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To maximize the operational value of hydropower stations and achieve expected
economic benefits, efficient dispatching and command operations are essential.
With the growing dimensionality of indicator data in hydraulic engineering,
traditional methods face challenges in handling complex multi-dimensional
spatial data modeling. In particular, traditional Kalman filtering methods often
suffer from the “curse of dimensionality” during model solving, resulting
in long computation times and model instability. This paper proposes an
approach based on an evolvable data model decomposition for hydropower
dispatching networks, leveraging collaborative intrusion detection techniques.
The improved Kalman filtering algorithm structure is designed to tackle multi-
stage dynamic decision-making processes involving multi-regular state function
parameters. By decomposing single-stage primary problems into multiple
elementary subproblems, the operational principles of multi-dimensional
spatial analysis are modified. Through function simplification and rational
point-wise problem allocation, priority conditions for global optimization of
decision processes are established, thus promoting the optimization of multi-
dimensional space folding and movement velocities. In the construction of
stochastic multi-dimensional spaces, optimized stochastic indicator models
and parametric simulation designs are employed. The initial step is to define
hydropower dispatching strategies, which are compared with explicit model
stochastic optimization while ensuring load output requirements and cost-
benefit constraints. Guided by the aggregation concept of decomposable
indicators, an implicit stochastic optimal dispatching boundary is established,
forming a data transfer function model for hydropower scheduling. The
collaborative intrusion detection mechanism plays a crucial role in safeguarding
the security and reliability of the data model decomposition process, ensuring
the robustness of the overall system. Finally, the operation and analysis of
the simulation system validate the guiding role of the dispatching functions in
hydropower systems. The results demonstrate that the proposed hydropower
scheduling solution, with its evolvable data model decomposition and
collaborative intrusion detection, exhibits superior operability and practical utility
for operational dispatching command tasks in hydraulic engineering projects.
This methodology provides an effective technical pathway for addressing
complex scheduling challenges in modern hydropower systems, offering a
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new perspective on enhancing the efficiency and security of hydropower
dispatching networks.

hydropower dispatching, operation cost, water energy storage, eigenvector space,
multidimensional space structure

1 Introduction

To facilitate the integration of hydropower projects into green
energy accommodation and enhance the overall regulatory potential
and automated management capabilities of power systems, it
is imperative to strengthen demand response mechanisms and
improve compensation strategies for water resources. This requires
continuous refinement of risk-sharing mechanisms within the
indicator system, equitable allocation of hydropower operational
costs, and the gradual establishment of a scientifically grounded
mechanism for rational green energy allocation [1]. Ensuring that
electricity trading adopts a “supplement-sustainable” transaction
structure is critical. Transitioning from foundational directive-
based transactions to supply-demand-driven accommodation
will promote stable power market operations. Decomposing the
structural components of hydropower resources not only quantifies
the performance of water resource reserves and replenishment
but also accounts for factors such as power generation-load
discrepancies, thereby ensuring the stable operation of hydropower
projects [2]. Furthermore, the dispatch and coordination of green
energy should explore the equilibrium between absorption and
consumption, as well as reconcile conflicts between resource
optimization and cost-benefit trade-offs [3]. In a Cyber-Physical
Social System (CPSS), the optimization of hydropower dispatching
involves not only the economy of energy distribution, but
also the physical security and data privacy of the power grid.
For example, the real-time data interaction of hydropower
system may face the risk of network attacks (such as DDoS)
or data tampering, so it is necessary to incorporate security
constraints into the dispatching model to achieve the collaborative
optimization  of
in CPSS.

As the external environment of power systems evolves

“security-economy-society”  multi-objective

dynamically, the exponential growth of actionable indicator
data imposes heightened demands on system analytical and
decomposition capabilities. With electricity trading in spot market
pricing becoming increasingly sensitive to data timeliness, the
timely decomposition and analysis of power data necessitate
robust technical support, including scientific computational models
and precise operational algorithms. Sannigrahi S etal. employ
an opportunity-constrained strategy to quantify uncertainties in
water resources, incorporate short-term power generation revenue
from hydropower stations, and construct a decomposable data
model to validate its rationality. By iterating the Hilbert bi-level
structural product, a method for eliminating overload management
is proposed [4]. Tso W W et al. leverage power trading platforms
to decompose market-impact indicator characteristics, addressing
technical challenges in transforming single-problem models into
multi-level structures. They analyze market uncertainties through
preliminary-phase corrections and optimizations of heterogeneous
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parameters [5]. By establishing a stochastic simulation framework

for short-term dispatch scenarios under complex market
configurations, Liang J and Tang W resolve multi-dimensional
uncertainties, such as power generation, market positioning, and
revenue returns. This nested optimization framework achieves
coordinated control over power data analysis strategies and power
generation revenue [6]. While these studies demonstrate efficacy
in small-scale hydropower management, the inherent physical
uncertainties of green energy become increasingly pronounced in
resolving local-global optimality challenges as grid-scale integration
expands [7]. Consequently, determining single-indicator solutions
must align with global optimization rationality, necessitating further
in-depth research [8].

In this context, how to effectively manage and optimize
the hydropower scheduling has become an important research
topic in the current power system. This study focuses on
the of

hydropower projects based on long-term energy supply-demand

decomposing comprehensive utilization —objectives
characteristics. It ensures seamless integration of core indicator
features to achieve physical delivery of energy loads and
advance automated energy management. Thus, the scientific
analysis of hydropower project indicators, their digitization,
and feature decomposition constitute the research emphasis.
The follow-up study will integrate the wind and solar energy
prediction data and construct a multi-energy complementary
dispatching model.

Key innovations of the study mainly include two aspects:
firstly, the proposed hydropower dispatch model incorporates
feature vectors of diverse indicators, constructs high-dimensional
functions, structures to alleviate

and optimizes complex

system analytical burdens; secondly, an optimized model
harmonizing critical indicators that includes hydraulic energy
storage, generation-load balance, and cost-revenue dynamics
is established, which can enhance the security of water
resources and economic returns, and can resolve the inherent
trade-offs between resource supply and power generation

profitability.

2 The relative work

Although the existing research has made some progress
in the field of hydropower scheduling, most of the methods
face the problems of high computational complexity and model
collapse when dealing with high-dimensional and strongly
coupled hydropower scheduling data. Therefore, this paper
aims to propose an improved algorithm framework to solve
these problems.
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2.1 The improved Kalman filtering

Based on the traditional Kalman filtering framework, the local
space feature vector is introduced as the state correction term. Let
the system state equation be:

(1)

X =A% + A, VS

In the formula, the newly added term x;, is based on the dynamic
correction of the spatial feature A;_,x;_;, Aj_, is the gradient vector
k—1 of the local space A, A, is the adaptive adjustment coeflicient,
and VS is the loss term.

The predicted status is as follows:

xk™ = \ Akﬁk— 1 +Bkuk

Where: £k is the spatial feature weight, B, is the feature mapping

)

matrix, and uy, is the spatial vector.
The covariance prediction is:
- T
P, = AP T, ©)
In the formula, P; is the prediction direction, and the new
term P;_; reflects the uncertainty of FZ introduced by the spatial
characteristics.
Sliding window is used to calculate local spatial gradient for
feature extraction.

2.2 Multidimensional space vector
decomposition

Hydro-scheduling data within Cyber-Physical-Social Systems
(CPSS) has high-dimensional, strongly coupled, and dynamic
characteristics. Traditional Kalman filtering methods encounter
the curse of dimensionality within CPSS environments due to
their reliance on fixed covariance matrices, which inadequately
capture the real-time evolution of spatiotemporal correlations. For
instance, modeling the dynamic interplay between hydrological
data and power grid load necessitates a multi-dimensional
state-space representation; conventional approaches, however,
frequently incur prohibitive computational complexity, potentially
leading to model instability. To decompose the intricate structure
of a multidimensional model, the principle for addressing
multidimensional and multistage problems is advanced by
transforming the resolution of multiple primary problems into
the treatment of a set of secondary problems [9]. Specifically, this
approach involves fixing the parameters of normal state functions at
the current primary stage while exclusively optimizing and adjusting
the parameters of selected decision process functions within the
same primary stage. This methodology ultimately yields a secondary
processing space that facilitates the future optimization of boundary
conditions [10]. The optimization cycle iterates repeatedly until
convergence is achieved [11]. The procedure is outlined as follows:

(1) Determine the point trajectory (@,f) and the boundary
condition A

Consider the feature vector representing “flood season discharge
volume” Its physical interpretation corresponds to a weighted
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sum of reservoir storage capacity and downstream ecological
flow requirements. The weighting coeflicients are calibrated using
historical operational data, as illustrated in Figure 1.

(2) Itis determined that the energy storage p of the power station
at the t th time is fixed, and the energy storage at the t+1 th
time will not rise to u'*! < y. Make the optimal solution of the
objective compound function value monotonically decreasing

at time ¢, that is, the maximum value 6™**

of the hydropower
station power generation [12].

(3) The energy storage p of the power station at time ¢ is not fixed,

and the rising range o of the energy storage at time ¢ + 1 remains

unchanged. Adjusting o at time ¢+ 1, the resulting ;™ does

not decrease monotonically [13].

By analogy, feature processing is performed on all relevant
indicators according to the sequence of hydropower stations,
generating operational trajectories to serve as iteration point
trajectories. The specific implementation steps are as follows:

(1) The relationship between current trajectories and previous
iteration trajectory multiples is like this: if precision
requirements remain unsatisfied, new dual-iteration

computations are initiated; otherwise, product iteration

terminates, indicating optimization completion [14].

When analyzing spatial models, conventional rules are applied

to resolve energy reserve quantities and step size adjustments

through initial computations of distinct numerical boundary
conditions.

varying boundary conditions, where operational patterns

New operational rules are derived under

are determined by synthesizing output reference values
with corresponding system power values. This enables the
construction of multi-dimensional spatial boundaries [15].

Due to the high dimension, strong coupling and dynamic
characteristics of hydropower dispatching data, traditional methods
are difficult to deal with them effectively. Therefore, this paper
proposes a multi-dimensional space vector decomposition method
to reduce the computational complexity and improve the model
stability.

3 A global analysis model for
hydropower dispatching data

To enable comprehensive analysis of hydropower dispatch
data, the development of a global analysis model capable of
processing multidimensional and highly coupled data is necessary.
The model proposed in this study is designed to enhance both
the accuracy and efliciency of data analysis through dual-channel
feature fusion and localized feature prediction. The solution
to low-dimensional stochastic process problems is transformed
into addressing high-dimensional transfer function problems by
re-expanding the similar feature space of multi-kernels and
introducing kernel composite functions to achieve dimensionality
and transfer function transformations. Furthermore, resolving
orthogonal distance stochastic processes in sample spaces can
effectively address feature sample classification and re-entry issues
[16]. The proposed methodology demonstrates advantages in
maintaining the structural integrity of data architecture and
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FIGURE 1
Eigenvector of flood season discharge. (a) Flood discharge vector characteristics. (b) Energy storage constraints and power output.

enabling flexible spatial management when solving optimization
problems, exhibiting broad application potential in natural language
processing and regression analysis [17].

3.1 Dual-channel feature fusion
architecture

(1) Seq2-LR branch: gated cycle unit is adopted to handle timing
dependencies:

hR = GRU(x, b)) (4)

Where: h'® is the hidden state of the current time step, x, is the
timing feature representation, and GRUY() is the gated cycle unit used
to capture the timing dependency.

(2) Seq2-PR Branch: build the Spatial Attention Module:

. exp(e,j) -
" St ) ?
k

Where: a;; is the attention weight of spatial location i — j, e;; is the
similarity score of location i — j, which is calculated by function
Yrexp(ey), and f(xi,xj) is the exponential function, which is used
to normalize the attention weight.

Dynamically coupled feature cascading concatenates the
outputs ¢t from individual timesteps. An adaptive weighting
scheme, with weights learned through parameters, balances the
relationships within the hydroelectric dispatch system. Feature
alignment is achieved by automatically optimizing the weight
coefficients via differentiable architecture search. To this end, a
cross-attention mechanism is designed to match the hydrological
cycles within a multi-objective loss function. The parameters of
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this mechanism are dynamically adjusted according to operational
priorities.

3.2 Local feature prediction model

To validate the performance of activation functions in
NILM problems, this study employs the original functional
model Seq2-LR as the baseline. The activation function-
optimized model is designated as Seq2-PR, as illustrated
in Figure 2.

In Figure 2, the Alpha value is set to 0.3, and the implementation
of the activation function uses Advanced Activations in Keras. The
optimized and improved model is shown in Figure 3.

The specific operation steps are as follows:

(1) The reference combination calculates the sample set p and sets
the fitting regression composite function 7, whose prediction
composite function is v.

(2) The kernel composite function @ is introduced to map the
sample points whose low-dimensional transfer function is
not separable to the high-dimensional external feature space,
which transforms the problem of how to solve the stochastic
process into the problem of solving the transfer function [18].
The Gaussian function introduced by extending the similar
feature model with the help of the @-kernel composite function
is defined as:

, )
, a)(emax _ emm)
=)= ©)
o
In the formula, @ variable parameter of that kernel composite
function a is (a, §);

(3) The general form of the high-dimensional spatial transfer
function ¢ and the insensitive activation function & is:

frontiersin.org
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FIGURE 2
Seg2-LR network model.
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In the formula, a training sample ¢ is listed in the calculation
of the loss caused by insensitivity; The social benefit objective
function is:

S=a-U+(1-a)-p )

In the formula: S is the comprehensive score of social benefits
(dimensionless), U is the satisfaction of residents with water use, f is
the compliance rate of environmental protection, and « is the weight
coefficient.

Quantified through questionnaires and policy documents is done.

Referring to the theory of high-dimensional space and the
solution of hydropower operation risk index, the optimal solution
in the plane is transformed into a quadratic programming
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FIGURE 3
Seg2-PR network model.
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problem [19]. When the relaxation function is introduced into
the sample point and the optimal solution, the planning and
design problem is solved with the help of the Hilbert method,
and the regression estimation function of the stochastic process is
obtained [20].

In view of the conflict between economic benefits and
environmental protection, this paper uses the Pareto Frontier
Method to construct a multi-objective evaluation system:

The objective function is to maximize the generation revenue
and minimize the ecological flow deviation;

Constraints: they include load demand, reservoir capacity,
carbon emission cap; Solution method: the improved algorithm
based on NSGA-II generates the non-dominated solution set, and
the optimal compromise scheme is determined by the entropy
weight method.

4 Analysis of the experiment
4.1 Experimental environment

The scale of the simulation data model is shown in
Table 1, including 1272 important indicators of hydropower,
with their respective relationship density and characteristic
dimensions set [21]. The the State Grid
2020-2022 hydropower operation data set, processed by Z-score

standardization and KNN missing value filling, with a 95%

data source is:

confidence interval. The training set, the test set, and the validation
set are defined in a 7:1:2 ratio.
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TABLE 1 Experimental environment settings.

Indicator type

Test set

10.3389/fphy.2025.1592299

Detailed information

Training set

Index parameters 890 127

Validation set

256

Among them: 300 basic data of

water conservancy indicators;

300 generator set indexes; 290
economic indicators

Relational density 4 4

Characteristic dimension 1-dimensional space

Binary space

Multidimensional space --

TABLE 2 Algorithm performance test results.

Indicator number Data indicators MOPSO MOGWO Algorithm in the paper
Mean value Variance ‘ Mean value Variance Mean value | Variance
a Maximum discharge in 4237 4268 4328 4298 4269 4295
flood season m?/s
b Checked flood discharge 3869 3877 4036 4157 3928 3989
3
m’/s
c Peak discharge m?/s 3095 3119 2969 3028 3258 3212
d Guaranteed output/ MW 125.22 131.01 124.93 128.36 130.15 129.71
-- Crossover probability 0.76 0.81 0.80 0.86 0.92 0.98
-- Mutation probability 0.85 0.83 0.83 0.87 0.96 0.97

As for verifying the optimization effect of the algorithm
in this paper, the current mainstream multi-objective algorithm
MOPSO [22] (Multi-Objective Particle Swarm Optimization) is
introduced to find the optimal solution set. The function problem
of solving multiple objective conflicts and MOGWO [23] (Multi-
objective Grey Wolf Optimizer) use the optimization rule selection
mechanism to select the optimal solution from the data, which is to
verify the advanced algorithm in this paper.

4.2 Analysis of the test results

4.2.1 Analysis of algorithm performance testing

The general standard is optimized and tested by the composite
function to evaluate the potential of the improved algorithm for
finding the optimal choice. Besides, the decomposition effect of the
model in this paper is compared [24]. The performance test results
of the algorithm are shown in Table 2 and Figure 4.

Test results show that the two non-dominated solutions of
the proposed algorithm and MOGWO are close to the false non-
dominated frontier solution. Compared with other algorithms, the
convergence effect of the proposed algorithm is more uniform, and
the decision credibility is more competitive. After several iterative
tests, the proposed algorithm has the strongest resolution, and the
accuracy of all non-dominated solutions is better than that of the
comparison method. In addition, the distribution of the leading
solution of the proposed algorithm is uniform, and the probability
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distribution of the obtained value range is almost the same as that of
the algorithm under the same test composite function. It can be seen
that the algorithm in this paper has strong stability and accuracy, and
shows the strongest quality and ability in finding the potential of the
best choice.

4.2.2 Complexity response force test analysis

When artificial intelligence algorithms are used to analyze high-
dimensional complex models, the final performance is better than
that of traditional deduction methods. However, due to the increased
complexity of the dimensional model, higher requirements are put
forward for the computing power of the computing platform, which
requires a lot of computing time [25]. In the process of seeking
the optimal solution of the improved algorithm in this paper, the
calculation time is also listed as an important evaluation index to
evaluate the algorithm and reliability. Therefore, when solving the
IGD value, the comparison of the test response time between the
traditional algorithm and the improved algorithm in this paper is
recorded. The test results are shown in and Figure 5 and Table 3.

The algorithm proposed in this study has shown significantly
lower computational time compared to conventional algorithms
when verifying composite functions. When evaluated using two
distinct composite test functions, the final distribution of our
algorithm exhibits enhanced concentration, indicating improved
stability in algorithmic response speed.
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TABLE 3 High-dimensional model to calculate time response.

Indicator number

Calculation duration/ms

10.3389/fphy.2025.1592299

Response speed/ms

b C
MOPSO 134.6 142.2 185.1 170.9 36.5 38.1 342 35.5
MOGWO 112.3 118.5 121.6 114.7 24.5 22.6 23.8 27.2
The algorithm in this paper 96.8 86.2 87.3 88.5 10.2 6.8 7.8 10.1

TABLE 4 Calculation efficiency analysis of different data sizes (50-4000 dimensions)%.

Indicator number

Low dimension

High dimension

100 150 1000 2000 3000
MOPSO 65.3 68.2 69.7 69.2 72.1 65.2 58.1 55.2
MOGWO 72.1 75.6 77.2 77.8 69.3 66.7 63.8 61.8
Algorithm in the paper 86.4 87.9 93.3 93.9 87.3 88.2 86.7 829
a) DDoS Attack Response b) Tampering Detection & Recovery
Error +7.3% Accuracy: 92.1%
250 180
- ---Under Attack ~=Tampered
z 160 Recovered
200 : T
: P 140 -
s -
2 150 120
: :
=y £ 100
S | S
— / B
g 100 ﬂé‘ 80 I
f=] j=}
~ ~
60
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40 -
0 20
0 200 400 600 800 1000 0 200 400 600 800 1000
Time (min) Time (min)
FIGURE 6
Security robustness test. (a) DDoS attack response error + 7.3%. (b) Tampering detection and recovery accuracy: 92.1%.

To verify the scalability of the algorithm, the computational
time and memory consumption are tested under different data sizes
(50-4000 dimensions). The results are shown in Table 4.

The results verify that the average time consumption of the
proposed algorithm is 42% lower than that of MOPSO under 3000-
dimensional data, indicating that it is suitable for large-scale CPSS
deployment.

4.2.3 Security robustness test

Simulate the attack scenario to verify the robustness of
the algorithm, and the experimental results are displayed
in Figure 6.

Frontiers in Physics 08

DDoS attack: When 50% noise data is injected, the
scheduling error only increases by 7.3%; Data tampering: After
randomly tampering with 10% of the input data, the model was
automatically repaired by residual detection, and the accuracy was
restored to 92.1%.

4.2.4 Data enhancement strategy overfitting test
For example, the spatio-temporal data is cut by sliding window,
and the hyperparameter range marked by regularization method is
shown in Table 5. The experimental results are shown in Figure 7.
Experimental findings demonstrate that the proposed dual-
channel feature fusion architecture delivers significant advantages

frontiersin.org
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TABLE 5 Overfitting test parameter settings.

Type of measure

Spatio-temporal data enhancement

Implementation details

Sliding window cut

10.3389/fphy.2025.1592299

’ Parameter setting

Window step size = 5

Dropout regularization

The GRU layer is randomly inactivated

rate = 0.3

Loss Value

|=—Training Loss
= = ‘Validation Loss
| O datal

FIGURE 7
Data enhancement strategy overfitting test.

50 60 70 80 90 100
Training Epochs

in hydropower scheduling prediction tasks. The final validation loss
decreased to 0.083—representing a 32.7% reduction compared to
the baseline model. The consistent convergence trends observed
in the training and validation curves confirm the efficacy of the
implemented overfitting countermeasures.

Consequently, the logical operation efficiency of the improved
algorithm achieves a 17.4% enhancement over traditional
algorithms. Furthermore, in high-dimensional test combinations,
the response time of probability distribution functions in the
enhanced algorithm shows a 38.2% reduction compared to
its predecessor. These results substantiate that the proposed
algorithm demonstrates superior suitability for solving high-
dimensional, complex optimization models
scheduling data, particularly in terms of computational complexity

in hydropower

management and responsiveness. The improvements manifest
in both theoretical
response characteristics, confirming the algorithm’s enhanced

computational potential and practical

capability for handling multidimensional,

tasks

computationally

intensive optimization characteristic of hydropower

dispatch systems.

5 Conclusion

Hydropower projects necessitate the coordinated management
of diverse supply-demand indicators, encompassing complex water
resource allocation and power generation revenue considerations.
Moving beyond single-objective optimization models, these projects
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require an evolution towards multi-objective frameworks capable
of resolving conflicts among competing optimal solutions across
multiple indicator dimensions. This methodological advancement
facilitates the identification of a holistic equilibrium among
integrated metrics, thereby promoting the orderly development of
energy resources.

This study exhibits three principal limitations. Firstly, the
prediction stability under extreme meteorological conditions
requires further validation, as torrential rainfall and drought
scenarios constitute only 8.7% of the current training dataset.
Secondly, the watershed topology modeling relies on predefined
water system connectivity matrices (human-annotated with 92.3%
accuracy), potentially introducing subjective biases. Thirdly,
the real-time forecasting module lacks deep integration with
dispatch control systems, resulting in operational latency of
5-8 min during practical deployment. These limitations delineate
critical pathways for subsequent research refinement. In future work,
based on the dynamic adjustment mechanism of reinforcement
learning, the multi-dimensional spatial structure parameters are
adaptively optimized by real-time feedback of load fluctuations
and security events in CPSS. It will progressively enhance
the coordinated optimization of economic and social benefits,
investigate implicit indicators in hydro-ecological engineering,
and formulate comprehensive hydropower scheduling strategies
integrating hydrological-tidal fluctuation considerations. This
advancement will improve local spatial analysis resolution and
enable more reasonable full-cycle ecological energy management
assessments.
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