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1 Introduction

In the landscape of micro-electromechanical system (MEMS) research, the exploration
of system behavior has been a topic of great interest. Tian and Shao [1] previously
investigated the periodic properties of MEMS systems. However, their model is too
simplistic to be applicable in practical scenarios.

Their model

ẍ+ω2x− K
1− x
= 0, (1)

is only valid under ideal working conditions. Equation 1 is widely studied for its periodic
property [2–4]. In actual applications, MEMS systems are exposed to various noise sources.
These noises can have a profound impact on the performance and characteristics of MEMS
devices, highlighting the need for more comprehensive models.

The micro-electromechanical system influenced by multiplicative and additive cyclic
noise can be represented as follows Equation 2:

ẍ− (−ε+ α1x
2 − α2x

4 − α3x
6 − α4x

8)ẋ+ω2x− k
1− x
+ c0D

px = η1(t) + x(t)η2(t), (2)

where ε is the coefficient of linear damping, K is a stiffness coefficient, α1,α2,α3,α4 are
nonlinear damping coefficients,ω is the frequency, η1(t) and η2(t) are independent recycling
noises, i.e.,

D1 ≠ D2,ηi(t) = ξi(t) +Kξi(t− τ), (i = 1,2).

The power spectral density (PSD) of recycling noise is obtained as:

Si(ω) = 2Di[1+ k
2 + 2kcos(ωτ)], (i = 1,2), (3)
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c
0D

p[x(t)] is the Caputo fractional derivative [1, 2] of p(0 ≤ p ≤ 1)
order about x(t) defined as Equation 4:

c
0D

p[x(t)] = 1
Γ(m− p)

∫
t

0

x(m)(u)
(t− u)1+p−m

du (m− 1 < p ≤m,m ∈ N).

(4)

2 Model analysis

2.1 Influence of noise on system dynamics

The presence of multiplicative and additive recycling noises,
denoted as η1(t) and η2(t) respectively, in the MEMS model
significantly alters its dynamic behavior by introducing fundamental
physical uncertainties inherent in micro-scale systems. These noise
terms represent random fluctuations originating from various
physical sources, such as thermal-mechanical (Brownian) noise,
electronic noise in sensing/actuation circuits, or even fluctuations
in environmental parameters like pressure or temperature. This
inherent randomness perturbs the system’s state variables (e.g.,
displacement, velocity, voltage, or current), leading to deviations
from the ideal, noise-free response trajectory. For instance, in a
MEMS oscillator, these noises directly manifest as frequency jitter
(random variations in oscillation period) and amplitude variations
(random fluctuations in the oscillation peak magnitude), degrading
the device’s precision and stability [5–7].

The PSD of the recycling noises, as described by Equation 3,
provides crucial insights into the distribution of noise energy
across different frequencies. Physically, this PSD quantifies how
the intensity of these random fluctuations varies with frequency.
A higher power spectral density at certain frequencies implies
that the noise components within those specific frequency bands
have a more significant impact on the system because they
can more effectively couple into the device’s natural mechanical
resonant modes or its control/sensing bandwidth. This spectral
information is essential for understanding the susceptibility of
the system across different operational frequency ranges and
pinpointing the critical bands where noise suppression is most vital.
Consequently, this knowledge is fundamental to designing effective
noise-filtering or noise-shaping mechanisms tailored to the specific
spectral characteristics of the dominant noise sources affecting the
MEMS device.

2.2 Role of fractional-order derivative

The Caputo fractional-order derivative c
0D

p[x(t)] in Equation 1
adds an extra degree of complexity to the model. Fractional-
order derivatives can capture non-local and memory-dependent
effects in the system. In MEMS, these effects might be related to
the material properties, such as viscoelasticity, or the interaction
between different components.

When p = 1, the fractional-order derivative reduces to the
ordinary first-order derivative, representing a more traditional,
local-behavior-based model. However, for 0 < p < 1, the system
exhibits memory-like characteristics. This means that the current
state of the system depends not only on its immediate past but also

on events that occurred further back in time. This characteristic is
particularly crucial for simulating energy dissipation mechanisms
in MEMS, such as anomalous viscoelastic relaxation in polymeric
components, damping effects in rarefied gases, and interfacial
interactions. Furthermore, fractional-order derivatives provide
a more accurate means of describing phenomena like non-
exponential decay and frequency-dependent phase lag. Thus, they
offer a more precise modeling tool for enhancing the accuracy,
reliability, and dynamic performance of MEMS devices [7–10].

2.3 Nonlinear damping and stiffness effects

The nonlinear damping terms (α+ and α2) and the stiffness
coefficient K play important roles in determining the system’s
stability and response. Nonlinear damping can act as a self-
regulating mechanism. At high amplitudes, the nonlinear damping
terms can increase, dissipating more energy and preventing the
system from reaching extreme states [11, 12].

The stiffness coefficientK affects the natural frequency of system.
A higher stiffness leads to a higher natural frequency, making
the system more responsive to external stimuli. However, in the
presence of noise, a high-stiffness system might also be more
sensitive to noise-induced vibrations, which could potentially lead
to instability or inaccurate measurements in MEMS applications.
Therefore, investigating the interactions among nonlinear damping
coefficients, stiffness coefficients, and noise is of great significance
for optimizing the design of MEMS systems and improving their
precision and stability.

3 Conclusion

This study presents a generalized MEMS model that
incorporates multiplicative and additive recycling noises, providing
a more realistic representation of MEMS systems in practical
applications. Through the analysis of the model, it is evident that
the noises, fractional-order derivative, and nonlinear terms all have
significant impacts on the system’s dynamics.

Recycling noises critically undermine MEMS precision and
stability through frequency jitter and amplitude variations, where
Power Spectral Density (PSD) analysis is vital for identifying
noise-susceptible frequency bands to guide targeted mitigation
strategies. Simultaneously, the Caputo fractional-order derivative
c
0D

p[x(t)] (for 0 < p < 1) introduces essential memory effects
and non-local behavior, enabling accurate modeling of complex
energy dissipation mechanisms, such as anomalous viscoelastic
relaxation, that are unattainable with traditional integer-order
descriptions. Nonlinear damping further provides crucial
amplitude-limiting stabilization, whereas the stiffness coefficient K
dictates resonant frequencywhile significantly amplifying sensitivity
to noise-induced vibrations, potentially compromising stability
and measurement fidelity. Collectively, the intricate interplay
between stochastic noise, fractional-order memory dynamics, and
nonlinear stiffness/damping governs MEMS behavior, making
understanding these coupled effects fundamental for optimizing
device design toward enhanced precision, stability, and reliability.
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The establishment of this model opens a pioneering and
highly promising frontier for future MEMS research. Subsequent
investigations should focus on refining the model to enhance
its predictive accuracy. This can be achieved by more precisely
quantifying noise parameters and fractional-order derivative
exponents, thereby enabling better simulation of the dynamic
behavior exhibited by actual MEMS devices operating in complex
environments. Concurrently, a deeper exploration of the intrinsic
mechanisms governing the interactions between nonlinear damping
coefficients, stiffness coefficients, and noise holds significant
potential to reveal novel physical properties. Such insights are
expected to provide crucial theoretical underpinnings for designing
high-performance, high-reliability MEMS devices.

Furthermore, integrating advanced numerical computation
methods with sophisticated experimental techniques will be
essential to validate and refine the model. This integrated approach
will propel its practical application in MEMS system design,
control strategies, and fault diagnosis methodologies. Ultimately,
these advancements will advance the continuous innovation of
MEMS technology at the micro/nano scale, enabling it to meet the
increasingly demanding requirements for precision, stability, and
adaptability in micro-electromechanical systems.
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