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Chain information management system is widely used, providing convenience
for the operation and management of enterprises. However, the problem of
abnormal network traffic becomes increasingly prominent currently. Therefore,
this paper proposes a convolutional neural network based on attention
mechanism and autoencoder improvement, namely, CBAM-AE-CRF. CBAM
AE-CRF integrates the convolutional block attention module (CBAM) into
convolutional neural network to enhance the model’s ability to learn anomalous
features in network traffic. CBAM improves the detection accuracy of abnormal
traffic in chain information management system by adaptively adjusting channel
attention. At the same time, the Autoencoder module (AE) is also introduced
into the model to automatically extract and reconstruct anomalous features
from complex network traffic data. Finally, the conditional random field (CRF)
determines the optimal label sequence based on the conditional probability
distribution and applies the Viterbi algorithm to complete the sequence labeling
of network traffic in chain information management system. Through extensive
experimental verification, CBAM-AE-CRF can comprehensively understand the
semantics of network traffic, accurately identify anomalies in network traffic
of chain information management system, provide strong support for network
traffic management.
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1 Introduction

The chain information management system is becoming increasingly complex and
network security issues are becoming more prominent [1]. Chain enterprises achieve
centralized management and efficient scheduling of resources such as goods, funds
and personnel by building a unified information management system. These systems
not only improve the operational efficiency of enterprises, but also enhance their
market competitiveness and brand influence.
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Chain information management system typically includes
multiple modules such as supply chain management. They are
interconnected through complex network structures and together
form the core of enterprise operations. With the expansion of
enterprise scale and business scope, the traffic data in the system
network also shows an explosive growth trend. These traffic data
not only contain normal business interaction information, but may
also hide various abnormal traffic, such as network attacks, data
leaks, system failures, etc. It poses a serious threat to the information
security of enterprises [2, 3]. The information management
system of chain enterprises usually consists of multiple distributed
nodes, including headquarters data centers, regional distribution
centers and various stores. This complex network architecture
brings many network security challenges to enterprises. Firstly,
the expansion of network boundaries and the increase in attack
surface make the system more vulnerable to external attacks [4].
Secondly, frequent data transmission between nodes increases
the risk of data leakage. Furthermore, chain enterprises often
involve multiple business system, such as POS system, inventory
management system, customer relationship management system,
etc. The data exchange between the system also brings potential
security risks.

In recent years, there have been frequent incidents of cyber-
attacks targeting chain enterprises. For example, in 2019, an
international chain retail enterprise suffered a large-scale DDoS
attack. It caused stores worldwide to be unable to operate normally,
resulting in billions of dollars in economic losses. In 2020, customer
data of a well-known chain catering enterprise was stolen by hackers,
involving personal information and payment data of millions of
users, seriously damaging the reputation of the enterprise. These
cases highlight the severe network security situation faced by chain
information management system.

Abnormal network traffic, as one of the main security threats,
may lead to serious consequences such as system paralysis and
data leakage, causing huge economic losses and reputation damage
to enterprises. Traditional methods for detecting abnormal traffic
are mainly based on rule matching and statistical analysis. When
facing increasingly complex and covert network attacks, they often
exhibit problems such as low detection efficiency and high false
alarm rates [5]. Rule based methods identify abnormal traffic
through pre-defined feature patterns, such as Snort, Suricata
and other intrusion detection system. This method has good
detection performance for known attack types, but it is difficult to
deal with new and variant attacks. Based on statistical methods,
abnormal behavior deviating from normal patterns is identified
by analyzing the statistical characteristics of network traffic, such
as traffic size, packet length distribution, protocol type, etc. This
type of method can detect unknown attacks, but it is susceptible
to changes in the network environment and has a high false
positive rate.

With the increasing complexity and concealment of network
attack methods, the limitations of traditional detection methods
becomemore apparent. Firstly, they are difficult to effectively handle
high-dimensional and nonlinear network traffic data. Secondly,
when faced with massive amounts of data, detection efficiency and
real-time performance often fail to meet practical needs. Finally,
these methods typically require a significant amount of manual
intervention and rule updates, resulting in high maintenance costs.

Therefore, exploring new methods for detecting abnormal traffic
and improving the efficiency of detection has become an important
research direction in the current field of network security.

In recent years, deep learning technology provided new ideas
for solving abnormal traffic detection problems in complex network
environments [6, 7]. Convolutional neural networks (CNNs) have
the characteristics of weight sharing and hierarchical feature
extraction, making them very suitable for processing network traffic
datawith spatiotemporal correlations. CNNs as one of the important
models in deep learning, are particularly suitable for processing
data with grid structures [8]. In network traffic analysis, traffic data
can be converted into a format suitable for CNN processing, such
as arranging traffic features into a two-dimensional matrix. CNN
automatically extracts local features of traffic through convolutional
layers, reduces data dimensionality through pooling layers and
finally performs classification through fully connected layers.
This method can effectively capture spatiotemporal correlations
in network traffic, improving the efficiency and accuracy of
feature extraction. On the one hand, CNNs can automatically
extract representative features from raw network traffic data
without the need for manually designing feature extractors.
This not only improves the accuracy of detection, but also
reduces reliance on expert experience. On the other hand, CNNs
have strong nonlinear fitting capabilities and can handle high-
dimensional, nonlinear and large-scale network traffic data. In
addition, CNNs also have adaptability, which can automatically
adjust model parameters as network traffic changes, improving the
robustness of detection.

The detection of abnormal network traffic in chain information
management system still faces many challenges. On the one hand,
with the complexity of network attack methods, the characteristics
and patterns of abnormal traffic are also constantly changing.
This requires the detection model to be constantly updated
and optimized to adapt to new attack methods. On the other
hand, with the expansion of enterprise scale and business scope,
the traffic data in the system network also shows an explosive
growth trend. This requires the detection model to have efficient
processing capabilities and scalability to meet the needs of practical
applications. Most existing research focuses on anomaly detection
in general network environments, with relatively less research
on specific industries or application scenarios. The information
management system of chain enterprises has unique network
architecture and business characteristics, requiring specialized
anomaly detection methods. In addition, existing research still has
shortcomings in the interpretability and real-time performance of
the model, which limits its promotion in practical applications. Our
main contributions are summarized as follows.

(1) This paper proposes CBAM-AE-CRF, which uses a
spatiotemporal fusion to detect abnormal traffic in chain
information management system network. By introducing
an attention mechanism, it focuses on learning and paying
attention to key features in the input traffic data.

(2) In CBAM-AE-CRF, the AE maps the input traffic data to
latent space through the encoder, then reconstructs the original
traffic data through the decoder to extract the main features
and patterns in the input traffic data, thereby capturing
potential abnormal behaviors in network traffic.
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(3) Multiple experiments are conducted on different datasets to
validate the effectiveness of CBAM-AE-CRF by comparing
advanced baselines and extensive experiments.

The remaining part of this paper consists of four parts.
Section Ⅱ is related literature related to the work. Section Ⅲ
provides a description to the model research of abnormal traffic
detection driven by deep learning in chain informationmanagement
system network. Section Ⅳ analyzes the comparative effect and
performance of CBAM-AE-CRF through experiments. Finally,
Section Ⅴ is the summary.

2 Literature review

With the development of artificial intelligence technology and
mathematical theory, deep learning based temporal prediction
methods have gradually become mainstream in recent years. By
integrating multiple hidden layers and multi-level extraction of
temporal features of data, nonlinear relationships were captured
in the time dimension and accurate prediction models were
established. Relevant research has been widely applied to time series
prediction and anomaly detection in the fields of transportation and
the Internet [9, 10]. CNNs are a nonlinear deep learning model
implemented through multi-layer convolutional computation,
which captured the intrinsic correlation features of input data
by performing region convolution on it. With the increase of
convolution layers, complex temporal correlations could be
gradually mined from simple temporal data, achieving sequence
feature learning from low to high levels. Therefore, Zheng et al. [11]
proposed Multi Channels Deep Convolutional Neural Networks
(MC-DCNN), which extracted temporal features of sequences
through two-dimensional convolution. It utilized the multi-layer
perceptron integrated in MC-DCNN as an evaluation mechanism
for system state, searching for abnormal samples in multivariate
time series. The experiment proved that the method had good
generalization ability and could be applied to various prediction
scenarios, revealing the potential application of deep learning
algorithms in WSN traffic anomaly detection. However, due to
the fact that network traffic data was usually a one-dimensional
time series with simpler features, the practical application scope of
MC-DCNN was greatly limited. To extract more comprehensive
temporal features from a single variable sequence as much as
possible, Deng et al. [12] proposed a multi time scale convolutional
neural network prediction method. By adding a downsampling
module to CNN, the prediction model could gain a more detailed
understanding of the temporal correlation of traffic at different
resolutions. The experiment had demonstrated that integrating a
multi-scale sampling strategy into a neural network model could
enhance the model’s understanding of sequence time dependencies
and effectively improve the accuracy of time series prediction.
However, he pointed out that CNN required a high sample
size for the training set and the prediction results of untrained
models will show significant performance degradation. To alleviate
this drawback of CNN, Qiu et al. [13] utilized transfer learning
strategy and integrated MU-Net module into U-Net convolutional
network, hoping to extract common features from different network
temporal problems. However, he ignored the heterogeneity of

different temporal problems in the time-frequency domain, the
prediction accuracy of this method was not ideal. Su et al. [14]
proposed a multivariate RNN anomaly detection algorithm, which
demonstrated good detection accuracy on three aerospace server
datasets. He pointed out that RNN might encounter the problem of
“gradient vanishing” or “gradient explosion” when building models
for long-term time series, the iterative gradient of the model will
exponentially decay or grow during backpropagation. Therefore,
RNNs found it difficult to retain earlier information in the sequence
and could not effectively establish accurate long-term prediction
models based on historical information.

Variational Auto Encoder (VAE) is a more stable deep learning
data compensation algorithm with a more rigorous theoretical
framework [15–17]. VAE was originally a feature extraction
algorithm derived from Auto Encoder. Auto Encoder fitted the
encoder and decoder through neural networks and generated new
virtual samples through the decoder. Based on the above principles,
Osada et al. [18] first proposed a semi supervised VAE detection
model, which simply enhanced attack features by expanding the
sample size, laying the foundation for the application of VAEmodels
in the field of network intrusion detection. Wan et al. [19] believed
that compared to traditional data compensation algorithms, VAE
exhibited better minority class feature enhancement performance.
However, Abdulhammed et al. [20] concluded based on extensive
experiments that the virtual samples generated by VAE had
limited improvement in network intrusion detection performance,
further research was needed to enhance attack features using
VAE. Due to VAE being an unsupervised learning method, the
types of virtual samples generated could not be controlled, which
did not fundamentally solve the problem of imbalanced training
samples. Therefore, Khanam et al. [21] used the class focusing
loss function to optimize the training process of traditional VAE,
generating more realistic and higher quality intrusion detection
samples. The effectiveness of this method had been validated on
the NSL-KDD dataset by combining it with Deep Neural Network
(DNN). Vu et al. [22] proposed a multi distribution VAE intrusion
detection method, attempting to integrate the label information
of data samples into the loss function of VAE, controlled the
generation of attack class samples. It improved the accuracy
of intrusion detection to a certain extent. This further proved
that by controlling the preference of VAE sample generation,
attack sample enhancement could be achieved, improving intrusion
detection accuracy.

3 Abnormal traffic detection based on
deep learning for chain information
management system network

3.1 Overview of CBAM-AE-CRF

The improved model architecture mainly consists of three parts,
namely, the CNN integrated with CBAM, AE and CRF. In the CNN,
CBAM is mainly used in the feature extraction stage, enhancing
useful information in the feature map and suppressing irrelevant
information through two sub modules of channel attention and
spatial attention, thereby improving the network’s attention to
abnormal traffic features. In optimizing the feature learning process,
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CBAM is introduced into each convolutional layer of CNN to help
the network learn and extract key features in the chain information
management system network more accurately. By introducing
CBAM, it is not just about simply increasing the depth or width
of the network, but also by adaptively enhancing and suppressing
certain parts of the feature map to improve the overall quality of
feature extraction.

The AE is mainly used in the anomaly detection stage.
Through a semi supervised approach, it uses normal network
traffic data from the chain information management system for
training, effectively reconstructing the normal network traffic
characteristics of the chain information management system.
After training, the difference between the input data and its
reconstructed data can be calculated to reconstruct the error and
evaluate whether the data points are abnormal. Data points with
larger reconstruction errors are considered to be abnormal data.
In the anomaly detection stage, the autoencoder provides core
algorithm support, which can effectively identify abnormal patterns
from the learned normal patterns and perform accurate anomaly
traffic detection.

In terms of optimizing network performance, CBAM and
AE work together in the entire anomaly traffic detection model,
CBAM improves the quality of input traffic features by enhancing
feature expression ability, thereby providing more effective
input traffic data for subsequent autoencoders. The autoencoder
utilizes these optimized features for anomaly detection, achieving
efficient anomaly traffic detection functionality. The introduction
of CBAM optimizes the feature extraction stage, enabling the
network to better capture important features in network traffic.
AE uses these traffic features for anomaly detection, enhancing
the accuracy and stability of CBAM-AE-CRF in detecting
abnormal data.

CRF plays an important role in the sequence labeling task of
abnormal traffic in chain informationmanagement system network.
It predicts the most likely label sequence for a given input sequence
based on conditional probability distribution [23]. Specifically, the
features obtained after the previous steps are first calculated to obtain
scores for each label sequence, which reflect the degree of matching
between different label sequences and the input data. To convert
these scores into probabilities, they need to be input into a softmax
function for normalization. Finally, to determine the optimal label
sequence, the Viterbi algorithm is applied. The Viterbi algorithm
determines the most probable label sequence by searching for the
optimal path among all possible label sequence paths. Figure 1
shows the overall structure of CBAM-AE-CRF in the abnormal
traffic detection task for chain information management
system network.

During the preprocessing stage of data, CBAM-AE-CRF uses
traffic packets from the original chain information management
system network as analysis data for abnormal detection, which
can preserve all feature information of each traffic packet to the
greatest extent possible. Through analysis using network packet
analysis software, it is found that the original traffic packet is a
series of hexadecimal encoded data. The core of data preprocessing
is the segmentation and extraction of traffic data streams. In the
segmentation process of traffic data streams, the packet header and
packet content form the original PCAP traffic file. If the number of
data packets is n, it can be expressed as P = {p1,p2,p3, ...,pn}. For

each, the packets pi are calculated as described in Equation 1.

pi = (qi, ti, si) (1)

Where qi represents the five-tuple information of the traffic
packet, namely, the source address, target address, protocol, source
port and target port. The ti represents the timestamp when the
traffic packet is captured or recorded. The si represents the size or
length of the traffic packet. The Pflow represents a traffic sequence
or data stream composed of multiple data packets. Its calculation is
performed as described in Equation 2.

P flow = p1 = (q1, t1, s1),p2 = (q2, t2, s2), ...,pn = (qn, tn, sn) (2)

In this, the quintuple properties of traffic packets are the same,
so there is q1 = q2 = ... = qn, and the start time of the packet satisfies
t1 < t2 < ... < tn. By using the SplitCap tool to perform stream level
segmentation on the original pcap traffic file, it is found that there are
significant differences in the number of packets in different streams
during certain specific time periods. Therefore, we do not consider
the use of all data packets in the entire stream. In the process of
extracting data streams, we first use network protocol analysis tools
to convert pcap files into txt files. For each data packet, we identify
the data stream based on its quintuple information to obtain the
original hexadecimal data, extract the original stream characteristics
from the txt file. First, the first 10 packets of each stream file are
extracted. If the number of packets is less than 10, 0 is used to
supplement. For each packet, its first 160 bytes are intercepted. If the
length of the packet exceeds 160 bytes, only the first 160 bytes are
retained. If the length is less than 160 bytes, 0 is used to supplement.
Ensuring that the final processed data has the same dimensions is
beneficial for subsequent model training and analysis.

In the network feature extraction process of the chain
information management system, the processed 1,600 dimensional
one-dimensional vector values are mapped to the range of 0–255.
Because grayscale images usually use integers between 0 and
255 to represent pixel intensity, where 0 represents black and
255 represents white. Finally, the Matplotlib library in Python is
used to display grayscale images rearranged into 40 rows and 40
columns, where each pixel value in the grayscale image represents
a numerical expression of a specific position or data feature.
The first convolutional layer uses a 5 × 5 convolution kernel for
feature extraction, with a stride of one and adopts the ‘SAME’
zero padding mode to maintain the spatial dimension of the
feature map. This layer is followed by a 2 × 2 max pooling layer,
which reduces the size of the feature map by half through local
max downsampling. The second convolutional layer is configured
with 64 3 × 3 convolution kernels, maintaining stride = 1 and
‘SAME’ padding. And the ReLU activation function is used to
introduce nonlinear transformation with ɑ = 0.01, followed by 2
× 2 max pooling. After two downsampling steps, the feature map
dimensions are normalized to 8 × 8 × 64, the data is converted into
4,096 dimensional feature vectors and input into the fully connected
layer. To prevent overfitting, a dropout layer with a rate of 0.5 is set
before the fully connected layer. Finally, the entity label classification
results of the data are obtained through the CRF layer. After the
model training is completed, the Viterbi algorithm is used to find
the optimal label sequence.
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FIGURE 1
Abnormal traffic detection based on CBAM-AE-CRF.

3.2 CBAM

CBAM is a module that combines convolutional blocks
and attention mechanisms in CNN [24]. It is mainly used to
enhance the representation ability of CNN on input network
traffic features, especially when processing data such as images
and videos, which can help the network focus on important
features. CBAM combines two key components, channel attention
module [25] and spatial attention module [26], to enhance the
network’s ability. In the channel attention module, the importance
weight of each channel is mainly obtained through global average
pooling, then channel attention weights are generated through
fully connected layers and activation functions. This can make
the network pay more attention to important features in the
channel dimension. In the spatial attention module, the importance
weights of spatial positions are obtained by applying max pooling
and average pooling on each channel, then combining these two
pooling results to generate spatial attention weights. This can
make the network pay more attention to important regions in the
spatial dimension.

InCBAM, the channel attentionmechanismdynamically adjusts
the information response of each channel in the feature map by
learning the importance weight of each channel. This attention
mechanism enables modules to focus on channels that are useful
for specific tasks and suppress channels that are irrelevant to the
task. The output of the channel attention mechanism is a weighted
channel feature map to enhance the representation of important
features. The spatial attention mechanism adjusts the information
response of different positions in the feature map by learning the
weights of each spatial position. This mechanism helps the module
focus its attention on important areas in the image or feature map,
improving themodel’s sensitivity to spatially significant features.The
output of spatial attention mechanism is a weighted spatial feature
map that highlights important spatial position information. The

calculation method is shown in Equations 3, 4.

A′ =Mc(A) ⊗A (3)

A″ =Ms(A′) ⊗A′ (4)

Where A represents the feature graph of the input, A′ represents
the feature graph obtained after CBAMprocessing, that is the output
ofCBAM.TheA″ indicatesA′ after the attentionmechanismMc,Mc
weights the channel attention, Ms weights the spatial attention and
⊗ represents the element-level product operator.

In the channel attention module, the feature map is first globally
averaged to obtain a feature map of size 1 × 1× C, C is the number
of channels, where the value of each channel represents the average
of all pixels in that channel. Then the result of global average
pooling is input into a fully connected layer, which typically includes
one or more hidden layers and activation functions for learning
the relationships between channels. To ensure that the attention
weights of the output are within the range of [0,1], the Sigmoid
function is typically used to generate the attention weights for each
channel. Finally, the learned attention weights are multiplied by the
original featuremap to adjust the feature representationswithin each
channel. The calculation of the output feature map of the channel
attention module is shown in Equation 5.

Mc(F) = σ(MLP(AvgPool(F)) +MLP(MaxPool(F)))

= σ(W1(W0(F
C
Aνg)) +W1(W0(F

C
Max)))

(5)

Where σ represents the Sigmoid activation function, F
represents the feature graph of the input, typically denoted as C×
H×W. Fcavg represents the global average pooling operation of the
input feature graph F on the channel dimension C, Fcmax represents
the global maximum pooling operation for the input feature graph
F on the channel dimension C. W0 and W1 are the weight matrices
used for each layer in the MLP.
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In the spatial attention module, the first step is to perform
global average pooling on the feature map in the height and width
dimensions, with the aim of extracting global spatial information.
Then, the feature map is subjected to global maximum pooling in
the height and width dimensions, with the aim of extracting salient
features from the global spatial information. Then, the obtained
spatial average pooling and spatial maximum pooling are input
into two independent MLPs for processing. Each MLP learns to
nonlinearly map the globally pooled features to obtain appropriate
spatial attention weights. Finally, the outputs of the two MLPs are
weighted and fused, and the Sigmoid activation function is applied
to ensure that the generated spatial attention values are within the
range of [0,1]. The calculation for the output feature map of the
spatial attention module is shown in Equation 6.

Ms(F) = σ( f7∗7([F
S
Aνg,F

S
Max])) (6)

Where f7
∗7 represents the feature mapping function, which

refers to a 1 × 1 convolution operation.The FSAνg represents the result
of the global average pooling operation of the input feature graph
in the spatial dimension, FsMax represents the result of the global
maximumpooling operation of the input feature graph in the spatial
dimension.

3.3 AE

AE is a classic unsupervised learning model that aims to learn
the intrinsic structure and features of data through compressed
representations of its own data. It consists of two main components,
namely, encoder and decoder. The encoder converts input data into
a low dimensional dense representation, which is called encoding.
The decoder attempts to reconstruct the original data from the
encoding, making the reconstructed data as close as possible to
the input data. The training objective of autoencoders is usually
to minimize reconstruction errors, which is achieved through
optimization algorithms such as gradient descent. This model has
wide applications in data denoising, feature learning and generative
models, such as using VAEs for generative tasks, or as a pre trained
model to improve the performance of supervised learning tasks
[27]. The features of input data can be compressed through encoder
decoding, the calculation of feature vectors is shown in Equation 7.

z = fen(d) = σen(uend+ ben) (7)

Where, fen represents the overall operation of the encoder, μen
represents the weight matrix of the encoder. It is used to transform
the input d linear to the output space of the hidden layer. The
ben represents the bias vector of the encoder, which is added to
the result after the linear transformation, helping to adjust the
output of the neural network to ensure that the neurons have the
appropriate output range before the nonlinear activation function.
The σen represents that the activation function of the encoder is
usually a nonlinear function, such as the sigmoid function or the
ReLU function, which is used to introduce nonlinear features and
enable the encoder to learn complex traffic data representations.The
z represents the output of the encoder, which is the result obtained
after processing the input flow rate d through the encoder.

After obtaining the compressed characteristic z, it is input to
the decoder for decoding operation. The output d′ of the decoder
is shown in Equation 8.

d′ = fde(z) = σde(μdez+ bde) (8)

Where z represents the low-dimensional representation or
feature vector obtained from the encoder, which is the result of
decoding the input traffic data d through the decoder. The fde
represents the compressed feature z for decoding operations.The μde
represents the weight matrix of the decoder, which is used to map
the encoding z back to the original data space. The bde represents
the bias vector of the decoder, which is added to the result after the
linear transformation. The σde represents the activation function of
the decoder, usually the Sigmoid function or the ReLU function.

Finally, the difference between generated flow data d′ and raw
flow data d ismeasured by squared error, in terms that the input data
d is restored as much as possible by minimizing the linear model. It
is shown in Equation 9.

H(d,d′) = argmin 1
m

m

∑
i
||di − d

′
i ||

2

(9)

Where H represents the minimizing error computation
function, which accepts two parameters d and d′, then returns
the d′ that makes the objective function minimum. The argmin
represents the parameter minimizing the objective function, m is
the number of flow samples or data.

4 Experiment and result analysis

4.1 Binary classification network traffic
experiment

The system version of the experimental environment in this
paper is Linux 16.04, the processor is Intel i7-7700k, the frequency
is 4.2 GHz and the memory is 256 GB. The graphics card is a single
core 8 GB NVIDIA RTX3060Ti with 3584 CUDA cores. Python
three is the main programming language, jQuery is a JavaScript tool
library, Echart is used for data visualization and Pytorch framework
is used. We evaluate the effectiveness and reliability of our proposed
model on three publicly available network datasets, primarily from
the Cloud Vulnerability Database [28], Freebuf website [29] and
CICIDS-2017 [30]. CICIDS-2017 is a dataset widely used in network
security research, particularly in the fields of intrusion detection
system andnetwork traffic analysis.Thedataset collects rich network
traffic samples, including various types of attacks such as denial
of service attacks (DoS), distributed denial of service attacks
(DDoS), scanning activities, botnet attacks, etc. It also includes
normal network traffic such as HTTP requests, FTP transfers, etc.
The structured data of the Cloud Vulnerability Database contains
thousands of real vulnerability cases, covering detailed technical
descriptions of common web vulnerabilities such as SQL injection,
XSS, CSRF, affected system versions and repair solutions. These
standardized features provide clear supervised learning signals for
convolutional neural networks, especially for feature extraction of
known attack patterns, which plays a key role. In contrast, the
FreeBuf website dataset, as a continuously updated network security
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community resource, is valuable in providing unstructured real-
world analysis reports and emerging threat intelligence. It includes
APT attack cases, 0 day vulnerability analysis and accompanying
traffic capture data such as HTTP request logs and malicious IP
lists. Based on the network characteristics of chain information
management system, they can effectively demonstrate the detection
performance of models in actual deployment environment.

The experiment uses accuracy, precision, recall, and F1 score as
key evaluation indicators for quantifying model performance. The
specific calculation is shown in the Equations 10–13.

Accuracy = TP+TN
TP+TN+ FN+ FP

(10)

Precision = TP
TP+ FP

(11)

Recall = TP
TP+ FN

(12)

F1 = 2× Precision×Recall
Precision+Recall

(13)

Accuracy provides an intuitive evaluation of the overall
performance of the model, but may be misleading when there is
class imbalance. Such as when normal traffic significantly exceeds
abnormal traffic, high accuracy may only reflect the recognition
ability of the majority of classes. Precision and recall respectively
measure the reliability and coverage ability of the model in
predicting abnormal traffic, there is an inherent trade-off between
the two. The focus needs to be adjusted according to actual
application scenarios. F1, as a harmonic mean of precision and
recall, can comprehensively evaluate the stability of the model in
identifying anomalous classes. The joint use of these indicators
not only meets the need for comprehensive evaluation of model
performance, but also alleviates the limitations of a single indicator
through multi angle cross validation. Especially it is suitable
for the common problems of imbalanced category distribution
and complex abnormal patterns in network traffic data of chain
information management system. We select multiple baselines
for comparative experiments on network data security threat
identification, including LSTM [31], LSTM-CRF [32], BiLSTM-CRF
[33], CBAM [34], CNN-GRU [35], CNN BiLSTM-CRF [36] and
CBAM-AE-CRF. The selection of this baseline effectively validates
the effectiveness of the improved method proposed in this paper,
while also systematically evaluating the adaptability of different
feature extractions in the context of chain network scenarios. For
example, CNN-GRU can extract spatial local features of traffic
data through CNN, then capture temporal dependencies through
GRU. This architecture has superiority. Secondly, CNN-BiLSTM-
CRF further introduces BiLSTM and CRF on the basis of CNN,
which can not only model bidirectional temporal features, but also
learn the transition rules of traffic states through the CRF layer.This
is important for the continuity detection ofmulti hop network traffic
in chain information management system. Table 1 is a comparison
table of binary classification.

According to the experimental results shown in Table 1, CBAM-
AE-CRF performs the best in normal traffic detection tasks, with
an accuracy of 0.928 and F1 of 0.907, significantly better than other
models. This indicates that the model has high classification ability
and stability when dealing with normal traffic. The introduction

of CBAM effectively improves the model’s ability to extract key
features, the combination of AE and CRF further enhances the
model’s ability to capture contextual information. CNN-GRU and
CNN-BiLSTM-CRF also perform well, with F1 of 0.865 and
0.877, respectively, indicating that the combination of CNN with
GRU or BiLSTM can effectively capture the temporal and spatial
characteristics of normal traffic. The performance of LSTM and
LSTM-CRF is relatively weak, indicating that a single LSTM
structure has certain limitations in processing complex traffic
data. In the task of detecting abnormal traffic, CBAM-AE-CRF
also performs the best, indicating that the model has extremely
high sensitivity and accuracy in detecting abnormal traffic. It
can effectively identify abnormal behavior in the network. CNN-
BiLSTM-CRF also performs well in abnormal traffic detection, with
F1 of 0.892, indicating that the combination of CNN and BiLSTM
can effectively capture the complex patterns of abnormal traffic.The
performance of CBAM in abnormal traffic detection is slightly lower
than its performance in normal traffic detection, with F1 score of
0.836. This may be due to the diversity and complexity of abnormal
traffic, which makes it difficult for the model to accurately classify
in certain situations. In general, the performance of a single model
in complex traffic detection tasks is relatively weak, indicating that
a single structure has certain limitations. Figures 2, 3 are visual
representations of the experimental results in Table 1, respectively.

As shown in Figure 2, the accuracy of CBAM-AE-CRF reaches
0.928, which is about 6.3% higher than the second best performing
CNN-GRU and 25.6% higher than a single LSTM, indicating its
significant advantage in overall classification ability. In terms of
precision, the precision of CBAM-AE-CRF is 0.921, which is about
3.4%higher thanCNN-BiLSTM-CRF and 23.1%higher thanLSTM-
CRF, indicating its excellent performance in reducing false alarm
rates. This indicates that the combination of CNN, AE, and CRF
can effectively improve the accuracy of abnormal traffic detection
in chain information management system network.

As shown in Figure 3, in terms of recall rate, CBAM-AE-
CRF has a recall rate of 0.924, which is about 2.4% higher than
the CNN-BiLSTM-CRF and 21.9% higher than the LSTM. This
indicates that it can more comprehensively capture abnormal traffic
samples, reduce the possibility of missed reports and provide strong
protection for traffic security for chain information management
system network.

4.2 Multi classification network traffic
experiment

In addition, the multi classification experiment uses the Macro-
F1 as a key evaluation indicator for quantifying the model’s
effectiveness, as shown in Equation 14 for specific calculation. In
the dataset CICIDS-2017, there is one type of normal traffic and ten
types of abnormal traffic. For the classification of abnormal traffic,
it is obviously a multi classification problem. Therefore, the Macro-
F1 evaluation metric is introduced, which calculates the F1 of each
category and then adds up the F1 values of all categories to take
the average.

macro− F1 =
F11 + F12 +…+ F1i

i
(14)
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TABLE 1 Test results of binary classification network traffic detection.

Category Model Accuracy Precision Recall F1

Normal traffic

LSTM 0.739 0.725 0.759 0.742

LSTM-CRF 0.830 0.748 0.806 0.776

BiLSTM-CRF 0.806 0.817 0.824 0.833

CBAM 0.849 0.844 0.884 0.864

CNN-GRU 0.873 0.857 0.873 0.865

CNN-BiLSTM-CRF 0.856 0.891 0.845 0.877

CBAM-AE-CRF 0.928 0.921 0.943 0.907

Abnormal traffic

LSTM 0.768 0.784 0.758 0.771

LSTM-CRF 0.829 0.817 0.803 0.810

BiLSTM-CRF 0.851 0.855 0.850 0.852

CBAM 0.801 0.849 0.824 0.836

CNN-GRU 0.792 0.851 0.806 0.828

CNN-BiLSTM-CRF 0.834 0.882 0.902 0.892

CBAM-AE-CRF 0.939 0.963 0.924 0.943

FIGURE 2
Comparison results based on normal traffic in binary classification experiment.

Where F1i represents the F1 value of the i th classification,
the i represents the i classification. Detailed data of the overall
experimental results are displayed in Table 2.

According to the experimental results shown in Table 2, there
are significant differences in the performance of each model, with

CBAM-AE-CRF performing the most outstandingly, while LSTM is
relatively weaker. The accuracy of LSTM is 0.716, while Macro-F1
is 0.754, which is at a relatively low level among all models. This
indicates that simple LSTM has certain limitations in processing
complex network traffic data andmay be difficult to fully capture the
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FIGURE 3
Comparison results based on abnormal traffic in binary classification experiment.

TABLE 2 Test results of Multi classification network traffic detection.

Model Accuracy Precision Recall Macro-
F1

LSTM 0.716 0.768 0.740 0.754

LSTM-CRF 0.757 0.808 0.749 0.777

BiLSTM-
CRF

0.874 0.859 0.870 0.864

CBAM 0.812 0.821 0.780 0.800

CNN-GRU 0.855 0.856 0.825 0.840

CNN-
BiLSTM-
CRF

0.892 0.912 0.872 0.892

CBAM-AE-
CRF

0.941 0.959 0.921 0.940

spatiotemporal dependencies in traffic characteristics. In contrast,
LSTM-CRF and BiLSTM-CRF significantly improve performance
by introducing CRF and BiLSTM structure. CBAM introduces
attention mechanism, with an accuracy of 0.812 and Macro-F1 of
0.800, outperforming basic LSTM but not as good as BiLSTM-
CRF. This indicates that attention mechanism can indeed improve
model performance, but may need to be combined with other
structures to have a greater impact. CNN-BiLSTM-CRF integrates
CNN, BiLSTM and CRF, achieving an accuracy of 0.892, while
Macro-F1 achieves 0.892, demonstrating excellent performance.The
most outstanding performance is CBAM-AE-CRF, far exceeding
other models, indicating that it can more effectively capture key

features and complex patterns in network traffic. Figure 4 is a visual
representation of the experimental results in Table 2.

In Figure 4, CBAM-AE-CRF performs significantly better than
other models in multi classification network traffic detection task.
On Macro-F1, CBAM-AE-CRF leads with a score of 0.94, which
is 5.4% higher than CNN-BiLSTM-CRF and 24.7% higher than
LSTM. These data fully demonstrate the significant advantages of
CBAM-AE-CRF in comprehensive performance, providing strong
support for network security protection for chain information
management system. In addition, we use AUC as a key indicator
to evaluate the performance of models, which is specifically
defined by the ROC curve. The closer the AUC value is to
1.0, the better the performance of abnormal traffic detection for
chain information management system network and the more
accurate it can identify potential anomalies. The experimental
comparison results of CNN-BiLSTM-CRF and CBAM-AE-CRF in
multi classification experiment are shown in Figure 5.

From Figure 5, it can be seen that CBAM-AE-CRF occupies
a higher position on ROC curve, especially in the region with
lower FPR. It indicates that CBAM-AE-CRF can more accurately
detect true network abnormal traffic, demonstrating better detection
performance for chain information management system network.

5 Conclusion

This paper improves convolutional neural networks by
introducing CBAM and AE, proposes CBAM-AE-CRF to enhance
the performance of abnormal traffic detection for chain information
management system network. CBAM enhances the network’s ability
to learn abnormal features and effectively improves the accuracy of
abnormal traffic detection through its unique channel attention and
spatial attentionmechanism.Meanwhile, AE fully utilizes the feature
extraction capability of autoencoders to optimize the network’s
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FIGURE 4
Comparison of multi classification network traffic detection.

FIGURE 5
Comparison of AUC.

learning process for traffic data representation. Finally, sequence
annotation is completed through CRF to comprehensively identify
abnormal threats in the network traffic for chain information
management system. The experimental results display that CBAM-
AE-CRF outperforms other methods on datasets, verifying the

effectiveness of CBAMandAE in network abnormal traffic detection
for chain information management system network. However, in
terms of the richness and authenticity of the dataset, more diverse
and realistic traffic datasets can be constructed. It covers different
network environments, application scenarios and attack types, to
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better evaluate the performance of CBAM-AE-CRF in complex
network environments.

Data availability statement

Theoriginal contributions presented in the study are included in
the article/supplementarymaterial, further inquiries can be directed
to the corresponding author.

Author contributions

CL: Project administration, Conceptualization, Funding
acquisition, Methodology, Writing – original draft. CxL: Data
curation, Writing – original draft, Investigation, Supervision,
Resources. CgL: Formal Analysis, Visualization, Resources,
Software, Validation, Writing – review and editing.

Funding

The author(s) declare that financial support was received
for the research and/or publication of this article. This work is
supported as follows: Research on the Ideological and Political
Reform of the Principles of Chain Operation Management Course
in Higher Vocational Colleges (xhyblx2023048). Funded by the
“Qinglan Project” of Jiangsu Universities. Philosophy and Social
Sciences Research Project of Jiangsu Provincial Department of
Education: Practical Research on Promoting Rural Revitalization
through Industry-University-Research Alliances in the Digital
Economy Era Based on Big Data from the Xuyi Lobster Industry

(2020SJA1821). Jiangsu Provincial Science and Technology Project:
Process Optimization and Development Application of the Shrimp-
Rice Industry Chain Management Platform (SZ-HA2019010).
Research on the Reform of Ideological and Political Education in
the Course of Principles of Chain OperationManagement in Higher
Vocational Colleges - A Study Project Funded by Jiangsu Vocational
Education Research for the 2023-2024 Academic Year, under the
auspices of the Jiangsu ProvinceVocational andTechnical Education
Association.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

References

1. El Kadiri S, Grabot B,Thoben KD, Hribernik K, Emmanouilidis C, von Cieminski
G, et al. Current trends on ICT technologies for enterprise information systems.Comput
Industry (2016) 79:14–33. doi:10.1016/j.compind.2015.06.008

2. Miao J, Wang Z, Wang M, Xing L. A secure and efficient lightweight vehicle
group authentication protocol in 5Gnetworks.Wireless CommunMobile Comput (2021)
2021:2023. doi:10.1155/2021/4079092

3. Perwej Y, Abbas SQ, Dixit JP, Akhtar DN, Kumar Jaiswal A. A systematic
literature review on the cyber security. Int J scientific Res Manag (2021) 9(12):669–710.
doi:10.18535/ijsrm/v9i12.ec04

4. Miao J, Wang Z, Wang M, Garg S, Hossain MS, Rodrigues JJ. Secure and efficient
communication approaches for Industry 5.0 in edge computing. Computer Networks
(2024) 242:110244. doi:10.1016/j.comnet.2024.110244

5. Fan W, Jia X, Li J, Ma S. Reasoning about record matching rules. Proc VLDB
Endowment (Pvldb) (2009) 2(1):407–18. doi:10.14778/1687627.1687674

6. Otter DW,Medina JR, Kalita JK. A survey of the usages of deep learning for natural
language processing. IEEE Trans Neural networks Learn Syst (2020) 32(2):604–24.
doi:10.1109/tnnls.2020.2979670

7. Sorin V, Barash Y, Konen E, Klang E. Deep learning for natural language
processing in radiology—fundamentals and a systematic review. J AmColl Radiol (2020)
17(5):639–48. doi:10.1016/j.jacr.2019.12.026

8. Sharma N, Jain V, Mishra A. An analysis of convolutional neural
networks for image classification. Proced Comput Sci (2018) 132:377–84.
doi:10.1016/j.procs.2018.05.198

9. Papastefanopoulos V, Linardatos P, Panagiotakopoulos T, Kotsiantis S.
Multivariate time-series forecasting: a review of deep learning methods in
internet of things applications to smart cities. Smart Cities (2023) 6(5):2519–52.
doi:10.3390/smartcities6050114

10. Torres JF,HadjoutD, SebaaA,Martínez-Álvarez F, TroncosoA.Deep learning for
time series forecasting: a survey. Big data (2021) 9(1):3–21. doi:10.1089/big.2020.0159

11. Zheng Y, Liu Q, Chen E, Ge Y, Zhao J. Time series classification using multi-
channels deep convolutional neural networks[C]//International conference on web-age
information management. Cham: Springer International Publishing (2014). p. 298–310.

12. Deng Z, Wang B, Xu Y, Xu T, Liu C, Zhu Z. Multi-scale convolutional neural
network with time-cognition for multi-step short-term load forecasting. IEEE Access
(2019) 7:88058–71. doi:10.1109/access.2019.2926137

13. Qiu S, Zaheer Q, Ehsan H, Hassan Shah SMA, Ai C, Wang J, et al.
Multimodal fusion network for crack segmentation with modified U-net and
transfer learning–based MobileNetV2. J Infrastructure Syst (2024) 30(4):04024029.
doi:10.1061/jitse4.iseng-2499

14. Su Y, Zhao Y, Niu C, Liu R, Sun W, Pei D, et al. Robust anomaly detection for
multivariate time series through stochastic recurrent neural network[C]. In:Proceedings
of the 25th ACM SIGKDD international conference on knowledge discovery and data
mining (2019). p. 2828–37.

15. Yu P, Zhao X, Jiao J. An aeromagnetic compensation algorithm based
on a deep autoencoder. IEEE Geosci Remote Sensing Lett (2020) 19:1–5.
doi:10.1109/lgrs.2020.3044999

16. Ren L, Pan Z, Cao J, Liao J. Infrared and visible image fusion based on variational
auto-encoder and infrared feature compensation. Infrared Phys and Technology (2021)
117:103839. doi:10.1016/j.infrared.2021.103839

17. Zhao X, Yao J, Deng W, Jia M, Liu Z. Normalized conditional variational auto-
encoder with adaptive focal loss for imbalanced fault diagnosis of bearing-rotor system.
Mech Syst Signal Process (2022) 170:108826. doi:10.1016/j.ymssp.2022.108826

18. Osada G, Omote K, Nishide T. Network intrusion detection based on semi-
supervised variational auto-encoder[C]//Computer security–ESORICS 2017: 22nd

Frontiers in Physics 11 frontiersin.org

https://doi.org/10.3389/fphy.2025.1592975
https://doi.org/10.1016/j.compind.2015.06.008
https://doi.org/10.1155/2021/4079092
https://doi.org/10.18535/ijsrm/v9i12.ec04
https://doi.org/10.1016/j.comnet.2024.110244
https://doi.org/10.14778/1687627.1687674
https://doi.org/10.1109/tnnls.2020.2979670
https://doi.org/10.1016/j.jacr.2019.12.026
https://doi.org/10.1016/j.procs.2018.05.198
https://doi.org/10.3390/smartcities6050114
https://doi.org/10.1089/big.2020.0159
https://doi.org/10.1109/access.2019.2926137
https://doi.org/10.1061/jitse4.iseng-2499
https://doi.org/10.1109/lgrs.2020.3044999
https://doi.org/10.1016/j.infrared.2021.103839
https://doi.org/10.1016/j.ymssp.2022.108826
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Liu et al. 10.3389/fphy.2025.1592975

European symposium on research in computer security, Oslo, Norway, september 11-15,
2017, proceedings, Part II 22. Springer International Publishing (2017). p. 344–61.

19. Wan Z, Zhang Y, He H. Variational autoencoder based synthetic data generation
for imbalanced learning[C]. In: 2017 IEEE symposium series on computational
intelligence (SSCI). IEEE (2017). p. 1–7.

20. Abdulhammed R, Faezipour M, Abuzneid A, AbuMallouh A. Deep and machine
learning approaches for anomaly-based intrusion detection of imbalanced network
traffic. IEEE sensors Lett (2018) 3(1):1–4. doi:10.1109/lsens.2018.2879990

21. Khanam S, Ahmedy I, Idris MYI, Jaward MH. Towards an effective intrusion
detection model using focal loss variational autoencoder for internet of things (IoT).
Sensors (2022) 22(15):5822. doi:10.3390/s22155822

22. Vu L, Cao VL, Nguyen QU, Nguyen DN, Hoang DT, Dutkiewicz E. Learning
latent distribution for distinguishing network traffic in intrusion detection system. In:
ICC 2019-2019 IEEE international conference on communications (ICC). IEEE (2019). p.
1–6.

23. Lin JCW, Shao Y, Zhang J, Yun U. Enhanced sequence labeling based
on latent variable conditional random fields. Neurocomputing (2020) 403:431–40.
doi:10.1016/j.neucom.2020.04.102

24. Bhuyan P, Singh PK, Das SK. Res4net-CBAM: a deep cnn with convolution
block attention module for tea leaf disease diagnosis. Multimedia Tools Appl (2024)
83(16):48925–47. doi:10.1007/s11042-023-17472-6

25. Lee H, Park J, Hwang JY. Channel attention module with multiscale grid average
pooling for breast cancer segmentation in an ultrasound image. IEEE Trans Ultrason
ferroelectrics, frequency Control (2020) 67(7):1344–53. doi:10.1109/tuffc.2020.2972573

26. Zhu X, Cheng D, Zhang Z, Lin S, Dai J. An empirical study of spatial attention
mechanisms in deep networks. Proc IEEE/CVF Int Conf Comput Vis (2019) 6688–97.

27. Shao H, Yao S, Sun D, Zhang A, Liu S, Liu D, et al. “Controlvae: controllable
variational autoencoder,” in International conference onmachine learning. PMLR (2020).
p. 8655–64.

28. Bauskar S. A review on database security challenges in cloud computing
environment. International Journal Of Computer Engineering And Technology (Ijcet)
(2024) 15(5):842–52.

29. Kritikos K, Magoutis K, Papoutsakis M, Ioannidis S. A survey on vulnerability
assessment tools and databases for cloud-based web applications. Array (2019)
3:100011. doi:10.1016/j.array.2019.100011

30. Panwar SS, Raiwani YP, Panwar LS. An intrusion detection model for CICIDS-
2017 dataset using machine learning algorithms. In: 2022 international conference on
advances in computing, communication and materials (ICACCM). Dehradun, India
(2022). p. 1–10.

31. Yu Y, Si X, Hu C, Zhang J. A review of recurrent neural networks: LSTM cells
and network architectures.Neural Comput (2019) 31(7):1235–70. doi:10.1162/neco_a_
01199

32. Panchendrarajan R, Amaresan A. Bidirectional LSTM-CRF for named entity
recognition. In: 32nd pacific asia conference on language, information and computation
(2018).

33. Chen T, Xu R, He Y, Wang X. Improving sentiment analysis via sentence
type classification using BiLSTM-CRF and CNN. Expert Syst Appl (2017) 72:221–30.
doi:10.1016/j.eswa.2016.10.065

34. WangW, Tan X, Zhang P,Wang X. A CBAM based multiscale transformer fusion
approach for remote sensing image change detection. IEEE J Selected Top Appl Earth
Observations Remote Sensing (2022) 15:6817–25. doi:10.1109/jstars.2022.3198517

35. Sajjad M, Khan ZA, Ullah A, Hussain T, Ullah W, Lee MY, et al. A novel CNN-
GRU-Based hybrid approach for short-term residential load forecasting. IEEE Access
(2020) 8:143759–68. doi:10.1109/access.2020.3009537

36. Lin J, Liu E. Research on named entity recognition method of metro
on‐board equipment based on multiheaded self‐attention mechanism and
CNN‐BiLSTM‐CRF. Comput Intelligence Neurosci (2022) 2022(1):1–13.
doi:10.1155/2022/6374988

Frontiers in Physics 12 frontiersin.org

https://doi.org/10.3389/fphy.2025.1592975
https://doi.org/10.1109/lsens.2018.2879990
https://doi.org/10.3390/s22155822
https://doi.org/10.1016/j.neucom.2020.04.102
https://doi.org/10.1007/s11042-023-17472-6
https://doi.org/10.1109/tuffc.2020.2972573
https://doi.org/10.1016/j.array.2019.100011
https://doi.org/10.1162/neco_a_01199
https://doi.org/10.1162/neco_a_01199
https://doi.org/10.1016/j.eswa.2016.10.065
https://doi.org/10.1109/jstars.2022.3198517
https://doi.org/10.1109/access.2020.3009537
https://doi.org/10.1155/2022/6374988
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org

	1 Introduction
	2 Literature review
	3 Abnormal traffic detection based on deep learning for chain information management system network
	3.1 Overview of CBAM-AE-CRF
	3.2 CBAM
	3.3 AE

	4 Experiment and result analysis
	4.1 Binary classification network traffic experiment
	4.2 Multi classification network traffic experiment

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References

