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Application status of holmium
and thulium fiber laser for
urological calculi

Shu-Ping Hou* and Yu-Guo Wang

School of Information Engineering, Tianjin University of Commerce, Tianjin, China

Holmium:YAG(Ho:YAG) is still recognized as the gold standard for lithotripsy
due to its advantages of high efficiency, safety, wide indications and high
compatibility with minimally invasive techniques. However, it still faces
challenges such as calculi retropulsion and heat generation risk in clinical
applications. With its unique structure and physical properties, thulium fiber
laser (TFL) boasts advantages such as higher performance efficiency, superior
stability, and an increased energy conversion rate. These features endow TFL
with broad application prospects in the treatment for urological calculi, and
it is anticipated to become for calculi fragmentation in the future. This article
will analyze the performance characteristics of Ho:YAG and TFL, and explore
their characteristics and advantages in urolithiasis surgery, in order to provide
guidance and inspiration for clinical practice.
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1 Introduction

Urological calculi, as a high-risk disease worldwide, is affected by geographical,
climatic and lifestyle factors. The incidence for urological calculi is between 2%
and 5%, and shows an overall upward trend [1, 2]. With continuous advancements
in endoscopy and laser technology, laser lithotripsy has emerged as the dominant
treatment for urolithiasis due to its efficiency and safety. Early laser lithotripsy methods
employed lasers with respective drawbacks, including significant thermal damage with
non-pulsed carbon dioxide lasers [3], limited types of treatable calculis with pulsed
dye lasers [4], and poor precision with neodymium lasers [5]. By the end of the
20th century, holmium laser (Ho:YAG), leveraging its exceptional water absorption
characteristics and photothermal effect, achieved efficient treatment of various types of
calculis through pulsed mode and rapidly became the gold standard for lithotripsy [6].
However, in clinical applications, Ho:YAG lasers still face limitations such as calculi
displacement, risk of thermal damage, and restricted manipulation in the inferior calyx
or narrow ureter. In recent years, thulium fiber laser (TFL) has demonstrated potential
to replace Ho:YAG lasers due to its unique operating wavelength and system architecture
advantages, offering higher lithotripsy efficiency and lower retropulsion among other
characteristics [7, 8]. This article will focus on the performance characteristics of
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Ho:YAG and TFL, comparing and analyzing their application
advantages in endoscopic surgery for urinary calculi, aiming to
provide valuable references for clinical practice.

2 Mechanism of laser lithotripsy

The main mechanisms of laser lithotripsy are photothermal
decomposition and photomechanical mechanisms [9–12].
Photothermal mechanism refers to the heat accumulation from
the optical fiber to melt the calculi. Photomechanical mechanism
is to excite bubbles in water through optical fibers, resulting in
the cracking of calculis. In addition to these two mechanisms
mentioned, TFL also includes the “micro-explosion” mechanism
[13]. Mechanistically, during laser-tissue interaction, photonic
energy absorption by intrinsic aqueous components within urinary
calculi induces rapid vaporization, generating localized high-
pressure zones. Concurrently, the thermal conductivity discrepancy
between the hydrated matrix and lithogenic structure propagates
dynamic pressure gradients, preferentially inducing microfractures
within structurally vulnerable regions to achieve controlled
lithotripsy. However, in practice, it is found that the above two
mechanisms are not enough to explain all the phenomena in the
process of lithotripsy. Cecchetti et al. [14] proposed the ‘plasma’
theory of Ho:YAG. The core of the theory is that due to the large
absorption coefficient in water, the water at the end of the fiber
quickly absorbs the energy, produces thermal ionization and forms
a plasma. Once a plasma is formed, it strongly absorbs the incident
laser, and the plasma itself supersedes the incident laser.In addition,
there is a ‘Moses effect’ [15] in the calculi process, which is to
modulate the pulse energy into two sets of independent pulses
through pulse energy modulation technology to achieve accurate
crushed calculi. The first group of low-energy short pulses generates
micro-vapor bubbles, which separates the water around the end
of the fiber, so that the calculis are directly exposed to the end of
the fiber, forming a ‘channel’ with low water density between the
calculis, that is the Moses effect. The second group of high-energy
long pulses transmitted through this ‘channel’ will form a blasting
force on the surface of the calculi, which greatly reduces the energy
loss caused by absorption in water, and can produce a non-contact
calculi effect at a longer distance.

3 Modes of lithotripsy

Lithotripsy technology is mainly divided into three modes:
fragmentation [16], dusting [17] and popcorn-like mode [18]. The
fragmentation adopts high pulse energy and low frequency (0.6
∼ 2.0 J, 4.0 ∼ 6.0 Hz) and short pulse width parameters to crush
high hardness calculis into grabable fragments and take them
out through baskets. The dusting crushes the soft calculis into
pieces (≤2 mm) by low-energy high-frequency (0.2 ∼ 0.5 J, 15 ∼
60 Hz) and long-pulse width parameters, pieces are excreted by
the patient himself. Although the use of instruments is reduced,
the intraoperative dust may affect the visual field (which can be
improved by negative pressure suction). The popcorn-like is aimed
at residual calculis, and the eddy current effect is formed by non-
contact excitation with medium energy (such as 1 J), medium and

high frequency (10∼15 Hz) and medium pulse width parameters
to further decompose the debris. The three form a complementary
calculis scheme through differentiated energy configuration and
operation strategy, taking into account the efficiency and safety of
calculi removal.The specificmode to be adopted requires assessment
by the physician after considering various aspects of the patient’s
calculi condition, as well as their physical status and urinary
tract anatomy.

4 Ho:YAG

Holmium:YAG laser is a versatile high-energy pulsed laser
with a specific wavelength of 2,100 nm, capable of being delivered
through a flexible optical fiber. It generates localized instantaneous
high temperatures, inducing rapid vaporization of water within
the calculi to form a plasma. This plasma subsequently expands
rapidly and collapses, emitting intense supersonic shockwaves with
sufficient pressure to initiate physicochemical reactions in the
calculi, effectively fragmenting calculis of various compositions.Due
to its superior performance, the holmium:YAG laser has found
widespread application in the field of urology.

In the early days, Ho:YAG was designed with a single cavity,
the output power was less than 30 W, and the pulse energy and
frequency were limited (0.8 ∼ 1.2 J, 4 ∼ 10 Hz), forming a classic
fragmented mode [6]. Subsequently, Ho:YAG realized high-power
lithotripsy through a multi-cavity system. The emergence of the
latest Moses effect mode Ho:YAG (Lumenis™) has a power of up to
120 W and a frequency of up to 80 Hz, and the lithotripsy efficiency
is significantly improved [19].

Since it was first reported in 1995 for the treatment for urological
calculi [20], it has rapidly become the gold standard for intracavitary
lithotripsy due to its full-component adaptability (high-hardness
calculis such as cystine and calcium oxalate monohydrate can
be efficiently treated), precision and low invasiveness (wavelength
2,100 nm is highly absorbed in water, tissue penetration depth is
only 0.4 μm, perforation rate <0.1%) and versatility (simultaneous
realization of lithotripsy, hemostasis and soft tissue cutting). With
the ME pulse modulation technology, the energy loss is reduced
by 60%, the non-contact lithotripsy distance is extended to 1
∼ 2 mm, the shock wave transmission efficiency is increased by
30%, and the calculi retropulsion rate is reduced by 50 times. In
complex cases (such as staghorn calculis, incarcerated calculis) [21],
the calculi-free rate of single operation is as high as 88%∼98%.
Multi-mode parameter configuration covers fragmentation (0.6 ∼
2.0 J/4 ∼ 6 Hz), dusting (0.2 ∼ 0.5 J/15 ∼ 60 Hz) and popcorn-like
(1 J/10 ∼ 15 Hz), combined with ultra-fine fiber (50∼1000 μm) to
adapt to the narrow anatomical structure, significantly reducing the
risk of ureteral stenosis.In terms of technical iteration, the fourth
generation Ho:YAG system (such as Lumenis Pulse P120H) [22] has
a power of 120 W and a frequency of 80 Hz, and the calculi efficiency
is 2 times higher than the traditional mode, while the cost of
domestic equipment (such as JRH-I type) is reduced by 30%, which
promotes the popularization rate of primary hospitals by 50%. Based
on high efficiency, minimally invasive, multi-scene adaptation and
30 years of evidence-based support, the comprehensive advantages
of Ho:YAG in lithotripsy efficiency, tissue protection and operation
freedom make it irreplaceable in the existing technical system.
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FIGURE 1
Stone surface preparation (A) and experimental set-up (B). Reprinted with permission from [29]. Copyright © 2025, The Author(s), under exclusive
license to Springer-Verlag London Ltd., part of Springer Nature.

TABLE 1 Technical Characteristics of Ho:YAG vs. TFL.

Parameter Ho:YAG TFL

Wavelength 2,100 nm (pulsed mode) 1940 nm (continuous wave/modulated wave)

Water Absorption Moderate absorption, deeper tissue penetration High absorption (near water peak ∼ 1940 nm), shallow
penetration, energy concentration

Fiber Diameter 200–400 μm (standard) 50–200 μm (smaller, enhanced flexibility)

Operating Mode High-peak-power pulsed, photome-chanical ablation Continuous wave/high-frequency pulsed, thermal
ablation dominant

Pulse Energy/Frequency 0.2 ∼ 6.0 J, 5 ∼ 80 Hz 0.01∼6 J, 1∼2000 Hz (ultra-high frequency capability)

Ablation Efficiency Superior for large/hard calculis (e.g., cystine, calcium
oxalate)

Higher dusting efficiency for small fragments,
especially in narrow calyces

calculi Types Optimal for high-tensile-strength calculis Effective for fragile calculis (e.g., struvite, calcium
phosphate), less effective for hard calculis

Thermal Spread Wider thermal diffusion (longer pulse duration),
higher cumulative thermal dose

Localized heating with lower peak temperatures
(60°C–80°C) but higher cumulative heat in prolonged
use

Safety Control Requires active irrigation to mitigate thermal injury Reduced collateral damage in sensitive areas (e.g.,
ureter) due to precise energy delivery

Retropulsion Risk Higher risk due to high-energy pulses Minimal retropulsion with dusting settings

However, studies have shown that Ho:YAG has limits such as
significant heat generation, easy to cause calculi retropulsion, and
difficulty in completely dusting calculis [23]. Although the latter

two can be improved to a certain extent by parameter regulation
and precise operation, the tissue damage caused by the thermal
effect mechanism is still an unavoidable problem. In particular, the
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application of high-power high-frequency lasers further aggravates
people’s concerns about the thermal effect of intracavity calculi. In
addition, the Ho:YAG output energy mode is a multi-mode output
beam. When the core diameter of the fiber is small, the beam
can not be gathered together, and can only be used on the fiber
with a core diameter of ≥200 μm, which may lead to complications
such as ureteral stenosis caused by heat generation after surgery,
and the “blizzard” effect during lithotripsy is easy to affect the
visual field [19]. The special demand for high-power Ho:YAG for
more efficient condensing device and voltage energy supply leads
to the fact that the production size of the laser generator cannot be
portable. At the same time, the power supply of the operating room
requires special lines, which leads to the reduction of the efficiency
of the operating room in the central hospital with a large amount of
surgery, which poses a challenge to the wide clinical application.

5 TFL

As a new type of laser, TFL uses a semiconductor laser as a
pump source, a thulium-doped fiber as a working medium, and an
emission wavelength of 1940 mm. It has the advantages of higher
calculi burning rate, higher irrigation rate, smaller calculi, smaller
retropulsion, and air cooling. It has broad application prospects in
the field of lithotripsy, and is expected to replace Ho:YAG as a new
gold standard in the field for lithotripsy [10, 11].

Compared with Ho:YAG, TFL offers numerous advantages: its
1940 nmwavelength boasts a water absorption coefficient four times
that of holmium laser, enabling faster calculi ablation and efficient
lithotripsy; its extremely shallow penetration, half that of Ho:YAG,
ensures superior thermal safety; it supports high-frequency low-
energy pulses, accelerating calculi dusting, particularly suitable
for flexible ureteroscopy with a 30%–50% increase in lithotripsy
speed; the small shockwaves generated by high-frequency pulses
significantly reduce calculi retropulsion, lowering the risk of
intraoperative calculi escape; the use of a 50 μm fine fiber enhances
lithotripsy efficiency, is ideal for narrow areas, and paves the way for
next-generation small ureteroscopes, with minimal reverse thrust
facilitating high-flow perfusion for dust clearance, heat dissipation,
dust storm avoidance, visibility improvement, and prevention of
thermal injury; its pulse frequency exceeds 2,000 Hz, over 20 times
that of Ho:YAG; the entire system supports water-free operation,
high photoelectric efficiency, all-fiber coupling, and significant
volume reduction, garnering increasing attention. These advantages
underscore the immense potential of TFL in urological lithotripsy.

In 2005, Fried [24] first reported the in vitro lithotripsy test of
TFL. The results showed that TFL could effectively treat calculis
with different hardness in pulse mode, and the lithotripsy speed
was significantly higher than that of Ho:YAG at that time. Through
experiments, Hardy et al. [25] found that under the premise of
maintaining the same laser parameters, the degree of dusting of TFL
is higher than that of Ho:YAG. Blackmon et al. [26] compared the
calculi effect of TFL and Ho:YAG lasers at the same pulse energy
(70 mJ). The results show that the calculi efficiency of TFL is 5∼10
times that of Ho:YAG under the same pulse energy. Hardy [27]
verified that using low pulse energy and high frequency TFL can
produce smaller calculi fragments, which is convenient for patients
to discharge.Enikeev [28] first reported the clinical application of

TFL percutaneous nephrolithotomy. It can be seen that TFL is
superior to Ho:YAG in terms of lithotripsy rate and powdering
degree under the sameparameters. Cumpanas et al [29]. investigated
the impact of irrigation fluid temperature on TFL ablation of urinary
calculi, finding that increasing temperature can enhance ablation
rates for non-uric acid (non-UA) calculis (Figure 1), yet this effect
is less significant than adjusting laser energy, which remains a
crucial factor.

TFL showed significant advantages in inhibiting calculi
retropulsion. Blackmon et al. [30] found that when the TFL pulse
energy was 35 mJ and the frequency was lower than 150 Hz, the
calculi repelling distance was stable below 2 mm, while the Ho:YAG
could cause retropulsion even at 0.2 J at the same energy. Ventimiglia
[31] and Enikeev’s [32, 33] studies have confirmed that compared
with Ho:YAG and TFL under the same energy, frequency and
average power conditions, the calculi retropulsion caused by TFL
is less obvious than that of Ho:YAG with different pulse widths,
and the resulting more efficient lithotripsy rate and clearer surgical
field of vision.

As a new type of calculi technology, the heat generation risk
and mechanism of TFL are still controversial. Studies [34–36]
have shown that when TFL and Ho:YAG (Ho:YAG) use the same
parameters, there is no significant difference in the temperature rise
of the lavage fluid between the two [37]. However, in the high-
frequency mode [38], TFL has more significant heat accumulation
due to shortened pulse interval, and the upper limit of frequency
should be limited to 500 Hz to control the tissue temperature
<43°C. In the dusting mode [39], although the temperature rise
rate of TFL is higher than that of Ho:YAG (peak temperature
<45°C), the photothermal effect caused by its short pulse may lead
to carbonation of the calculi structure and increase the risk of
ureteral stenosis.Christopher et al. [40] conducted a comparison
of the thermal dose and temperature profiles of Ho:YAG versus
TFL in a kidney mode. Using a 3D-printed model, they observed
that the thermal dose delivered by TFL was typically higher than
that of Ho:YAG.

TFL shows significant advantages in small fiber applications:
compared with Ho:YAG, the loss of fiber tip is higher under the
same parameters. TFL can stably couple ultrafine fiber due to the
characteristics of near single-mode Gaussian beam and smaller
core, so as to avoid the micro-hole ablation damage caused by
Ho:YAG due to multimode beam. The small fiber increases the
energy density, so that the dusting efficiency of the TFL 150 μm fiber
is 3 times that of the Ho:YAG 272 μm fiber, and the calculi particles
are finer (≤0.5 mm). At the same time, the irrigation rate [41] of
50 μm ultrafine fiber in 3.6Fr channel reached 28.3 mL/min (duty
cycle 90.2%), which was 2.1 times higher than that of 272 μm
fiber, reducing the risk of intraoperative temperature rise and
shortening the operation time. TFL breaks through the physical
limitations of Ho:YAG, supports 50 μm ultra-fine fiber, promotes
the miniaturization of ureteroscopy, achieves greater curvature and
multi-functional integration, and provides a technical basis for high-
frequency dusty lithotripsy.

The clinical application of TFL still faces multiple challenges.
First, the ablation efficiency of high-density hard calculis is limited,
which is manifested by prolonged lithotripsy time and high energy
density, which is easy to cause carbonization of fiber tip. Secondly,
there is a significant risk of heat accumulation in the ultra-high
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frequency mode (>500 Hz) (depending on high irrigation flow such
as>50 mL/min), but the relevant clinical evidence is still insufficient.
Third, the occasional abnormal ‘explosion flash’ phenomenon [43]
may cause mechanical damage to the lens, and its mechanism and
solution need to be explored urgently. In addition, although the
ultra-fine optical fiber enhances the calculi efficiency by increasing
the energy density, it brings problems such as high-precision
positioning requirements, accelerated fiber carbonization, and rising
use costs. At present, TFL research is still limited by the clinical
evidence. Large-scale controlled trials are needed to systematically
evaluate its efficacy and safety, and promote the establishment of
technical optimization and clinical application specifications.

6 Conclusion

In summary, Ho:YAG and TFL offer complementary strengths
in urinary calculi management. Ho:YAG, with its high-energy
pulsed mode, is optimal for fragmenting large-volume or high-
density calculi, while TFL’s high-frequency thermal ablation excels
in precise dusting andnavigationwithin confined anatomical spaces.
A comparative analysis of their technical and clinical performance
is summarized as Table 1.

Ho:YAG and TFL are the two mainstream technologies in the
field of laser treatment for urological calculi. Ho:YAG, with its
mature and stable performance and the pulse optimization ability
of Moses technology, has become the clinical gold standard through
precise energy control and shallow penetration force, especially in
the rapid crushing of larger volume or higher hardness calculis. Due
to its unique fiber structure and near-single-mode Gaussian beam
characteristics, TFL achieves better dusting effect, lower calculi
retropulsion rate and higher rrigation rate with higher energy
density, ultra-high frequency pulse andultra-fine fiber compatibility.
Its huge frequency reserve and process innovation potential provide
a direction for technical iteration. The future technology may
combine the deep controllability of Ho:YAG with the fine dusting
ability of TFL to achieve efficient in situ calculi, low cost, no heat
generation [40], and promote the urinary calculi into the era of
precision and intelligence.
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