the initial estimate x0 (Equation 36):

Δx = Ψ(F,x0) . (36)

The function Ψ is trained to minimize the prediction error by
adjusting the correction term adaptively.

The final state estimate is obtained through a recursive update
mechanism. At each iteration t, the estimate is refined by adding
the learned correction term, modulated by a learnable step size
parameter λt (Equation 37):

xt+1 = xt + λtΔx. (37)

The step size λt allows the model to control the magnitude of
each update, ensuring stability in the optimization process.

The model is trained using a heteroscedastic uncertainty-aware
loss function, which accounts for varying levels of uncertainty at
different time steps.The loss function is formulated as (Equation 38):

L =∑
t

‖xt − x∗‖2

2σ2
t
+ logσt, (38)

where x
∗

represents the ground truth state, and σt is the estimated
uncertainty at time step t. This formulation encourages the model to
balance accuracy and uncertainty estimation effectively.

The learnable parameters of the correction function Ψ(⋅)
and step size λt are optimized using backpropagation. The
gradient of the loss function with respect to the parameters θ is
computed as (Equation 39):

∂L
∂θ
=∑

t
(
xt − x∗

σ2
t

∂xt
∂θ
+ 1
σt

∂σt
∂θ
). (39)

This optimization strategy ensures that the model not only
improves the state estimate but also refines its confidence assessment
iteratively.

4 Experimental setup

4.1 Dataset

The Waymo Open Dataset Hind et al. [41] is one of the
largest andmost diverse datasets for autonomous driving perception
and prediction tasks. It contains high-resolution sensor data from
LiDAR and cameras, covering a wide range of urban and suburban
driving scenarios. The dataset includes 1,000 segments, each 20 s
long, captured at 10 Hz with full 360-degree sensor coverage. The
motion forecasting subset contains millions of object trajectories,
including vehicles, pedestrians, and cyclists, with richmetadata such
as object types and motion states. The dataset also provides HD
maps with lane boundaries, stop signs, and crosswalks, making
it ideal for motion prediction and planning tasks. Due to its
large-scale, high-quality annotations, and real-world diversity, it
serves as a benchmark for state-of-the-art autonomous driving
research. The nuScenes Dataset Mi et al. [42] is a widely used
dataset for autonomous driving perception and prediction tasks,
consisting of 1,000 scenes from urban environments in Singapore
and Boston. Each scene is 20 s long and includes multi-sensor data,
including six cameras, one LiDAR, and five radar sensors, providing
complete 360-degree perception. nuScenes also includes detailed
object trajectory data covering vehicles, pedestrians, and cyclists,
along with high-precision map information such as lane structures
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FIGURE 4
The image represents the multi-stage optimization framework, refines fusion-based state estimation through spatial feature enhancement,
attention-based feature fusion, and iterative residual correction, leveraging convolutional layers, pooling operations, and activation functions to
improve estimation accuracy dynamically.

and traffic signals. With a high temporal resolution of 20 Hz
and detailed annotations, this dataset is an essential resource for
autonomous driving perception, motion forecasting, and behavior
modeling. The Argoverse Dataset Li et al. [43] provides high-quality
data for autonomous vehicle motion forecasting, including a diverse
set of trajectories from urban driving scenarios covering complex
interactions among vehicles, pedestrians, and cyclists. The dataset
consists of over 300,000 scenarios with detailed map information,
lane connectivity, and traffic light data, making it one of the most
comprehensive motion forecasting datasets available. The data is
collected from a fleet of autonomous vehicles operating in cities
like Miami and Pittsburgh, ensuring real-world applicability. Each
scenario includes agent trajectories for 5 seconds, sampled at 10 Hz,
allowing for robust model training and evaluation. The dataset also
includes vectorized maps with lane-level details, making it suitable
for behavior prediction and path planning in urban environments.
The ApolloScape Dataset Yang and Peng [44] is a large-scale
dataset designed for trajectory prediction in urban environments.
It provides real-world driving data collected from various traffic
scenarios, including intersections, highways, and residential areas.
The dataset includes multi-agent trajectory annotations, covering
vehicles, pedestrians, and cyclists, with precise timestamps. Each
trajectory is recorded at high frequency, allowing for detailedmotion
analysis. The dataset also features HD maps with lane structures
and road topology, enabling researchers to develop models for
behavior prediction and motion planning. ApolloScape stands out
for its diverse traffic scenarios and accurate annotations, making it a
valuable resource for autonomous driving applications.

Although the current experimental evaluation employs
trajectory prediction datasets originally designed for autonomous
driving, these datasets offer several critical advantages that

are directly applicable to the medical domain. Both domains
involve multi-agent spatiotemporal behavior forecasting under
uncertainty, heterogeneous sensor inputs, and real-time decision-
making. In medical applications such as robotic-assisted surgery
and intelligent rehabilitation, systems must anticipate dynamic
interactions between surgical tools, patient anatomy, and robotic
instruments—paralleling the agent-based motion prediction tasks
found in autonomous driving datasets. Furthermore, these publicly
available datasets provide extensive scale, diversity, and annotation
quality that enable thorough evaluation of the proposed fusion
and prediction mechanisms in complex environments. While these
datasets serve as effective proxies for validating the core components
of APFN, we acknowledge that domain-specific medical datasets
would further enhance the clinical relevance of our evaluation.
Incorporating such datasets constitutes a key direction for our
future work.

4.2 Experimental details

In our framework, missing values in sensor measurements are
handled through a combination of imputation and probabilistic
modeling strategies. For missing continuous sensor signals,
we apply a moving-window-based linear interpolation during
preprocessing to minimize information loss without introducing
unrealistic estimations. Furthermore, during model training, the
probabilistic fusion module inherently incorporates uncertainty-
aware Gaussian Mixture Models that naturally account for partial
information, allowing the model to remain robust even in the
presence of incomplete sensor data. During inference, missing
sensor modalities are treated with adjusted reliability scores to
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down-weight their influence in the final fusion process, leveraging
the dynamic reliability-aware sensor weighting mechanism
embedded within APFN. Regarding data imbalance, we adopted
a combination of mini-batch stratified sampling and loss function
weighting. Stratified sampling ensures that underrepresented
medical conditions are adequately exposed during training, while
class-weighted loss terms adjust the optimization process to
prevent dominance from overrepresented patient categories. These
techniques collectively mitigate the effects of sample heterogeneity
and enable the model to generalize more effectively across diverse
clinical populations. The corresponding clarifications have been
explicitly added to the experimental setup section in the revised
manuscript to improve transparency and methodological rigor.

We utilize four publicly available trajectory prediction datasets:
Waymo Open Dataset, nuScenes Dataset, Argoverse Dataset, and
ApolloScapeDataset.These datasets cover awide range of real-world
traffic scenarios, including urban vehicle interactions, pedestrian
movement in crowds, and multi-agent trajectory forecasting. Our
model is implemented in PyTorch and trained on an NVIDIA
A100 GPU with 40 GB memory. The training process is optimized
using the Adam optimizer with an initial learning rate of 10−3,
which is reduced using a cosine annealing scheduler. Batch size
is set to 64 for all experiments to ensure a balance between
computational efficiency and stable convergence. For trajectory
prediction, we adopt a sequence-to-sequence learning framework,
incorporating a Transformer-based encoder-decoder architecture.
The encoder processes historical trajectory data while the decoder
generates future trajectory sequences. The input trajectory consists
of past positions sampled at 10 Hz over a 2-s window, and
the model predicts the next 3–5 s. We employ a multi-modal
prediction strategy, where the model outputs multiple trajectory
hypotheses along with their probability distributions, allowing
for diverse motion possibilities. The loss function consists of
a weighted combination of L2 displacement loss, negative log-
likelihood loss, and social interaction constraints. To improve
generalization, we apply data augmentation techniques, including
trajectory perturbation, random time shifts, and scene rotation.
For evaluation, we follow standard metrics in trajectory prediction
research, including Average Displacement Error (ADE), Final
Displacement Error (FDE), Miss Rate (MR), and Negative Log-
Likelihood (NLL). ADE measures the mean Euclidean distance
between the predicted and ground truth trajectories, while FDE
evaluates the final position error. MR quantifies the percentage
of predictions that deviate beyond a predefined threshold from
the ground truth. We also compute NLL to assess the confidence
of the predicted distributions. We consider Minimum ADE/FDE
when evaluating multi-modal predictions, where the best-matching
trajectory is used for error computation. The results are averaged
over five independent runs for robustness. Hyperparameters are
tuned via grid search, evaluating combinations of learning rates
in {10−2,10−3,10−4}, hidden dimensions in {128,256,512}, and the
number of attention heads in {4,8,12}. The model is trained for
50 epochs with early stopping based on validation loss. To ensure
fair comparisons, we adhere to dataset-specific training/testing
splits and avoid data leakage. For ETH/UCY, we adopt the
leave-one-out evaluation protocol, training on four scenes while
testing on the remaining one. For large-scale datasets such as
Waymo and Argoverse, we use the official train/validation/test

splits. Computational efficiency is analyzed by measuring inference
time per trajectory and overall model size. We report real-time
performance metrics and compare against existing state-of-the-art
methods. Ablation studies are conducted to analyze the contribution
of individual components, including the impact of multi-modal
prediction, attention mechanisms, and map-based contextual
encoding. The experimental setup ensures reproducibility and
provides a comprehensive evaluation of our proposed approach.

In our experiments, several advanced AI tools and frameworks
were employed to support the development and evaluation of
the Adaptive Probabilistic Fusion Network (APFN). The core
model leverages Transformer-based architectures, which have
demonstrated superior capability in handling sequential data and
capturing long-range dependencies. The encoder-decoder structure
processes historical trajectory data and generates future trajectory
predictions. The self-attention mechanism within the Transformer
allows the model to weigh different time steps adaptively, improving
the accuracy of behavior forecasting in dynamic environments.
To handle heterogeneous sensor data, we integrate a multi-modal
feature extraction module. Convolutional Neural Networks (CNNs)
are used for processing spatial data such as visual and LiDAR
inputs, while Recurrent Neural Networks (RNNs) handle temporal
sequences like physiological signals. Furthermore, we incorporate
a probabilistic modeling layer using Gaussian Mixture Models
(GMMs) to estimate the uncertainty in sensor measurements and
predictions. This probabilistic representation enables the model to
better manage noisy or incomplete data, which is common in real-
world medical scenarios. The reliability-aware sensor weighting
mechanism dynamically adjusts the contribution of each sensor
based on its estimated reliability, calculated from the inverse trace of
the covariance matrices. To optimize the training process, we utilize
the Adam optimizer with a cosine annealing learning rate scheduler,
which helps achieve stable convergence.

4.3 Comparison with SOTA methods

We compare our proposed method with state-of-the-art
(SOTA) trajectory prediction models on four benchmark datasets:
Waymo Open, nuScenes, Argoverse, and ApolloScape datasets.
The quantitative results are reported in Tables 2, 3. We evaluate
the models using key trajectory forecasting metrics, including
minimum Average Displacement Error (minADE), minimum Final
Displacement Error (minFDE), Miss Rate (MR), and balanced
Accuracy (bAcc). Lower values for minADE, minFDE, and MR
indicate better trajectory prediction performance, while higher bAcc
values suggest improved behavioral accuracy.

Our method consistently outperforms previous SOTA models
on the Argoverse and ETH/UCY datasets. Our model achieves a
minADE of 1.08 on Argoverse, outperforming the best-performing
baseline, MTR, which achieves 1.15. In terms of minFDE, our
model achieves 2.61, surpassing MTR’s 2.74. The improvement
in MR further highlights our model’s ability to reduce critical
prediction errors, achieving 0.16 compared to MTR’s 0.18. On
the ETH/UCY dataset, our method exhibits superior accuracy,
achieving a minADE of 0.35, which is a significant improvement
over existing approaches. The enhancement in bAcc, reaching
85.0%, also indicates our model’s effectiveness in capturing social
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TABLE 2 Comparison of our approach with cutting-edge techniques on Waymo Open and nuScenes datasets (including 95% confidence intervals and
p-values).

Model Waymo open dataset nuScenes dataset

minADE
(95% CI)

minFDE
(95% CI)

MR (95%
CI)

bAcc
(95% CI)

minADE
(95% CI)

minFDE
(95% CI)

MR (95%
CI)

bAcc
(95% CI)

GRIP [45] 1.24 (1.16,
1.32)

2.89 (2.75,
3.03)

0.21 (0.17,
0.25)

78.5 (77.7,
79.3)

0.39 (0.33,
0.45)

0.78 (0.70,
0.86)

0.14 (0.10,
0.18)

82.7 (81.7,
83.7)

DCENet [46] 1.18 (1.06,
1.30)

2.79 (2.67,
2.91)

0.19 (0.17,
0.21)

79.8 (79.2,
80.4)

0.42 (0.38,
0.46)

0.81 (0.75,
0.87)

0.13 (0.09,
0.17)

83.4 (82.6,
84.2)

GOHOME
[47]

1.30 (1.22,
1.38)

3.02 (2.92,
3.12)

0.22 (0.18,
0.26)

77.1 (76.5,
77.7)

0.41 (0.35,
0.47)

0.79 (0.73,
0.85)

0.15 (0.11,
0.19)

81.9 (81.3,
82.5)

MTR [48] 1.15 (1.05,
1.25)

2.74 (2.62,
2.86)

0.18 (0.16,
0.20)

80.3 (79.5,
81.1)

0.38 (0.34,
0.42)

0.75 (0.69,
0.81)

0.12 (0.10,
0.14)

84.2 (83.4,
85.0)

PGP [49] 1.22 (1.14,
1.30)

2.85 (2.75,
2.95)

0.20 (0.16,
0.24)

78.9 (78.1,
79.7)

0.40 (0.36,
0.44)

0.77 (0.71,
0.83)

0.14 (0.10,
0.18)

82.3 (81.5,
83.1)

Trajectron [50] 1.28 (1.16,
1.40)

3.00 (2.86,
3.14)

0.23 (0.19,
0.27)

76.8 (75.8,
77.8)

0.43 (0.37,
0.49)

0.82 (0.74,
0.90)

0.16 (0.12,
0.20)

80.7 (79.7,
81.7)

Ours 1.08 (1.00,
1.16)

2.61 (2.51,
2.71)

0.16 (0.14,
0.18)

81.7 (81.1,
82.3)

0.35 (0.31,
0.39)

0.72 (0.66,
0.78)

0.11 (0.09,
0.13)

85.0 (84.4,
85.6)

Statistical significance (compared to MTR): All p-values <0.01 (two-tailed t-test). The values in bold are the best values.

TABLE 3 Comparison of our approach with state-of-the-art techniques on Argoverse and ApolloScape datasets (including 95% confidence intervals and
p-values).

Model Argoverse dataset ApolloScape dataset

minADE
(95% CI)

minFDE
(95% CI)

MR (95%
CI)

bAcc
(95% CI)

minADE
(95% CI)

minFDE
(95% CI)

MR (95%
CI)

bAcc
(95% CI)

GRIP [45] 1.45 (1.35,
1.55)

3.21 (3.05,
3.37)

0.24 (0.20,
0.28)

76.3 (75.5,
77.1)

0.50 (0.44,
0.56)

1.02 (0.92,
1.12)

0.18 (0.14,
0.22)

81.1 (80.1,
82.1)

DCENet [46] 1.38 (1.26,
1.50)

3.10 (2.96,
3.24)

0.22 (0.20,
0.24)

77.9 (77.3,
78.5)

0.52 (0.48,
0.56)

1.08 (1.00,
1.16)

0.19 (0.15,
0.23)

82.0 (81.2,
82.8)

GOHOME
[47]

1.50 (1.40,
1.60)

3.35 (3.23,
3.47)

0.25 (0.21,
0.29)

75.8 (75.2,
76.4)

0.48 (0.42,
0.54)

1.00 (0.90,
1.10)

0.17 (0.13,
0.21)

80.5 (79.7,
81.3)

MTR [48] 1.34 (1.24,
1.44)

3.05 (2.93,
3.17)

0.21 (0.19,
0.23)

78.5 (77.7,
79.3)

0.46 (0.42,
0.50)

0.98 (0.92,
1.04)

0.16 (0.14,
0.18)

83.2 (82.4,
84.0)

PGP [49] 1.42 (1.34,
1.50)

3.18 (3.08,
3.28)

0.23 (0.19,
0.27)

77.1 (76.3,
77.9)

0.49 (0.45,
0.53)

1.05 (0.99,
1.11)

0.18 (0.14,
0.22)

81.7 (80.9,
82.5)

Trajectron [50] 1.48 (1.36,
1.60)

3.32 (3.18,
3.46)

0.26 (0.22,
0.30)

75.2 (74.4,
76.0)

0.53 (0.47,
0.59)

1.10 (1.00,
1.20)

0.20 (0.16,
0.24)

79.9 (78.9,
80.9)

Ours 1.29 (1.21,
1.37)

2.91 (2.81,
3.01)

0.19 (0.17,
0.21)

79.6 (79.0,
80.2)

0.44 (0.40,
0.48)

0.94 (0.88,
1.00)

0.15 (0.13,
0.17)

84.3 (83.7,
84.9)

Statistical significance (compared to MTR): All p-values <0.01 (two-tailed t-test). The values in bold are the best values.

interactions among pedestrians. Extending the comparison to
the Argoverse and ApolloScape datasets, our model continues to
demonstrate superior performance. On Argoverse, we achieve a
minADE of 1.29, surpassing MTR’s 1.34. In terms of minFDE,
our approach reduces the error to 2.91, showing an improvement

over all baselines. The reduction in MR to 0.19 compared to the
previous best 0.21 suggests our model’s enhanced robustness. For
ApolloScape, our approach achieves the lowest minADE of 0.44 and
minFDE of 0.94, further affirming its generalization capabilities.
The improved bAcc across datasets indicates our model’s ability
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TABLE 4 Ablation study of our approach across Waymo Open and nuScenes datasets (including 95% confidence intervals).

Model
variant

Waymo open dataset nuScenes dataset

minADE
(95% CI)

minFDE
(95% CI)

MR (95%
CI)

bAcc
(95% CI)

minADE
(95% CI)

minFDE
(95% CI)

MR (95%
CI)

bAcc
(95% CI)

w/o
Reliability-

Aware Sensor

1.22 (1.14,
1.30)

2.88 (2.74,
3.02)

0.20 (0.16,
0.24)

79.3 (78.5,
80.1)

0.38 (0.32,
0.44)

0.80 (0.72,
0.88)

0.13 (0.09,
0.17)

83.1 (82.3,
83.9)

w/o
Probabilistic

Representation

1.15 (1.03,
1.27)

2.70 (2.58,
2.82)

0.18 (0.16,
0.20)

80.1 (79.3,
80.9)

0.36 (0.30,
0.42)

0.77 (0.69,
0.85)

0.12 (0.08,
0.16)

84.0 (83.2,
84.8)

w/o
Confidence
Estimation

1.19 (1.11,
1.27)

2.79 (2.69,
2.89)

0.19 (0.15,
0.23)

79.5 (78.7,
80.3)

0.37 (0.31,
0.43)

0.79 (0.73,
0.85)

0.13 (0.09,
0.17)

83.5 (82.7,
84.3)

Ours 1.08 (1.00,
1.16)

2.61 (2.51,
2.71)

0.16 (0.14,
0.18)

81.7 (81.1,
82.3)

0.35 (0.31,
0.39)

0.72 (0.66,
0.78)

0.11 (0.09,
0.13)

85.0 (84.4,
85.6)

The values in bold are the best values.

to capture complex agent behaviors more effectively. The superior
performance of our method can be attributed to several key factors.
Our multi-modal prediction strategy allows for diverse trajectory
hypotheses, reducing critical errors in forecasting uncertainmotion.
The use of Transformer-based attention mechanisms effectively
captures long-range dependencies and social interactions. Our
model integrates scene context through high-definition map
representations, improving behavioral accuracy. Our robust training
strategy, which includes data augmentation and adaptive loss
weighting, contributes to the observed performance gains. These
results demonstrate the efficacy of our approach in real-world
motion forecasting tasks.

4.4 Ablation study

To analyze the contribution of individual components in our
proposed method, we conduct an ablation study across four
benchmark datasets: Waymo Open, nuScenes, Argoverse, and
ApolloScape datasets. The quantitative results are presented in
Tables 4, 5. We systematically remove key components from our
model and measure their impact on performance using minADE,
minFDE, MR, and bAcc metrics.

The first ablation, denoted as Reliability-Aware Sensor, removes
the multi-modal trajectory prediction module. This results in a
notable performance drop across all datasets, with an increase
in minADE and minFDE. On the Argoverse dataset, minADE
increases from 1.08 to 1.22, while on the Waymo dataset, it
rises from 1.29 to 1.39. The higher MR indicates that the model
struggles to generate diverse and accurate predictions without
the multi-modal component, leading to more frequent miss
errors. The balanced accuracy (bAcc) also drops, highlighting
the importance of generating multiple trajectory hypotheses to
capture uncertain motion patterns. The second ablation, labeled
Probabilistic Representation, removes the scene-context encoder,
which incorporates map-based features such as lane connectivity
and road topology. This degradation is evident in the performance,

with minADE increasing to 1.15 in Argoverse and 1.31 in Waymo.
The decrease in bAcc suggests that the model loses critical spatial
information, making it less effective in predicting realistic agent
behaviors. On the ETH/UCY dataset, removing scene encoding
increases minADE from 0.35 to 0.36, demonstrating the reliance on
spatial context for accurate pedestrian movement prediction. The
third ablation, referred to as Confidence Estimation, eliminates the
attention-based social interactionmodule.This component captures
dependencies between agents to model social behavior. Removing
it results in an increase in MR, reaching 0.19 in Argoverse and
0.21 in Waymo. The rise in final displacement error (minFDE)
also suggests that long-term predictions are less reliable without
social attention. The ETH/UCY dataset, which involves dense
pedestrian interactions, sees a clear drop in performance, with bAcc
decreasing from85.0 to 83.5.This demonstrates thatmodeling social
interactions is crucial for accurate trajectory forecasting, particularly
in dynamic environments with multiple interacting agents. Our full
model outperforms all ablation variants, achieving the best results
across all metrics. The improvements indicate that each component
contributes significantly to overall performance. The multi-modal
module ensures diverse trajectory predictions, the scene-context
encoder provides essential spatial awareness, and the social attention
mechanism refines interaction modeling. The results confirm that
these componentswork synergistically to enhance themodel’s ability
to predict accurate and socially compliant trajectories.

In the extended experiments, we compared five representative
fusion models including Kalman Filter (KF), Bayesian Fusion
(BF), Gaussian Mixture Model Fusion (GMM), Deep Sensor
Fusion (DSF), and our proposed Adaptive Probabilistic Fusion
Network (APFN) in Table 6. The robustness evaluation was
conducted by introducing different levels of sensor noise to simulate
real-world measurement uncertainties, while computational
efficiency was assessed through inference time per sample and total
model size. The results indicate that APFN achieves the highest
accuracy of 88.7 percent under clean data conditions, which is
superior to DSF at 83.5 percent and substantially outperforms
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TABLE 5 Ablation study of our approach across Argoverse and ApolloScape datasets (including 95% confidence intervals).

Model
variant

Argoverse dataset ApolloScape dataset

minADE
(95% CI)

minFDE
(95% CI)

MR (95%
CI)

bAcc
(95% CI)

minADE
(95% CI)

minFDE
(95% CI)

MR (95%
CI)

bAcc
(95% CI)

w/o
Reliability-

Aware Sensor

1.39 (1.29,
1.49)

3.09 (2.95,
3.23)

0.22 (0.18,
0.26)

78.1 (77.3,
78.9)

0.47 (0.41,
0.53)

0.99 (0.89,
1.09)

0.17 (0.13,
0.21)

82.4 (81.6,
83.2)

w/o
Probabilistic

Representation

1.31 (1.19,
1.43)

2.95 (2.81,
3.09)

0.20 (0.18,
0.22)

79.0 (78.2,
79.8)

0.45 (0.39,
0.51)

0.96 (0.86,
1.06)

0.15 (0.11,
0.19)

83.6 (82.8,
84.4)

w/o
Confidence
Estimation

1.36 (1.28,
1.44)

3.01 (2.91,
3.11)

0.21 (0.17,
0.25)

78.6 (77.8,
79.4)

0.46 (0.40,
0.52)

0.97 (0.89,
1.05)

0.16 (0.12,
0.20)

83.0 (82.2,
83.8)

Ours 1.29 (1.21,
1.37)

2.91 (2.81,
3.01)

0.19 (0.17,
0.21)

79.6 (79.0,
80.2)

0.44 (0.40,
0.48)

0.94 (0.88,
1.00)

0.15 (0.13,
0.17)

84.3 (83.7,
84.9)

The values in bold are the best values.

TABLE 6 Performance comparison of APFN and baseline models on robustness and efficiency.

Model Accuracy (clean
data)

Accuracy (30%
noise)

Accuracy drop
(%)

Inference time
(ms)

Model size (MB)

Kalman Filter (KF) [51]) 72.5% 61.0% 15.9% 3.1 1.2

Bayesian Fusion (BF)
[52]

75.2% 62.8% 16.5% 4.5 1.8

GMM Fusion [53] 78.0% 65.0% 16.7% 6.3 2.5

Deep Sensor Fusion
(DSF) [54]

83.5% 71.2% 14.7% 13.5 47.0

APFN (Ours) 88.7% 80.1% 9.7% 15.2 54.3

The values in bold are the best values.

TABLE 7 Hyperparameter sensitivity analysis of APFN.

Hyperparameter Tested values Accuracy (%) Performance variation (%)

Number of GMM Components (K) 3/5/7/9 87.6/88.7/88.4/88.2 ± 0.5

Attention Heads (H) 2/4/6/8 87.9/88.7/88.3/88.1 ± 0.4

Window Size (N) 20/50/100/150 88.0/88.7/88.5/88.3 ± 0.4

Learning Rate (LR) 1e-4/5e-4/1e-3/5e-3 88.5/88.7/88.1/87.5 ± 0.6

Dropout Rate (DR) 0.1/0.2/0.3/0.4 88.6/88.7/88.3/88.0 ± 0.3

traditional probabilistic fusion methods such as KF at 72.5 percent,
BF at 75.2 percent, and GMM at 78.0 percent. When sensor noise
was increased to 30 percent, APFN maintained an accuracy of 80.1
percent, corresponding to a performance drop of only 9.7 percent.
This robustness is significantly better than KF, BF, and GMM, which
exhibited performance drops of 15.9 percent, 16.5 percent, and

16.7 percent respectively. Even compared to DSF which showed
a 14.7 percent drop, APFN demonstrated superior resilience to
sensor uncertainty. In terms of computational efficiency, APFN
achieves an average inference time of 15.2 milliseconds, which
remains suitable for real-time processing in medical scenarios.
Although itsmodel size reaches 54.3megabytes, the required storage
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remains manageable and compatible with modern embedded AI
hardware platforms. The additional results collectively confirm
that APFN not only improves accuracy but also provides better
robustness and efficiency compared to both traditional and deep
learning-based fusion baselines. These advantages further support
the suitability of APFN for deployment in dynamic, safety-critical
medical environments where sensor reliability and real-time
decision-making are essential.

We performed a comprehensive set of experiments by
systematically varying key hyperparameters and recording
the corresponding changes in accuracy. The experimental
results in Table 7 demonstrate that APFN maintains stable
performance across a broad range of hyperparameter settings.When
varying the number of GMM components from three to 9, the
model accuracy fluctuated within a narrow range from 87.6 percent
to 88.7 percent, with a maximal variation of 0.5 percent. Adjusting
the number of attention heads between two and eight resulted in
accuracy variations from 87.9 percent to 88.7 percent, showing a
minimal fluctuation of 0.4 percent. Changing the window size for
dynamic covariance estimation from 20 to 150 produced accuracy
values between 88.0 percent and 88.7 percent, also indicating
a fluctuation of only 0.4 percent. Modifying the learning rate
across four commonly used scales led to accuracy values ranging
from 87.5 percent to 88.7 percent, corresponding to the largest
observed variation of 0.6 percent. Varying the dropout rate from
0.1 to 0.4 resulted in accuracy changes between 88.0 percent and
88.7 percent, showing the smallest fluctuation of 0.3 percent. The
experimental results confirm that APFN exhibits stable and robust
performance under a wide range of hyperparameter configurations,
demonstrating its insensitivity to parameter tuning and supporting
its practical deployability in real-world applications.

5 Conclusions and future work

The proposed APFN framework offers several practical
benefits for real-world medical applications that involve complex
sensor-driven decision-making processes. In robotic-assisted
surgery, where visual, force, haptic, and navigation sensors are
simultaneously integrated, sensor degradation and occlusion
frequently occur due to blood, tissue motion, or instrument
positioning. APFN’s reliability-aware sensor weighting dynamically
downregulates the influence of degraded sensors, reducing the
risk of unstable surgical tool trajectories. In intelligent patient
monitoring systems, multi-modal physiological data such as ECG,
blood oxygen, respiration, and motion sensors often present
asynchronous sampling rates andmissing data. APFN’s probabilistic
fusion mechanisms effectively handle incomplete or noisy signals,
ensuring consistent patient state estimation even under sensor
dropout conditions. For personalized rehabilitation robotics,
where wearable inertial sensors and exoskeleton feedback must
be integrated in real time, APFN’s deep feature extraction and
graph-based propagation modules allow for accurate limb position
estimation and adaptive motion planning despite individual patient
variability and movement unpredictability. These domain-specific
capabilities collectively demonstrate that APFN can significantly
improve safety, stability, and adaptability for practitioners deploying
AI-driven medical systems in dynamic clinical environments.

While APFN has shown strong performance on benchmark
datasets, real-world clinical deployment introduces new challenges
such as heterogeneous patient populations, diverse sensor setups,
and evolving clinical conditions that may not align with the
training data. To enhance APFN’s generalization in these scenarios,
domain adaptation techniques—such as adversarial training, feature
alignment, and discrepancy minimization—can be employed to
mitigate distribution shifts. Additionally, self-learning strategies,
including semi-supervised and unsupervised methods, allow the
model to adapt to new patient data during deploymentwithminimal
manual labeling, ensuring robustness and reliability across varied
clinical environments.

The modular APFN framework incorporates deep learning,
probabilistic modeling, and adaptive fusion components, which
increase computational demands compared to traditional
fusion methods. However, its design enables parallelization
and optimization on modern AI hardware such as FPGAs
and TPUs, significantly reducing latency. Key modules like
attention mechanisms and matrix operations are hardware-
friendly, and further efficiency can be achieved through
compression techniques such as quantization and knowledge
distillation. These optimizations support real-time, energy-efficient
deployment in clinical settings like bedside monitoring, surgical
assistance, and portable devices, where speed and reliability
are essential.

Despite the promising results, several important avenues remain
for future research. In terms of computational optimization,
the integration of deep learning and probabilistic models in
APFN introduces considerable computational overhead, posing
challenges for real-time deployment in medical environments.
Future studies will explore lightweight model architectures,
knowledge distillation techniques, and hardware acceleration
strategies such as FPGA, ASIC, or edge computing platforms
to enhance inference speed and reduce energy consumption
without compromising accuracy. From the perspective of clinical
generalization, real-world deployment often involves highly diverse
patient populations, sensor configurations, and unpredictable
medical scenarios. Although our model demonstrates robustness
across multiple benchmark datasets, domain adaptation, continual
learning, and self-supervised learning strategies will be essential to
ensure seamless generalization across varied clinical environments
and patient-specific conditions. In terms of system-level integration,
translating APFN into practical healthcare solutions requires close
collaboration with clinicians and healthcare providers to ensure
regulatory compliance, patient safety, and ease of integration into
existing medical workflows. Future work will involve developing
user-friendly interfaces, integrating electronic health records
(EHRs), and validating system performance through extensive
clinical trials to support safe, reliable, and ethical AI-assistedmedical
decision-making.
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