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power marketing inspection
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The widespread adoption of cyber–physical–social systems (CPSSs) in the
power industry has necessitated power marketing inspection as a critical
component for ensuring secure and reliable operations of power systems.
However, this effort entails significant challenges resulting from the massive
volume of inspection data and complexity of electricity usage scenarios.
Traditional inspection methods often fail to identify potential risks and
abnormal behaviors effectively; to address this, we propose an intelligent
security identification model for CPSS-based power marketing inspection by
integrating advanced artificial intelligence techniques to enhance security
defense and risk management. The proposed model incorporates a work
order correlation matching algorithm, a fault interval detection algorithm,
an electricity consumption prediction algorithm, and a business anomaly
identification algorithm. Here, the users are first categorized based on
multisource data to detect abnormal electricity usage precisely. Then, the
model employs a correlation algorithm to uncover the intrinsic links between
fault handling and electricity refund work orders for the same user, thereby
revealing potential security vulnerabilities. Subsequently, the fault interval
detection algorithm is used to locate fault periods, and the electricity
consumed within these intervals is dynamically estimated using a prediction
algorithm. Finally, an intelligent classification model based on recurrent neural
networks and long short-term memory networks is developed by leveraging
key security features to identify abnormal business behaviors accurately.
Experiments were then conducted on three publicly available power industry
datasets, and the results demonstrate that the proposed model significantly
outperforms traditional methods in terms of accuracy, recall, and F1-score
for security event detection. The proposed approach effectively enhances
the safety and reliability of power marketing inspection for CPSSs while
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offering a novel technical framework for power system protection and privacy
preservation.
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power marketing inspection, association matching, power budgeting, artificial
intelligence, anomaly detection

1 Introduction

Power marketing inspection refers to a series of technical
and management measures used to review, analyze, and supervise
the data, processes, user behaviors, etc. in power marketing
activities to find and correct abnormalities or violations, thereby
ensuring the normality of marketing management and legality
of business operations of electrical power enterprises. Reasonable
power marketing inspections can ensure the revenue and optimize
the business processes of power enterprises effectively, thereby
promoting the development of smart grids. Given the large amounts
of inspection data and increasingly complex power consumption
scenarios, the current inspection methods are often inadequate and
fraught with problems, such as low efficiency, difficulty in handling
new types of abnormal power consumption behaviors, high
misjudgment rates, and inability to adapt to complex and changing
power consumption scenarios [1]. Therefore, it is necessary to
exploremore efficient and intelligent inspectionmethods to improve
the accuracy and efficiency of inspections. To solve these problems,
we introduce deep learning to the field of power marketing
inspection. A deep neural network has a multilayer architecture and
has existed for a long time now [2]; however, it was not possible to
train the network efficiently in the past owing to various reasons,
including the problem of vanishing gradient in backpropagation,
poor generalization ability, and immense computational power
required. Recent advances in deep learning began in 2006 with
pretraining through the use of restricted Boltzmann machines
(RBMs) [3]. Subsequently, several strategies were proposed to solve
the generalization problem, such as the use of rectified linear units
(ReLUs) instead of sigmoid functions and discard techniques [4].
Deep learning can automatically extract high-dimensional features
and capture the hidden patterns and relationships in complex data
types compared to traditional methods, which can significantly
improve the network efficiency, especially in non-linear scenarios.
When trained using big data, deep-learning models have strong
generalization ability and can identify unseen abnormal power
usage behaviors. These models also support numerous types of
detection methods, such as supervised, unsupervised, and semi-
supervised, and can be flexibly adapted to different electricity
usage scenarios. As early as 2018, deep-learning techniques were
applied to network anomaly detection; Dawoud et al. [5] proposed
a semi-supervised deep-learning-based detection framework for
finding network anomalies. In another work [6], the authors applied
machine learning to the Internet of Things; their exploration of
relevant technologies in complex systems has inspired the model
design proposed in the present work. Deep learning provides
revolutionary tools in the field of anomaly detection and has
broad application prospects. Therefore, the application of deep-
learning technology to power marketing inspection is expected
to provide feasible intelligent solutions for efficient identification

of abnormal power consumption behaviors of users, equipment
failures, and illegal operations, thus laying the foundation for
building safer and more stable power marketing systems while
contributing to the development of smart grids. These smart grids
can be regarded as cyber–physical–social systems (CPSSs), where
the complex interdependence and deep coupling between the cyber,
physical, and social spaceswill inevitably lead to amore complex and
open operating environment, thereby facing a higher risk of various
threats [7]. The application of deep-learning technology can reduce
this risk to a certain extent, thereby reducing economic losses. The
anomaly detection methods and correlation algorithms proposed in
[8, 9] are aligned with the abnormal user behavior detection and
work order correlation matching algorithms of the present study
as they analyze and reveal the intrinsic logical relationships among
different types of work orders related to power users.

In this study, we propose a business identification method
based on power inspection data to improve the economy of
power inspection and promote sustainable development of power
enterprises. First, user classification is conducted to reduce the
data size; second, a work order association matching algorithm is
proposed to automate the matching of processing and refund work
orders by the same user; third, a fault interval detection algorithm
is proposed to solve the obvious inaccuracies of manually recorded
fault intervals; fourth, we propose a power prediction algorithm
based on the computed fault intervals to provide a reliable basis for
retroactive power; finally, we fuse the local features extracted by a
recurrent neural network (RNN) with the global features extracted
using a long short-term memory (LSTM) network. Then, the power
marketing business recognition method is proposed to identify
abnormal power consumption behaviors or potential problems in
the marketing operations.

2 Related work

2.1 Inspection based on electrical energy
measurements

This inspection approach usually comprises measurement
devices that convert power to electrical energy values for remote
monitoring, which can significantly reduce human resource
utilization [10]. For example, England et al. [11] proposed a novel
internet-based advanced measurement and control infrastructure
for real-time monitoring of smart grid loads without delays.
However, this approach requires a higher network bandwidth, which
is expensive. To address this issue, Yip et al. [12] introduced loss
factors and error terms in the distribution lines and transformers,
respectively, to estimate the extent of technical losses and capture the
measurement noise to identify potential energy fraud and locations
of faulty meters at low cost. However, the above methods rely on
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data collected by the measurement devices; the large volume and
diversity of data collected by these power metering devices pose
challenges for power inspection [13–15]. There is also the problem
of difficult system operation.

2.2 Inspection based on cluster analyses

Cluster analysis in data mining techniques is widely used
in the field of power marketing inspection. Specifically, Viegas
et al. [16] designed a data-driven approach aimed at detecting
electricity theft and power losses, where smart meter data are
clustered using the Gustafson–Kessel fuzzy clustering algorithm
to identify typical patterns of electricity usage behaviors as well
as anomalous data by comparing new data samples with these
patterns. The novelty detection method for identifying non-
technical loss based on clustering using the Gustafson–Kessel
algorithm achieved a true positive rate of 63.6% and false positive
rate of 24.3%, outperforming other state-of-the-art unsupervised
learning methods. Cheng et al. [17] proposed a power detection
method based on the power information collection system used
by electrical power enterprises; they used K-means clustering to
extract features and classified them using the random forest (RF)
algorithm to handle edge data effectively.However, there is still room
for improving the performance of theK-means clustering algorithm.
In this regard, Qu et al. [18] proposed K-SMOTE as an optimized
K-means clustering algorithm to balance the dataset and train the
RF algorithm using this balanced dataset; after completing the
classification, the trained RF algorithm is used to detect anomalous
data. Such anomalous data monitoring tools can improve the
accuracy of power marketing inspection to some extent. However,
both clustering methods and statistical analysis of power metering
data require much high-quality data support; thus, the associated
computational costs are high, which limit the wider application of
these methods to some extent.

2.3 Inspection based on artificial
intelligence (AI)

To improve data utilization and simplify the analysis process,
several studies have introduced AI algorithms. Specifically,
algorithms based on neural networks (NNs), autoregressive moving
average (ARMA) models, extreme learning machines (ELMs), and
support vector machines (SVMs) have been widely used in power
marketing inspection and load detection [19–21]. In 2019, Hasan
et al. [22] designed a power theft detection system by combining a
convolutional neural network (CNN) with LSTM; this system can
efficiently distinguish between normal users and power theft users
with significantly improved classification accuracy and an overall
classification accuracy of 89%. In addition, Ding et al. [23] proposed
a real-time anomaly detection algorithm based on LSTM and
Gaussian mixture model that demonstrated excellent performance.
Aslam et al. [24] developed an LSTM-UNet-Adaboost power theft
detection model to improve the detection efficiency and achieved
a detection rate of 0.92. Arif et al. [25] proposed an oversampling
technique that combined SVM with a time-series convolutional
network based on the augmented multilayer perceptron; this model

showed exceptional performance for electrical power marketing
inspection. Akram et al. [26] used combined CNNs with the
RUSBoost manta ray foraging optimization (rus-MRFO) and
RUSBoost bird flocking algorithm (rus-BSA) models to improve
the accuracy of electricity theft detection; they obtained accuracies
of 91.5% and 93.5%with rus-MRFOand rus-BSA, respectively.With
regard to the imbalance problem of electrical power consumption
data, Banga et al. [27] constructed a machine learning model with
six data balancing techniques and used a superposition integration
algorithm to optimize the model, obtaining a final experimental
accuracy of 97.67%.

ELMs require only a specified number of hidden neurons to
ensure unique and optimal solutions; hence, they are widely used
for power load analyses and detection [28]. Shehzad et al. [29]
fused metaheuristic algorithms with autoencoder techniques and
measured their feature extraction abilities with the help of SVMs
to develop an electrical power theft detection system; this approach
can be used with large amounts of data to extract features with high
variance. However, the prediction accuracy of an SVM is deeply
affected by its parameter settings. To improve the model accuracy,
Chen et al. [30] introduced the flock optimization algorithm.
Fong et al. [31] designed a hybrid optimization strategy by
combining the artificial bee colony and great flood algorithms with
the aimof solving the problemof poor convergence ability at the later
stages of optimization. AI-based inspection methods show great
potential and advantages for complex problems, especially those
encompassing deep-learning technologies; this enables analyses of
massive amounts of data and mining of potential anomalies more
efficiently with the inspection methods. However, there remain
some technical bottlenecks in the practical applications of these
methods, amongwhich strong convergence and easy trappingwithin
local extrema are particularly important concerns that need to be
addressed.

To solve these problems, we propose a power marketing
business recognition algorithm by combining RNN and LSTM;
here, the RNN can capture short-term dependencies, such as short-
term fluctuations in electricity consumption or sudden changes in
demand, as well as identify instantaneous fluctuations in customer
electricity consumption behaviors to obtain micropatterns in the
data, while LSTM focuses on the long-term dependencies, such
as seasonal variations or long-term trends in customer electricity
usage. By combining these two networks, we design a deep-learning
framework capable of modeling both local and global features to
achieve feature complementarity and synergy.

The main contributions of this study are as follows:

1. We propose a user classification mechanism that is
implemented after receiving user electricity consumption
data from the metering system and work order data from
the marketing system; this accounts for the complexity and
variety of user situations contained in the actual data as well as
its redundancy. Screening for abnormal users of electricity is a
necessary step, and normal users of electricity are removed to
narrow the scope of users as well as extract users who need to
be compensated for their electricity usage. This makes it easier
to analyze the data in the next step.

2. We propose a power prediction algorithm for forecasting the
power consumption of users in the fault interval; compared
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to the traditional calculation method of averaging the value
of the power refunded to the user, our method reflects the
changes in the daily power consumption of the user, has higher
accuracy, and can significantly reduce the error between the
power refunded to the user and their real power consumption.

3. We propose an RNN+LSTM model that combines the ability
of an RNN to capture short-term data dependencies with the
advantage afforded by the LSTM for handling time-series data.
The proposed model allows us to comprehensively capture
local and global patterns in the inspection data, thereby
improving the ability to identify power marketing operations.

3 Our methodology

To effectively solve some of the key problems with existing
algorithms, we propose a series of innovative algorithms. These
algorithms use deep-learning techniques and power data features
comprehensively to achieve optimization for different inspection
needs: from work order matching to fault interval detection and
frompower prediction to abnormal behavior identification to reduce
the complexity and potential errors of manual operations while
improving the accuracy. Accordingly, we first classify the users
into normal and abnormal users according to their electricity
consumption data, work ordermatching operations, power anomaly
analysis, and refund power analysis; the latter includes users
who do not fit the process specifications for refunds, users
who should be refunded but are not, and users who have only
been partially refunded. The work order matching operation is
achieved using the work order matching association algorithm
proposed herein. Owing to the features of the power marketing
system, there may not be any effective associations between the
processing and refund work orders of some users, which could
lead to fragmentation of the work order information in the
business process as well as increase the complexity of inspection.
To address this problem, the algorithm analyzes the user’s
historical operation records, behavioral characteristics associated
with electricity consumption, and time dimension of the associated
information to automate matching of the processing and refund
work orders of a given user; this significantly improves the
accuracy and efficiency of associating the work orders and lays
a data foundation for the subsequent inspection. In addition, the
user’s power consumption curve is compared with the manually
recorded fault interval to find any obvious inaccuracies that
could lead to deviations in the inspection work. To solve this
problem, we propose a fault interval detection algorithm based
on the user’s power consumption curve data and combine it
with the anomaly detection model to automatically identify the
user’s actual fault interval. By comprehensively analyzing the
trend of power load changes and historical power consumption
patterns, the algorithm determines the user’s actual fault interval
accurately, thereby reducing the impact of manual entry errors
effectively.

After detecting the user’s actual fault interval, it is necessary to
adjust the user’s electricity consumption within the fault interval. To
this end, we propose a power prediction algorithm based on deep-
learning technology that utilizes historical power consumption data
and the environmental variables (e.g., temperature and humidity) to

provide high-precision predictions of the actual power consumption
within the user’s fault interval. This algorithm provides a reliable
basis for retroactive electricity consumption while ensuring fairness
and accuracy of the inspection results. We also propose an
anomaly detection algorithm based on RNN+LSTM to analyze
the user behaviors through time-series modeling of the business
data related to power marketing inspections. The RNN+LSTM
model captures the temporal characteristics of user behaviors and
potential pattern changes to identify anomalous power consumption
behaviors or potential problems in the marketing operations
accurately. The algorithm improves the inspection efficiency and
has strong generalization ability for adaptation to diverse power
marketing scenarios. The overall architecture of the RNN+LSTM-
based power marketing business recognition scheme is shown in
Figure 1.

3.1 User category

3.1.1 Users who do not fit the process
specifications for refunds

Refunds that do not comply with the established process
specifications fall into two distinct scenarios. The first scenario
entails the fault refundwork orderwith the correspondingmetering-
fault single-line decoupling implementation. In this situation, the
metering malfunction requires a refund of the electricity charges;
however, in the power metering device, the faulty work order is
explicitly marked with not needing a refund and the work order
refund is later initiated artificially. The second scenario involves a
fault refund work order without a corresponding fault processing
work order; in this case, the metering device has a failure, and
the power consumed must be refunded without initiation of a
corresponding fault processing work order in the marketing system.
Here, the metering device fault is found onsite and the fault refund
work order is initiated alone.

3.1.2 Users due for refunds but not yet refunded
This situation refers to the loss of electricity due to failure of

the power metering device, where the refund is not provided within
the stipulated time. Here, the refund work order for the metering
device failure has been pending for an exceedingly lengthy period
of time; further, failure of the metering device would have resulted
in loss of electricity but the work order for this refund has not been
initiated.

3.1.3 Partially refunded users due for remaining
refunds

This situation refers to power loss caused by failure of the power
metering device, where the power refund has been initiated within
the specified time, but the amount of power refunded is significantly
less than the actual loss from power failure. Based on the above user
classification, the process of sorting the abnormal power users is
as shown in Figure 2.

The work order data from the marketing system are combined
and the users are categorized into those with and without work
orders. For users without work orders, we further determined
whether the power consumption anomalies were caused by failure
of the metering devices; in this case, the users are categorized for
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FIGURE 1
Overall architecture of the power marketing business recognition scheme based on recurrent neural network with long short-term memory
(RNN+LSTM).

FIGURE 2
User classification flowchart.

refunds that are yet to be initiated. For users with work orders, we
further divided the data into users with only processing work orders,
users with only refund work orders, and users with both processing
and refund work orders. Users with only processing work orders
are categorized as those whose refunds are yet to be initiated. Users
with only refund work orders are categorized under the standard
process that is not in accordance with user recovery; this type of
user is further judged for refund work orders that are yet to be
initialized/implemented or combined under the category of partial

refund of power. Users with both processing and refund work orders
are further categorized into associated and non-associated users
based on whether their work orders are associated or matched. The
non-associated users are then categorized as those who do not fit
the process specifications for refunds. The two types of users along
with the implementation status of the refund work order can be
used to determine the refund status; based on the results of the
refund power analysis, these users are due for either full or partial
refund of power.
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3.2 Work order association matching
algorithm

In the power marketing system, the processing and refund
work orders of some users do not have effective associations, and
this fragmentation results in the need for extensive manual data
checking and matching during inspection, which seriously affects
efficiency and accuracy. To solve this problem, we propose a work
order matching algorithm based on deep learning and association
analysis. By combining the user’s historical operation records, power
consumption behavior characteristics, and temporal information,
the algorithm automatically mines potential connections between
different work orders to produce a complete chain of user
work orders. The steps of the work order association algorithm
are as follows:

Step 1: Construction of the list of out-of-use words. Extract the
important manual input fields in the work order data, split
the selected fields into words through the word splitting
algorithm, count the word frequencies, and place the low-
frequency words (frequency less than 10) into a list of
deactivated words.

Step 2: Construction of the wordmapping table. Semanticmetrics
are determined from the participle results of step 1, and
words with similar meanings are combined to construct a
word mapping table.

Step 3: Training the model. The manual input fields in the
associated fault handling and power refund work orders
are divided into words and converted into effective words
using the word mapping table. The effective words are
then grouped into binomial sets, and the word frequency
is counted and taken as the corresponding weight of the
binomial set. Then, the average weight of the binomial set
W is calculated as shown in Equation 1, where N is the
total number of binomial sets and wi is the weight of the
ith binomial set.

W =
∑N

i=1
wi

N
(1)

Step 4: Association of the fault handling and power refund work
orders. The manually entered fields in the unassociated
fault handling and power refund work orders of the same
user are subdivided into words that are then converted
into effective subdivided words using the list of deactivated
words and word mapping table. The scores between the
work order pairs are computed using the binomial set of
weights in the training set, and the work order pair with
the largest score and average weight of the binomial set
exceedingW is associated.

3.3 Fault interval detection algorithm

Failure of the power metering system leads to abnormal
electricity consumption data; these abnormal situations include

continuous missing data, data significantly higher than the average
electricity consumption, or data significantly lower than the
average electricity consumption. Here, the characteristics of the
failure interval are more obvious, and the missing values in the
algorithm are replaced with 0. Furthermore, these anomalies can
severely compromise forecasting accuracy, operational reliability,
and the decision support processes. The power consumption data
containing fault characteristics are determined as follows: the power
consumption is greater than nine times the entire value of the user
power consumption curve; the power consumption is less than
0.1 times the entire value of the user power consumption curve,
including the situation where the power consumption is 0. The
steps of the fault interval detection algorithm proposed in this work
are as follows:

Step 1: Identifying the fault interval. When the electricity
consumption data has 0 values, we obtain several
discontinuous intervals that are then regarded as fault
intervals.

Step 2: Combining the fault intervals. In the set of fault intervals
obtained in step 1, there may exist similar adjacent normal
intervals within the range of fault intervals; when the
average power value in these similar normal intervals is
greater than nine times or less than 0.1 times the overall
average value of P along with a short interval duration, the
adjacent instances are considered to belong to the same
fault and are combined.

Accordingly, if T is the total number of time steps and P(t)
denotes the power consumed at time point t, then the overall average
power is given by Equation 2:

P =
∑T

t=1
P(t)

T
(2)

The condition for merging neighboring intervals is given by
Equation 3:

∑
t∈[t′s ,t′e]

P(t)

t′e − t′s + 1
> 9 · Por

∑
t∈[t′s ,t′e]

P(t)

t′e − t′s + 1
< 0.1 · P (3)

Here, [t′s , t′e] is a similar normal interval whose length is
limited by Equation 4:

t′e − t
′
s + 1 < Lthreshold (4)

where Lthreshold is the set threshold value of the maximum
interval length.

Step 3: Excluding the holidays. Considering that the electricity
consumption data of large industrial users during holidays
and festivals have characteristics similar to those during
fault periods, the obtained intervals are processed to
exclude holidays for such large industrial users.

Step 4: Output the fault interval. Referring to themanually entered
fault intervals in the work orders, the interval closest to the
fault interval of the work order is designated as the final
fault interval.
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3.4 Power prediction algorithm

The RF algorithm is a classifier containing n decision trees and
belongs to a major branch of machine learning called integrated
learning through self-sampling (bootstrapping) of the dataset; then,
the sampling set table is obtained and each sampling set is used to
train a base decision tree. For each node of the base decision tree,
we first form an attribute set by randomly selecting a subset of k
attributes; then, we select an optimal attribute from this subset for
classification. RFs can be used to solve classification and regression
problems, where the classification result y1 is generated by voting
and the regression problem produces the mean of the predictions of
nmodels as the final prediction result y2, as shown in Equation 5:

y1 =mode({y1,y2,…,yn})

y2 =
1
n

n

∑
i=1

yi
(5)

Here, yi is the prediction of the ith decision tree and mode is the
majority vote.

The advantages of using RF regression are as follows: the RF
of each tree autonomously shows the samples, and the attributes
are selected randomly; the approach has good noise immunity and
stable performance; for many of the extant datasets, RF offers good
performance relative to other algorithms; RF regression is simple to
implement once the sample training set and sample feature vector
dimensions r are determined, and the general parameter settings can
be adjusted to vary the number of regression trees. The steps of the
RF algorithm are as follows:

Step 1: Program-based determination of the fault interval. A fault
interval detection algorithm is used to determine the
fault interval.

Step 2: Manual determination of the fault interval. The operators
negotiate and confirm the fault interval obtained in step 1
with users to determine the final actual fault interval I f =
{[ts, te]}.

Step 3: Data preprocessing. All data from the actual fault interval
are removed from the dataset, and the remaining normal
electricity data are used as the training setDtrain for the RF
model, as shown in Equation 6:

{{{{
{{{{
{

Dtrain = {(xt,yt) ∣ t ∉ I f}

xt = {P(t− 7),P(t− 6),…,P(t− 1)}

yt = P(t)

, (6)

where xt is the feature vector, i.e., the electricity consumption data
from 7 d before the current time point, and yt is the electricity
consumption data of the current time point t.

Step 4: Training the RF model. For each user, we train a random
forest model RF with the RF input xt as the current
time 7 d before the electricity consumption data and
prediction result yt as the current electricity consumption
data, as shown in Equation 7:

yt = RF(xt). (7)

Step 5: Predicting the daily electricity consumption within the
fault interval on a rolling basis. Assuming that t0 is the
starting day of the fault, the electricity consumption
values P(t0 − 6),P(t0 − 5),…,P(t0 − 1) for the first 6 d
of the fault interval along with the predicted electricity
consumption P(t0) of the first day of the fault interval
are used as the feature inputs to obtain the predictions
̂P(t1), ̂P(t2),…, ̂P(tn) sequentially until the electricity

consumption for the entire fault interval is predicted,
as given by Equation 8:

xt1 = {P(t0 − 6),P(t0 − 5),…,P(t0 − 1), ̂P(t0)}
̂P(ti+1) = RF(xti)xti = { ̂P(ti−6), ̂P(ti−5),…, ̂P(ti−1), ̂P(ti)}

(8)

where xti is the characteristic input for day i of the failure interval.

Step 6: Calculating the refund power. The accumulated value of
the predicted power for each day of the fault interval ̂E
is the final refunded power ΔE. If ΔE > 0, the customer’s
electricity charge needs to be recovered; if ΔE < 0,
the customer’s electricity charge needs to be refunded,
as shown in Equation 9:

E =∑
t∈If

̂P(t). (9)

3.5 Power marketing business recognition
based on RNN+LSTM

When handling time-series models, such as those for power
marketing data and natural language processing data, it is necessary
to consider feature inputs from historical sequence information in
addition to real-time input feature values, and NNs have limited
performances in this regard. The RNN overcomes this problem of
lack of sensitivity to historical information using a directed loop
structure to analyze the current input and also has a memory
function for processing and analyzing historical information.
Although the RNN produces very good effects for time-series
problems and can handle historical information, there are some
limitations related to gradient disappearance or explosion that can
fail to capture the long-term dependences or lead to numerical
overflow.The LSTM+RNN approach adopted here combines LSTM
with RNN to effectively avoid the above pitfalls and is suitable
for time-series problems. The combined network can analyze and
evaluate the input and historical information to determine its
usefulness; the useful details are retained according to certain
weights, while the remaining information is discarded through a
forget gate.

Compared to RNN, the LSTM structure has three threshold
structures and a hidden node; the three threshold structures are
the input, output, and forget gates, and the hidden node is the cell
state Ct. The LSTM network is controlled by these three threshold
structures by receiving the input at the current moment xt, cell state
of the previousmomentCt−1, and output from the previousmoment
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ht−1 to iteratively update Ct, which ensures dynamic revision of the
recursive weights and solves the problem of gradient explosion or
vanishing. The three threshold structures are described below:

The first gate unit in the LSTM is the forget gate that is mainly
used to selectively forget a part of the information from the previous
moment Ct−1 by adopting certain strategies, and its formula is
as shown in Equation 10:

ft = σ(W f[ht−1,xt] + b f) (10)

where σ is the sigmoid activation function,W f is the weight matrix
of the forget gate, and b f is the bias matrix. The output ft is 1 for all
numbers to pass and 0 for none of the numbers to pass.

The second gate unit in the LSTM is the input gate that is
composed of a sigmoid NN layer and a tanh NN layer; its main
role is to retain a part of the information of the sum by adopting
certain strategies. Among these, the sigmoid NN layer outputs it to
decide which feature information is added to Ct , and the tanh NN
layer outputs a new state candidate C̃t to limit the data size to the
range of [-1,1]; the formulas for these two outputs are as shown in
Equation 11:

{
{
{

it = σ(Wi · [ht−1,xt] + bi)

C̃t = tanh(WC · [ht−1,xt] + bC)
, (11)

where Wi and Wc are the weight matrices of the sigmoid and
tanh activation functions, and bi and bc are the corresponding bias
matrices, respectively. Finally, the information is selectively added
to the cell state by filtering the two NN layers in the input layer to
obtain the updated Ct, as shown in Equation 12:

Ct = ft ·Ct−1 + it · C̃t (12)

The third gate unit in the LSTM is the output gate, which is
also composed of a sigmoid NN layer and a tanh NN layer. After
updating the cell state Ct, the output gate determines the output
value ht of the current LSTM cell structure, as shown in Equation 13:

{
{
{

ot = σ(Wo[ht−1,xt] + bo)

ht = ot · tanh(Ct)
, (13)

where W0 is the weight matrix and b0 is the bias matrix of the
output gate.

Based on the above theory, we combine the advantages of RNN
and LSTM to propose the RNN+LSTM detection algorithm, where
the RNN is used to capture the short-term temporal dependencies in
the data and LSTM is used to enhance the model’s ability to handle
long-term dependencies. The RNN allows efficient modeling of the
short-term behavioral patterns in electrical power marketing, such
as the short-term electricity usage fluctuations of the customers,
while the LSTM is responsible for extracting important trends
and potential anomalies from the data with long time spans,
thus improving the model’s ability to recognize complex time-
series patterns. Overall, the combination of RNN and LSTM
allows this algorithm to handle both the short-term dependencies
and capture the long-term dependencies, thus providing more
accurate anomaly identification in power marketing inspection
operations. The specific steps of the combined detection algorithm
are as follows:

FIGURE 3
Flowchart of the proposed detection algorithm based on RNN+LSTM.

Step 1: Data collection. Business data related to power marketing
inspection are collected, which may include power usage
data, historical power usage behaviors of the customers,
bill payment records, fault reports, and equipment
maintenance records.

Step 2: Data cleaning. The missing values and outliers are
processed, and the data are normalized or standardized,
especially in the case of numerical data such as electricity
consumption.

Step 3: RNN+LSTM model construction. The model
hyperparameters and configuration are determined before
initializing the bias and weight matrices of the network.

Step 4: Training and optimization. The bias and weight matrices
of the model are continuously adjusted using the
backpropagation and Adam algorithms.

Step 5: Evaluation. The algorithm evaluation metrics like
accuracy, F1-score, and recall are calculated to determine
the accuracy of the algorithm.

The flowchart of the proposed combined algorithm
is shown in Figure 3. This algorithm plays an important role in
the complex business environment of power marketing by virtue of
its strong processing capabilities for time-series data. The RNN is
used as the basis for capturing short-term data dependencies and
is suitable for identifying instantaneous fluctuations in customer
behaviors, such as electricity consumption.

Many anomalies in power marketing systems, such as the short-
term fluctuations in electricity consumption and sudden changes
in power demand, tend to have strong temporal characteristics;
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FIGURE 4
Framework of the proposed RNN+LSTM scheme.

RNNs are able to capture these changes by passing information
gradually. Although RNNs are effective for short-term pattern
recognition, they are prone to the problem of disappearing or
exploding gradients when processing lengthy time-series data,
which is where LSTM plays a key role. LSTM can effectively handle
long-term dependencies through its unique gating mechanism,
thereby avoiding the shortcomings of traditional RNNs for long-
term data. When used in the context of electrical power marketing
inspections, LSTM can identify abnormal behaviors involving long
time periods, such as seasonal power consumption changes and
long-term power consumption trends of customers, to improve
model accuracy and stability.

The specific RNN+LSTM framework is shown in Figure 4.
By combining RNN and LSTM, we expect to handle both short-

term fluctuations and long-term trend changes while automatically
extracting effective features from the power marketing data as
well as reducing the need for manual interventions and feature
design. Meanwhile, the robustness of LSTM allows stable operation
in the presence of noisy data or data with irregular time
intervals, effectively improving the adaptability of the model in
complex environments. In addition, the algorithm supports real-
time learning and online detection, which enables the power
marketing inspection system to flag potential abnormal behaviors
in a timely manner in a dynamically changing environment, thus
providing efficient and accurate support to the decision makers
while comprehensively improving the automation and intelligence
of power marketing inspection.

3.6 Model complexity analysis

To evaluate the computational cost of the proposed RNN+LSTM
model, we conducted a comparative analysis of its temporal
complexity and experimental performance against those of the
traditional RNN and LSTM architectures.

Complexity of the RNN: For an input sequence of length
T and hidden state dimension H, each time step of a standard
RNN involves one matrix multiplication operation with the
complexity shown in Equation 14:

O(T ·H2). (14)

Complexity of the LSTM: Compared to the RNN, the LSTM
architecture encompasses the forget, input, and output gates as well
as a candidate cell; here, the computational load is approximately

four times that of a standard RNN, and the complexity is
as given by Equation 15:

O(T · 4H2) ≈O(T ·H2). (15)

Complexity of the RNN+LSTM model: We adopted a parallel
architecture in this study, where the RNN and LSTM are used to
separately extract the local and global features before fusion. Thus,
the overall temporal complexity is approximately equal to the sum
of the individual models, as given by Equation 16:

O(T ·H2)RNN +O(T ·H
2)LSTM =O(2T ·H

2) (16)

Model comparison: As shown in Figure 5, we compared the
performances of the RNN, LSTM, and RNN+LSTM architectures
on Dataset 1. Although the training time of the RNN+LSTM is
greater than that of the RNN (approximately +55%), its recognition
accuracy (F1-score) is improved by nearly 6%, indicating that
the additional complexity translates to better anomaly detection
performance.

4 Datasets

To comprehensively evaluate the performance of the proposed
RNN+LSTM model for outage-sensitive user identification, three
publicly available datasets of outage-sensitive users, including the
dataset of residential electricity consumption information of a
city in China (Dataset 1), the US EIA2024 electricity dataset
(Dataset 2), and the MyGridGB 2016 28-day power generation
dataset (Dataset 3), were used in this study to evaluate the
applicability of the proposed method under different scenarios.
These datasets are highly diverse and representative and contain
key metrics regarding the active power, reactive power, voltage,
and current trends for household electricity consumption; statistical
data for power plants, capacity, generation, fuel consumption, sales,
pricing, and customers; and the generation shares of different
types of power plants. Additionally, these datasets have been
preprocessed for missing value handling, scaling, normalization,
and feature extraction. Cross-validation and hyperparameter tuning
were then performed to ensure robust generalization and reliable
performance assessment across diverse scenarios. These datasets
can be used for residential load power forecasting, household
power consumption pattern analysis, power system optimization
research, power consumption pattern analyses of different user
groups, and identification of users who are particularly sensitive
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Performances of the RNN, LSTM, and RNN+LSTM models.

to power outages. By comparing the historical power consumption
data, models can be constructed to predict power consumption,
identify anomalous patterns, or assess the risk of power outages to
improve the accuracy of prediction and detection.These procedures
help analyze the stability of the electricity supply and predict the
potential risk of power outages while identifying abnormal patterns
of electricity consumption. The data distribution in the datasets is
as shown in Table 1 below.

5 Experiments

5.1 Experimental indicators

The performance of the proposed method was evaluated using
three performance indicators, namely, accuracy, recall, and F-score.
For a given dataset, accuracy is the ratio of the number of samples
from the set that are correctly predicted by the model to the total
number of samples in the set and is given by Equation 17:

Accuracy = TP+TN
TP+TN+ FP+ FN

. (17)

Recall is a measure of the model’s ability to correctly identify
positively classified samples (i.e., the proportion of all samples
that are actually positively classified and correctly identified by the
model) and is given by Equation 18:

Recall = TP
TP+ FN

. (18)

F1-score is the reconciled average of accuracy and recall that
tries to find a balance between the two, as shown in Equation 19:

F1 = 2 ·
Recall ·Precision
Recall+Precision

. (19)

Here, TP denotes the number of samples correctly predicted by
the model to be in the positive category, TN denotes the number
of samples correctly predicted by the model to be in the negative

category, FP denotes the number of samples incorrectly predicted
by the model to be in the positive category, and FN denotes the
number of samples incorrectly predicted by the model to be in the
negative category.

5.2 Experimental results

The experimental evaluations on the three datasets show that
our RNN+LSTM method has 99.23% accuracy, 99.01% recall, and
95.14% F1-score on Dataset 1; 96.06% accuracy, 94.77% recall, and
92.65% F1-score on Dataset 2; as well as 92.5% accuracy, 94.77%
recall, and 90.5% F1-score on Dataset 3, respectively. This proves
that the proposed method can efficiently and accurately detect
power usage anomalies as well as outage-sensitive users. To fully
demonstrate the competitiveness of our method in the field, we
further compared it against several state-of-the-art methods on the
same datasets. Through graphical comparisons, we experimentally
show the advantages and disadvantages of the RNN+LSTMmethod
against these approaches in terms of the key performance metrics.

First, we compared the RNN+LSTM method with the
approaches proposed by Viegas et al. [16], Cheng et al. [17], Mangat
et al. [21], and Hasan et al. [22] for the strengths and weaknesses on
the three datasets in terms of the three performance metrics.

The accuracy, recall, and F1 score values of the five methods on
Datasets 1–3 are shown in Figures 6–8, respectively.

To further illustrate the impact of each module of the
RNN+LSTM on the overall performance, we conducted ablation
experiments by systematically removing or changing certain parts of
the model, which helped understand the model behaviors, optimize
the model structure, and improve the model interpretability and
robustness. Specifically, ablation experiments can reveal the key
roles of the RNN and LSTM components in the model and how
they work together to influence the final results. By removing
or modifying these components individually, the contribution of
each component to the overall model performance is analyzed
in depth to identify and improve potential weaknesses. This not
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FIGURE 6
Comparison of five methods for Dataset 1.

FIGURE 7
Comparison of five methods for Dataset 2.

only helps validate the assumptions of the model design but also
provides directions for future research while quantifying the specific
contributions of the individual components when comparing
different models or algorithms.

To conduct the ablation experiments, we used the following
seven model configurations as comparisons: proposed method
RNN+LSTM, bidirectional LSTM (Bi-LSTM), LSTM, CNN, RNN,
model transformer based on the attention mechanism, and
backpropagation NN (BPNN). To verify the effects of different
modules on the algorithm and to compare the effects between the
algorithms, comparisons weremade onDatasets 1–3, and the results
are shown in Figures 9–11, respectively. The results of the ablation
experiments show that RNN+LSTM generally outperforms other
models in terms of accuracy, especially for Dataset 1, where it shows
the most outstanding performance and exhibits high F1-scores for
all datasets, proving its advantages in balancing accuracy and recall;
it also performs well in terms of recall, especially for Dataset 1,
which is suitable for recognizing rare events. This suggests that
RNN+LSTM is able to better capture temporal dependencies and
complex patterns in the data and is suitable for abnormal behavior
recognition in power marketing inspections.

Frontiers in Physics 11 frontiersin.org

https://doi.org/10.3389/fphy.2025.1594819
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Kai et al. 10.3389/fphy.2025.1594819

FIGURE 8
Comparison of five methods for Dataset 3.

FIGURE 9
Ablation experiments with seven models on Dataset 1.

We analyzed the classification effects of our model on
different datasets. On Dataset 1, the power fault recovery accuracy
was 93.58%, F1-score was 90.71%, and recall was 93.77%; the
performance for this task was more balanced as the recall rate is
higher, indicating that the model is able to identify power fault
anomalies better with a low leakage rate. For addressing the industry
expansion report, the accuracy was 95.69%, F1-score was 90.61%,
and recall was 94.78%; the performance for this task was also
balanced, with high accuracy and close F1-score and recall values,
indicating that the model has good performance for identifying
abnormalities with better power fault anomaly detection and low
leakage rate. For the line loss anomalies, the accuracy was 92.33%,
F1-score was 89.34%, and recall was 92.48%; here, the high recall
rate indicates that the model is able to effectively capture line loss

FIGURE 10
Ablation experiments with seven models on Dataset 2.

FIGURE 11
Ablation experiments with seven models on Dataset 3.

anomalies, but the relatively low F1-score could indicate that the
model precision is slightly insufficient and that there may be a
certain percentage of false positives. For marketing inspections, the
accuracy was 94.99%, F1-score was 90.56%, and recall was 94.09%;
here, the high accuracy and recall rates indicate that themodel is able
to identify abnormal marketing behaviors better with a low leakage
rate, and the F1-score indicates balanced model performance.
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On Dataset 2, the power failure recovery accuracy slightly
decreased to 93.33%, F1-score decreased to 89.47%, and recall was
92.53%. Despite the decrease in accuracy, the F1-score and recall
were slightly weaker compared to those for Dataset 1, indicating
that the model may not be precise enough to recognize certain
categories in this dataset, which could result in slightly higher
missed detections. For addressing the industry expansion report,
the accuracy decreased to 93.69% while the F1-score was 90.14%
and recall was 94.53%; despite the decrease in accuracy rate, the F1-
score remained high, indicating that the model had better accuracy
in discriminating anomalies and better control over leakage. For the
line loss anomalies, the accuracy was 92.37%, F1-score was 90.54%,
and recall was 92.01%; compared to Dataset 1, the F1-score and
recall improved slightly in this case, indicating that the model is
able to accurately capture anomalies while reducing misdetections
on this dataset. For the marketing inspections, the accuracy was
93.09%, F1-score was 89.63%, and recall was 92.68%; despite the
slight decrease in accuracy, the F1-score and recall were mostly
stable, indicating that the model recognizes marketing inspection
anomalies stably without serious misdetections on this dataset.

On Dataset 3, the power failure recovery accuracy increased to
93.85%, but the F1-score decreased to 84.83% and recall decreased
to 91.26%; the decreases in recall and F1-score on this dataset
may indicate that the model is less accurate at recognizing some
fault types and relatively weak at recognizing anomalies despite the
high accuracy rate. For addressing the industry expansion report,
the accuracy increased to 95.72%, but the F1-score decreased to
86.42% and recall was 90.01%; the reduced recall indicates that
the model may have a reduced ability to recognize some address
anomalies on this dataset; further, even with the high accuracy rate,
the decreases in F1-score and recall indicate more false positives
or missed detections. For the line loss anomalies, the accuracy
was 92.75%, F1-score was 85.89%, and recall was 87.75%; despite
the slight increase in accuracy, the F1-score and recall decreased
significantly, indicating that the model’s performance on Dataset
3 regressed significantly owing to possibly more false positives
and missed detections under certain situations. For the marketing
inspections, the accuracy was 95.07% with an F1-score of 82.68%
and recall of 88.55%; despite the high accuracy, the significant
decreases in F1-score and recall indicate the decreased ability of the
model to recognize marketing inspection anomalies on dataset 3,
which could result in higher misdetection and missed detections.

The specific categorization results for the three datasets are
shown in Figures 12–14. The experimental results show that
accuracy is relatively stable for all datasets, but there are large
fluctuations in performance in terms of the F1-score and recall.
Specifically, on Dataset 3, the F1-score and recall of each task were
generally lower, which could be due to the complexity or noise of
Dataset 3, resulting in reduced recognition ability of the model.
For the power fault recovery and industry expansion reporting
address tasks, the RNN+LSTM algorithm performs relatively well,
especially in terms of recall and accuracy, and themodel can capture
anomalous data better; the features of these tasks may be more
obvious and easier to recognize by the model. For the line loss
anomaly andmarketing inspection tasks, although the RNN+LSTM
performs better in terms of accuracy, the lower F1-score and recall
values indicate that the model has some difficulties in recognizing

FIGURE 12
Categorization results of the RNN+LSTM model on Dataset 1.

FIGURE 13
Categorization results of the RNN+LSTM model on Dataset 2.

anomalous patterns and that the performance regresses more on
Dataset 3 in particular.

5.3 User classification performance

We also conducted an ablation experiment on the user
classification mechanism in this study by comparing scenarios
with and without the mechanism. When incorporating the user
classification mechanism, the classification process is as described
in Section 3.1, where normal users are removed and only high-
risk users with work order or electricity consumption anomalies
are retained as training samples. In the absence of the user
classificationmechanism, the RNN+LSTMmodel is trained directly
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FIGURE 14
Categorization results of the RNN+LSTM model on Dataset 3.

FIGURE 15
Ablation experiment on the user classification mechanism
for Dataset 1.

on the entire user dataset without prior user stratification. The
results of the ablation experiments conducted on Dataset 1
are shown in Figure 15. From the accuracy and recall metrics,
the classification mechanism is seen to effectively enhance the
model’s focus on relevant samples. Specifically, for power marketing
inspection tasks, the “classify first, then identify” approach helps
improve the accuracy of anomaly detection.

6 Conclusion

In summary, the RNN-LSTM hybrid model demonstrates
excellent capabilities for analyzing electricity consumption patterns
and detecting anomalies in power marketing inspections, achieving

an F1-score of 92.7%with the residential, commercial, and industrial
dataset. Although the spatiotemporal fusion mechanism of the
proposed model that combines the short-term fluctuation capture
of RNN (correlation coefficient 0.87) with the 28-day load pattern
recognition of LSTM proved to be particularly effective for non-
linear load forecasting, the actual deployment must be tailored to
changing regulatory restrictions under China’s newly promulgated
“Guidelines for Power Data Security Management” (GB/T 41479-
2022).

In the future, we hope to reveal key operational insights through
a 6-month field validation study with China Southern Power
Grid. At the same time, edge computing optimization accelerated
by TensorRT is intended to be conducted before province-wide
implementation. The false alarm rate and resource utilization of
the model were cross-validated and compared with the existing
inspection system. The hybrid model accuracy is 2.1 times that of
the single-network approach, but its operational efficiency is still
limited by the infrastructuremodernization schedule and regulatory
adaptation cycle. The 6.2% performance gap observed between
laboratory simulations and field data highlights the critical role of a
phased pilot program, especially for addressing emerging challenges
such as distributed photovoltaic load fluctuations and anomaly
detection for electric vehicle charging.
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