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Energy system power outage
sensitive user identification
model based on CNN+LSTM

Kai Li*, Huaquan Su, Lanfang Li, Zhiqing Song and Zhixin Zhang

Guangzhou Power Supply Bureau, Guangdong Power Grid Co., LTD., Guangdong, China

In the context of deep integration of CPSS (Cyber Physical Social Systems),
energy system data presents multi-source, complexity, and dynamic
interactivity. To solve the problemof identifying power outage sensitive users, we
propose a power outage sensitive user analysis and identification method based
on CNN+LSTM. Firstly, perform preprocessing such as cleaning and structuring
of power load data to ensure data quality; Next, conduct correlation analysis
to explore the intrinsic relationship between the factors and characteristics
affecting power load and the sensitivity to power outages; Then, the coefficient
correctionmethod is used to extract the user load curve and optimize the feature
weights to enhance the adaptability of the model; The final design is a power
outage sensitive user recognitionmodel based on CNN+LSTM, which integrates
time series and spatial features to achieve accurate recognition of power outage
sensitive users. The experimental results show that in multiple experiments
covering multidimensional data such as household electricity consumption
and energy consumption, this method effectively improves the accuracy of
anomaly detection, with an average power outage sensitive user recognition
rate of 95.93%. It performs well in key indicators such as recall rate and F1
score, providing strong support for energy system optimization management
and user service.
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1 Introduction

Power outage sensitive users refer to those users who have special requirements for the
continuity and stability of power supply. Once they encounter power outages, they may
face serious economic losses, social impacts or safety risks. These users can be roughly
divided into several categories: medical facilities such as hospitals and emergency centers,
which rely on electricity to maintain the operation of life support systems and other
critical medical equipment; financial institutions including banks and stock exchanges,
where power outages may lead to trading halts, data loss and huge financial losses; traffic
control systems, such as airports, train stations and traffic lights, where power outages may
cause traffic chaos or even accidents; communication networks, where power outages affect
services such as telephones and the Internet and hinder information transmission; industrial
production, especially chemical plants and pharmaceutical companies, where sudden
power outages may cause production line pauses, product quality damage or dangerous
chemical leaks; special groups in residential areas, such as families usingmedical equipment
such as ventilators, where power outages directly threaten people’s lives and health.
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The distribution characteristics of sensitive users and
their response patterns to power outages are a complex and
multidimensional problem involving factors such as industry type,
geographic location, power outage duration, and economic losses.
Identifying and classifying these sensitive users is of practical
significance to power companies. Under the CPSS framework,
smart grids provide new opportunities for optimizing power
outage management by integrating information systems (such
as big data analytics, IoT technology), physical systems (grid
infrastructure), and social systems (user behavior and its socio-
economic impact). Recent studies have shown that the integration
of IoT, big data, andmachine learning technologies can deeply mine
user behavior characteristics, identify power outage sensitive users,
optimize power grid resource allocation, and improve user service
quality. With the development of information technology, power
companies have accumulated massive data resources, including
electricity consumption behavior, service interaction information,
and equipment operation status. Using big data, machine learning,
and deep learning algorithms to conduct in-depth analysis of these
data can effectively capture the consumption characteristics of
power users, identify user groups that are more sensitive to power
outages, optimize power outage arrangements, reduce unnecessary
power outage time, and improve fault repair strategies. It can more
accurately predict which regions and users are most likely to be
affected by power outages, and take measures in advance to mitigate
potential damage. In addition, big data technology can help us
identify weak links in the power grid, optimize the allocation
of power resources, and ensure that the power supply needs of
the most important users are prioritized under limited resource
conditions. At the same time, through a deep understanding
of user behavior patterns, power companies can provide more
personalized and targeted services, such as customized power
outage warnings and emergency response plans, to help users
better prepare for and respond to possible power outages. Build
a power outage sensitivity prediction model and use machine
learning, deep learning and other methods to predict which users
may show higher sensitivity in power outage events. According to
the user’s sensitivity classification, provide personalized service
solutions, such as advance notification and rapid response, to
reduce user dissatisfaction and improve the overall power supply
service quality. Through collaborative optimization of the CPSS
framework, this study aims to improve the accuracy of identifying
power outage sensitive users through data-driven methods, reduce
socio-economic losses, and enhance user experience.

In order to solve the problem of difficulty in identifying power
outage-sensitive users in energy systems, this paper proposes a
method for analyzing and identifying power outage-sensitive users
using big data technology.This method first preprocesses the power
load data, including cleaning and structuring, to ensure the quality
of the data. Then, the factors affecting the power load and the
intrinsic relationship between the power load characteristics and
power outage sensitivity are mined through correlation analysis.
Then, the k-means clustering algorithm is used to extract the user
load curve, and the coefficient correction is performed to optimize
the feature weights to improve the adaptability of the model. Finally,
a detection model combining CNN and LSTM is constructed,
which can integrate time series and spatial features to accurately
identify power outage-sensitive users. Experimental results show

that this method significantly improves the accuracy of anomaly
detection and the recognition rate of power outage-sensitive users,
thereby providing strong support for the optimization management
of energy systems and the improvement of user experience.

2 Related work

In recent years, big data-based energy system analysis has made
progress in identifying outage-sensitive users. Machine learning
and data mining techniques are used to build models, assess user
sensitivity and optimize outage management. These studies also
focus on real-time data analysis to provide early warning of potential
outage risks.

Forootan et al. reviewed the application ofmachine learning and
deep learning in energy systems in [1].They studied the role of AI in
system optimization, prediction and fault detection, and proposed a
variety of new algorithms to provide guidance for related research.

In terms of power user classification and behavior analysis,
Chicco et al. compared the effectiveness of different clustering
algorithms for power customer classification in [2] and found that
the improved follow-the-leaders algorithm and the hierarchical
clustering algorithm using the average distance link standard were
more effective for power customer classification. Huang et al.
proposed a core household electricity type recognition method
based on deep forest in [3], which improved the generalization
ability through feature replacement and sampling balance, and
the recognition accuracy reached 94%. Li et al. proposed an
intelligent classification framework for power consumption
behavior combining improved k-means and LSTM in [4], which
solved the limitations of a single analysis method. Chen et al.
proposed an improved K-means clustering method in [5], which
used K-D tree to optimize the nearest neighbor search and improve
the unsupervised classification performance, so that the SC of the
clustering results increased by 39.1%, CH increased by 32.9%, and
DB decreased by 11.9%. Li et al. proposed an adaptive weighted
feature K-means affinity propagation (AP) clustering algorithm in
[6], which is helpful for load forecasting, energy theft detection and
differentiated services. Song et al. proposed a method for analyzing
electricity consumption behavior based on stacked autoencoders
and clustering in [7]. Their AFS-SAEUL algorithm reduced DBI by
33.24% and increased SC by 20.7% in feature selection. The UBA-
AFSIC model achieved a minimum DBI of 0.7156 and a maximum
SC of 0.4289 in clustering performance. Kaur et al. analyzed the
characteristics of consumer behavior through clustering in [8],
reduced the dimension of time series, and made it suitable for
large-scale data.

In terms of user power consumption prediction and abnormal
power consumption behavior detection, SaadSaoud et al. proposed
a hybrid model based on SWT and deep transformer in [9],
which has better prediction performance than existing methods.
Compared with the LSTM-SWT model, the average RMSE, MAE
and MAPE values are increased by 48%, 47% and 51% respectively.
Aurangzeb et al. used a bidirectional LSTM network based on
time embedding for household load forecasting in [10]. The
T2VBiLSTM model performed best, with an average MAPE of
74.90% on weekends and 79.42% on weekdays. Michalakopoulos
et al. proposed a machine learning-based framework in [11] for

Frontiers in Physics 02 frontiersin.org

https://doi.org/10.3389/fphy.2025.1594845
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Li et al. 10.3389/fphy.2025.1594845

clustering residential power load profiles to enhance demand
response plans, and used xAI to enhance the interpretability of
the solution, thereby improving the scalability and versatility of
the solution. Liu et al. proposed a method combining adaptive
noise-assisted complete ensemble empirical mode decomposition
(CEEMDAN) with long short-term memory (LSTM) network to
predict user power consumption in [12]. Experimental verification
showed that the proposed prediction method reduced the error by
21%, 30%, and 13% respectively compared with the LSTM, RNN
and EMD-LSTM prediction methods. Chen et al. proposed a short-
term power load forecasting model (STLF) based on deep residual
network in [13]. Tests and comparisons showed that the model
provided accurate predictions and exhibited high generalization
ability. Lu et al. introduced amalicious traffic analysis method based
on time intervals [14]. Li et al. proposed a hybrid short-term load
forecastingmethod for smart grids in [15], which combinedmultiple
linear regression (MLR) and long short-term memory (LSTM)
neural network, namely, EEMD-LSTM-MLR. Compared with SVR,
BPNN, LSTM andMLSTMmethods, this method performed better
in prediction accuracy. Pan et al. proposed a high-dimensional
energy consumption anomaly detection method based on CNN, Bi-
LSTM and attention mechanism in [16]. The experimental results
show that the MAE and MAPE are significantly reduced using this
method, indicating that the model trained using historical high-
dimensional energy consumption information can effectively reflect
the user’s electricity consumption behavior. Lu et al. proposed an
intrusion detection method based on MPNN [17]. Wang et al.
proposed an unsupervised abnormal power consumption detection
model based on improved Canopy-Kmeans and isolation forest
algorithm in [18], with an accuracy of 88.6%, a recall rate of 83.42%,
and an F1 score of 0.8593.

In terms of power outage sensitive user analysis and
identification, Wang et al. [19] established a user-centric smart grid
spatiotemporal reliability assessment model to provide theoretical
support for customized power supply services. Shuai et al. [20]
used statistical analysis and data mining methods to analyze the
power outage sensitivity of users and used a decision tree model to
classify users. The accuracy and F1 score of the decision tree model
were 99.77% and 98.40%, respectively, which has better recognition
performance than the SVM and Logistic regression models. Lu
et al. [21] proposed an adversarial example defense algorithm for
intelligent driving. Li et al. [22] proposed a low-voltage distribution
network power outage sequence optimization method considering
user importance to reduce economic losses from power outages. In
order to improve the accuracy of power user sensitivity classification,
Ding et al. [23] optimized and improved the decision tree algorithm
based on the ant algorithm and constructed a power user sensitivity
analysis model. Experimental results show that the average recall
rate and F1 score of thismethod are 91.62% and 92.06%, respectively.

In response to the requirements of the CPSS framework, recent
research has further emphasized the interaction between user
behavior and the physical system of the power grid. Zhang et al. [24]
proposed a hybridmodel based on LSTM and attentionmechanism,
combined with CPSS framework to predict power outage risk, with
a MAPE as low as 8.2%, but its single region dataset limits its
universality. Liu et al. [25] used graph neural network (GNN) to
analyze user outage sensitivity, with a classification accuracy of
92.5%, which is better than traditional methods, but did not fully

explore cross regional data features.Wang et al. [26] proposed a real-
time power outage management method based on reinforcement
learning, which reduces recovery time by about 20%, but is more
suitable for dynamic decision-making rather than user classification.

Although the above research provides diverse algorithms
and models, some methods rely on expert knowledge, which
limits objectivity and universality. Some algorithms have high
computational complexity, insufficient real-time performance,
and lack long-term field application evaluation when processing
large-scale datasets. This study overcomes the limitations of
traditional methods, improves the generalization ability and real-
time performance of the model through multi-source data fusion,
optimized feature extraction, and CNN+LSTM model. It is in
line with the hot topics of user behavior analysis and power
outage management under the CPSS framework, and provides new
theoretical and practical support for smart grid optimization.

Innovations of this paper.

1. Multi-source data fusion: Fusion of residential electricity
consumption data of a city in China, EIA 2024 electricity data
of the United States, and MyGridGB 2016 power generation
data, to build a cross-regional, multi-dimensional analysis
framework, to explore the correlation between power load and
power outage sensitivity, and to break through the limitations
of a single data set. Deepen the user grid interaction analysis
under the CPSS framework, which is superior to single
regional research.

2. Optimized feature extraction: k-means clustering is used
to extract user load curves, and coefficient correction is
introduced to optimize feature weights, improve the model’s
adaptability to complex electricity consumption behaviors, and
provide high-quality input for the CNN+LSTMmodel.

3. CNN+LSTM fusion model: Propose a CNN+LSTM fusion
model that combines time series and spatial features to
significantly improve anomaly detection accuracy and power
outage sensitive user recognition rate, with better accuracy and
generalization ability, providing precise support for intelligent
grid optimization management under CPSS background.

3 Our approach

3.1 Overall structure

We use power user load curve data to extract typical load
patterns, predict user loads based on the load patterns, explore how
to detect power consumption anomalies by comparing predicted
loads with actual loads, and study and consider the impact of
temperature and humidity on load forecasting. We propose a power
consumption anomaly detection method based on CNN+LSTM for
the identification and analysis of power outage-sensitive users.

The specific process is shown in Figure 1.
First, data selection is performed to obtain user power load data

from power terminals, including temperature, humidity, and power
user load data at corresponding times. Then, data preprocessing
is performed. The data obtained from power terminals may have
missing values. At the same time, text data needs to be quantified
and normalized. Then, correlation analysis is performed on power
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FIGURE 1
Power outage sensitive user identification based on CNN+LSTM algorithm.

load factors. Power load is affected by many nonlinear factors. Grey
correlation analysis is used to determine the key factors affecting
load changes and the degree of influence on load results. Load
pattern extraction is performed, and the k-means algorithm is used
to extract the user’s typical load curve. Seasons, holidays, weekdays,
and weekends are considered in this step. The coefficient of the
typical load curve is corrected, and the grey correlation analysis
method is used to determine the load influencing factors and obtain
the temperature correction coefficient of the typical load curve.
Finally, the CNN+LSTM model is used to detect power anomalies
and identify power outage-sensitive users for the load curve to be
tested and the corrected load curve.

3.2 Data preprocessing

Preprocess the data collected from the electricity consumption
terminal: remove the missing values of a single point; replace the
identification data with numerical values.

The commonly used Z-Score standardization method is
used. Z-Score standardization is also called standard deviation
standardization. It standardizes the data based on the mean and
standard deviation of the original data. Let x = (x1,x2, · · ·..,xm),
establish the mapping f, as shown in Formula 1.

xk→ f(xk) =
xk−∗̄x

s
(1)

x = 1/x(x1 + x2 + · · · + xm)

s = sqrt(((x1 − x)n2+ (x2 − x)n2+ ...(xm − x )n2)/m ) represents the
mean and standard deviation of the original data, xk represents the
k data point in the original data set, and f(xk) represents the data
point after standardization.

Then the load data is processed.
For the CNN+LSTM model, the input sample data must be

quantified data, while day types, seasonal attributes, etc. are all
unstructured data and need to be quantified.

The analysis of power load data shows that the loads on
weekdays fromMonday to Friday are very similar, which is different
from the loads on rest days such as Saturday and Sunday. At
the same time, holidays and seasons also have a great impact on
power loads.

3.3 Correlation analysis

The analysis of external factors affecting load refers to the
correlation analysis between the factors that play a dominant role in
load changes and the load change curve. The advantage of the grey
correlation analysis method is that it has no rigid requirements on
the sample size and regularity, and has a small amount of calculation
and a simple algorithm. It can quantitatively analyze the correlation
between external factors and load changes, and is very suitable for
power load characteristic analysis under big data.

Grey correlation analysis is a data analysismethod based on grey
system theory.Themeasure of the correlation between the factors of
two systems that change over time or between different objects is
called correlation. If the correlation is high, the two quantities have
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a closer relationship.When one quantity changes, the other quantity
is more affected. Otherwise, the correlation is low.

The data sequence reflecting the system data characteristics is
taken as the reference sequence, and the sequence {x1,x2, ...,xp},
which has an impact on the system, is taken as the comparison
sequence. Suppose there are p comparison sequences, the reference
sequence is x0, and the influence factor ξi(q) between the reference
sequence and the comparison sequence is shown in Formula 2.

ξ1(k) =
min

l
min
s
|x0(q) − xl(q)| + 0.5max

l
max

s
|x0(q) − xl(q)|

0.5max
l

max
s
|x0(q) − xl(q)|

(2)

Among them, ξ1(k) represents the correlation coefficient between
the k comparison sequence and the reference sequence, x0(q)
represents the value of the reference sequence at the q point, xl(q)
represents the value of the l comparison sequence at the q point,
min

l
min
s
|x0(q) − xl(q)| is the minimum difference between the two

levels, max
l

max
s
|x0(q) − xl(q)| is the maximum difference between

the two levels, and 0.5 is the resolution coefficient, which generally
varies between 0 and 1.

Since the comparison series and the reference series have a
corresponding correlation coefficient at N points, the average value
is taken to obtain the final correlation degree, as shown in Formula 3:

rl =
1
P

P

∑
q=1

ξl(q) (3)

Among them, rl is the final correlation between the l comparison
sequence and the reference sequence, P is the total number of
comparison sequences, and ξl(q) is the correlation coefficient
between the l comparison sequence and the reference sequence at
the q point.

3.4 Typical load pattern extraction

The k-means clustering algorithm is used to extract the typical
load curve of the user. The k-means clustering algorithm is often
used to extract the power load pattern due to its advantages of
low algorithm complexity and high speed to meet the processing
time requirements of the interaction between the power grid
and the user.

The k-means algorithm is a partition-based clustering method
that uses k as a parameter to divide n objects into k clusters so that
the similarity within a cluster is high, while the similarity between
clusters is low. The similarity is calculated based on the centroid of
the cluster (the average value of the objects in a cluster).

Input: parameter k, data set N (n objects)
Output: k clusters Ck

Step 1: arbitrarily select k objects {w1,w2,…,wk} as the initial cluster
centers, where wj = xi, j ∈ {1,2, ...,k}, i = {1,2, ...,n};

Step 2: calculate the distance d(xi,xCj) between each sample and the
cluster center xCj of clusterCj, if d (xi,xCj) =min{d (xi,xCj),j
= 1,2,…,k}, then xi ∈ Cj;

Step 3: update the average value of the cluster, i.e., the cluster center;

Step 4: calculate the criterion function square error function E =
∑kj=1∑p∈Cj

|p− xCj
|
2
. Where k is the number of clusters, i.e.,

the number of clusters, p is the point in space, and xCj
is the average value of cluster Cj (p and xCj are both
multidimensional);

Step 5: if the E value converges, the algorithm terminates;
otherwise, return to step 2.

3.5 Coefficient correction

The k-means algorithm is used to extract the user’s typical
load curve, and the data with the greatest similarity to the
typical load curve after using the algorithm is obtained. They and
the corresponding temperature and humidity data are extracted
for research, and the relationship between the load and its
corresponding temperature and humidity is analyzed.

Through correlation analysis, we can see that there is a
positive correlation between load and temperature, and there is
a linear relationship between the two. Let the load be L and the
temperature be T.

Through experimental measurement and theoretical
calculation, the most pleasant indoor temperature and humidity
are: 18°C–25°C and 30%–80% in winter; 23°C–28°C and 30%–60%
in summer. Based on this, when exploring the relationship between
load and temperature, the daily average humidity is controlled to be
30%–60%, which means that the effect of humidity on load can be
ignored within this humidity range.

Therefore, the temperature correction model obtained through
experimental calculation is as follows Formula 4:

L = α
100

T+ LT0(20 < T < 40) (4)

Among them, α is the correlation between load and temperature, T
is the maximum temperature of the day, and LT0 is the average load
value at 20°C.

Through correlation analysis, we can see that there is a negative
correlation between load and humidity, and a linear relationship
between the two. Let the load be L and the humidity be H.

It can be seen from the indoor air quality standard that
when exploring the relationship between load and humidity, the
maximum daily temperature can be controlled to 20°C∼30°C, that
is, it is believed that within this temperature range, the load ismainly
affected by humidity.

Therefore, the humidity correction model obtained through
experiments is as follows Formula 5:

L = −
β

1000
H+ LH0(30 <H < 70) (5)

Among them, β is the correlation between load and humidity, H is
the daily average humidity, and LH0 is the average load value at 30%
relative humidity.
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3.6 Power outage sensitive user
identification method based on
CNN+LSTM

The power outage sensitive user identification method based
on CNN+LSTM is a deep learning technology that combines
convolutional neural networks (CNN) and long short-term
memory networks (LSTM) to identify and predict abnormal power
consumption behaviors in power systems and identify power outage
sensitive users. The power consumption anomaly detection method
combining CNN and LSTM can give full play to the advantages of
the two network structures to improve the accuracy and efficiency of
detection. The CNN part is responsible for capturing local features
in power data, such as sudden changes or periodic fluctuations
in power consumption patterns, which helps to identify possible
abnormal patterns.The LSTMpart focuses on processing time series
data and can learn the time dependence of power consumption
behavior and identify long-term trends and seasonal changes,
which is crucial to understanding the dynamic changes in power
consumption patterns. By integrating these two networks, themodel
can simultaneously consider spatial features and temporal dynamics,
thereby more comprehensively understanding the complexity of
power consumption.

In addition, this combined approach can automatically learn
features from raw data, reducing reliance on manual feature
engineering, making the model more flexible and adaptable. When
processing high-dimensional time series data, the gatingmechanism
of LSTMhelps prevent the gradient vanishing problem, allowing the
network to learn long-termdependencies.Thehierarchical structure
of CNN can capture local spatial correlations in the data, which is
very useful for identifying local abnormal patterns.

After preprocessing the power data, analyzing the correlation,
extracting typical load patterns, and correcting coefficients, we
can detect power consumption anomalies and identify power
outage-sensitive users. The corrected typical load curve and
the load data to be tested are input into CNN for feature
extraction, and then the extracted feature vector is input into
LSTM to capture time dependency. The outputs of CNN and
LSTM are fused to output the final sensitive user identification
result. The CNN formula is as follows:

F = CNN(x)

Where x is the input data, F is the feature vector obtained through
the convolution layer, pooling layer, and fully connected layer. It can
be obtained through the following parts.

The convolution layer is the core of CNN. It uses the convolution
kernel to extract the features of the input feature map, which can be
expressed by the following formula.

(I∗K)(x,y) = ∑
m
∑
n
I(m,n)K(x−m,y− n)

Where I is the input feature map, K is the convolution kernel, (x,y)
is the location of the output feature map, and m,n is the coordinate
where the convolution kernel slides on the input image.

The pooling layer can reduce the spatial dimension of the feature
map, thereby reducing the amount of calculation. The common
maximum pooling operation is as follows.

P(i, j) =max
m,n

I(i · s−m, j · s− n)

Where P is the output after pooling, I is the input feature map, s is
the step size, andm,n is the coordinate within the pooling window.

The fully connected layer can integrate the features extracted by
the convolutional layer and the pooling layer, perform nonlinear
transformation, reduce dimensionality, generate output, etc. The
output can be calculated by the following formula.

O = f(W ·A+ b)

WhereO is the output,A is the input feature,W is the weight matrix,
b is the bias, and f is the activation function, such as Sigmoid,
Tanh, ReLU, etc.

The LSTM formula is as follows.

Y = LSTM(F)

F is the output of CNN, Y is the feature vector obtained by LSTM.
The specific formula of LSTM is as follows Formula 6.

ft = σ(W f[ht−1,xt] + b f)

it = σ(Wi[ht−1,xt] + bi)

ot = σ(Wo[ht−1,xt] + bo)

C̃t = tanh(WC[ht−1,xt] + bC)

Ct = ft ∘Ct−1 + it ∘ C̃t

ht = ot ∘ tanh(Ct)

(6)

Where ft, it, ot is the activation function of the forget gate, input gate
and output gate respectively, σ is the sigmoid activation function,
W f ,Wi,Wo,WC is the weight matrix, b f , bi, bo, bC is the bias term, ∘
is the element-wise multiplication, C̃t is the new candidate value, Ct
is the cell state, and ht is the output.

The input of CNN and LSTM are fused to get the final output
result is as Formula 7.

Z =Wo ·Y+ bo (7)

WhereWo is the weight matrix and bo is the bias term.
Set a threshold θ. If |Z| > θ is considered abnormal power

consumption, it is a sensitive user. Otherwise, it is normal. The
normal consumption is as Formula 8.

Anomaly =
{
{
{

True if|Z| > θ

Falseotherwise
(8)
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FIGURE 2
CNN+LSTM model structure for power outage sensitive user identification.

The overall model is as Formula 9.

{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{
{

xk→ f(xk) =
xk − x
s

ξ1(k) =
min

l
min
s
|x0(q) − xl(q)| + 0.5max

l
max

s
|x0(q) − xl(q)|

0.5max
s

max
s
|x0(q) − xl(q)|

rl =
1
P

P

∑
q=1

ξl(q)

L = α
100

T+ LT0 (20 < T < 40)

L = −
β

1000
H+ LH0 (30 <H < 70)

Z =Wo · LSTM(CNN(x)) + bo
(9)

First, standardized data is obtained through data preprocessing,
and then correlation analysis is performed to obtain the influencing
factors related to power load. Then, typical load patterns are
extracted, and the corrected load curve is obtained through
correction coefficients. Finally, it is input into the CNN+LSTM
model together with the data to be tested to obtain the final
prediction result.

The specific CNN+LSTM framework is shown in Figure 2.
In the case of power anomaly detection to identify power

outage-sensitive users, this combined approach can improve the
model’s ability to identify abnormal events, whether they are
short-term sudden anomalies or long-term gradual changes. By
optimizing the model parameters, the prediction performance can
be further improved, making the model more reliable in practical
applications. Ultimately, this combined CNN and LSTM approach
provides a powerful tool for power systems to monitor and predict
power anomalies in real time, thereby improving the stability
and reliability of power supply.

4 Experimental dataset

In order to comprehensively evaluate the performance of
the proposed CNN+LSTM model for identifying power outage-
sensitive users, this study uses three public power outage-sensitive
user datasets, including a Chinese city residential electricity
consumption information dataset, the US EIA2024 power dataset,
and the MyGridGB2016 28-day power generation dataset, to
evaluate the applicability of the proposed method in different
scenarios. These datasets cover key indicators such as active
power, reactive power, voltage, and current in household electricity
consumption, statistical data on power plants, capacity, power
generation, fuel consumption, sales, prices, and customers, and the
power generation share of different types of power stations, etc., with
high diversity and representativeness. They can be used for power
residential load forecasting, household power consumption pattern
analysis, power system optimization research, analysis of power
consumption patterns of different user groups, and identification
of users who are particularly sensitive to power outages. By
comparing historical power consumption data, models can be built
to predict power consumption, identify abnormal patterns, or assess
power outage risks, improving the accuracy of prediction and
detection. It helps analyze the stability of power supply and predict
potential power outage risks, while identifying abnormal power
consumption patterns.

The data distribution of the dataset is shown in the
following Table 1.

5 Experiment

5.1 Experimental indicators

TP: indicates the number of samples correctly
predicted by the model as positive.
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TN: represents the number of samples correctly predicted as
negative class by the model.

FP: Indicates the number of samples that the model incorrectly
predicts as positive.

FN: represents the number of samples that themodel incorrectly
predicts as negative classes.

Accuracy: It indicates the ratio of the number of samples
correctly predicted by the model to the total number of samples.

Αccuracy = TP+TN
TP+TN+ FP+ FN

Recall: measures the ability of the model to correctly identify
positive samples, that is, the proportion of samples that are correctly
identified by the model among all samples that are actually positive.

Recall = TP
TP+ FN

F1 score: The harmonic mean of precision and recall, which
attempts to find a balance between precision and recall.

F1 = 2 ·
Recall ·Precision
Recall+Precision

Precision = TN
TN+FP

Indicates the accuracy of positive prediction.

5.2 Experimental methods and results

Typical load pattern extraction.
The k-means algorithm is used to extract load patterns. The

cluster members are continuously moved in the iterative process
until the ideal cluster is obtained. The load data of power users are
clustered to obtain the typical load curve.

It can be analyzed in Figure 3, Upper left figure: The load curve
has certain fluctuations, but overall shows a trend of being higher
during the day and lower at night, which may correspond to users
who consumemore electricity during the day, such as industrial and
commercial users.

Upper right corner: The fluctuation range is large, and there
are multiple load peak points, indicating that the electricity
consumption behavior of this type of user is more complex and may
be a multi-functional place, such as a commercial complex.

Middle left picture: The load curve is relatively stable, and the
load drops significantly at night, which may be an office user.

Middle right picture: The load gradually increases during the
day and remains at a certain level at night. This may be a place that
operates 24 h a day, such as a factory or hospital.

Bottom chart: The load is relatively stable at night and fluctuates
greatly during the day. It may be that the residential users mainly use
electricity for daily life.

By extracting the electricity consumption behavior
characteristics of power users through cluster analysis methods,
we obtain load curves that can reflect the typical electricity
consumption patterns of different user categories. These curves
clearly show the load change patterns of users within 24 h a day.
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FIGURE 3
Typical load curve.

Based on these typical load curves, the behavioral characteristics of
power users can be classified and identified, such as distinguishing
different types of users such as residents, businesses, and
industries, thus providing an important basis for the formulation of
personalized power services, power optimization, and demand-side
response strategies.

Grey correlation analysis is used to study the effects of
temperature and humidity on power load.The dotted line represents
the temperature curve or humidity curve, the solid line represents
the load curve, the horizontal axis is time, and the vertical axis is
temperature (°C) or humidity (%) and load, respectively. The result
as is shown in the Figures 4, 5.

It can be seen from the figure that the change trend of
temperature and humidity has a certain correlation with the
change of load. The temperature is positively correlated with the
load, and the humidity is negatively correlated with the load.
The calculated correlation between temperature and load is 0.558,
and the correlation between humidity and load is 0.398. The
coefficients of temperature and humidity are corrected. Figures 6, 7

are comparisons of the predicted load and actual load when the
temperature is 34.5°C and the humidity is 52%. The dotted line in
the figure is the actual load curve, and the solid line is the load
prediction curve.

The figure shows that the model has a better load prediction
effect under high temperature conditions, especially during the
peak period of daytime electricity consumption.The load prediction
ability at a humidity of 52% is not as good as that at a temperature
of 34.5°C. The complexity of the impact of humidity on load
may not be fully understood, especially during peak hours and
nighttime. It also shows that temperature has a greater impact
on power load. In general, the modified curve can better predict
power load.

After the coefficients are corrected, power outage-sensitive user
identification based on CNN+LSTM can be performed.

After experiments, our method CNN+LSTM has 99.23%
accuracy, 99.01% recall and 95.14 F1 score on a Chinese city’s
residential electricity consumption information dataset. It has
96.06% accuracy, 94.77 recall and 92.65 F1 score on the US
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FIGURE 4
Effect of temperature on power load.

FIGURE 5
Effect of humidity on electrical load.

EIA2024 power dataset. Similarly, our method also performs well
on theMyGridGB2016 28-day power generation dataset, with 92.5%
accuracy, 94.77% recall and 90.5% F1 score. It can efficiently and
accurately detect power consumption anomalies and identify power
outage-sensitive users.

In order to fully demonstrate the competitiveness of ourmethod
in this field, we further compared it with several existing advanced
methods and tested it on the same dataset. Through experimental
comparison, we showed the advantages and disadvantages of
the CNN+LSTM method and these methods in multiple key
performance indicators in the form of charts.

First, we compare CNN+LSTM with methods [11, 12, 16, 17],
etc., and compare the advantages and disadvantages of the

algorithms in terms of performance indicators such as accuracy,
recall, and F1 score on three datasets.

The accuracy, recall, and F1 scores of the five methods on
a Chinese city residential electricity consumption information
dataset, the US EIA2024 electricity dataset, and the MyGridGB2016
28-day power generation dataset are shown in Figures 8–10.

As can be seen from the figure, our CNN+LSTM method is
ahead of similar advanced methods in terms of accuracy, recall,
and F1 score, indicating that our method has significant advantages
in overall performance, anomaly detection capability, balance,
robustness, innovation, practical value, and research contribution.
It can more accurately identify abnormal conditions in the power
system, while achieving a good balance between avoiding false
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FIGURE 6
Comparison of predicted and actual values when the temperature is 34.5°C.

FIGURE 7
Comparison of predicted and actual values when humidity is 52%.

positives and false negatives, which is of great significance to
the safe and stable operation of the power system and has high
practical value.

5.3 Ablation experiment

In order to further illustrate the impact of each module of
CNN+LSTM on the overall performance, we conduct ablation
experiments on it. By systematically removing or changing certain
parts of the model to evaluate their impact on the overall

performance, we can help understand the model behavior, optimize
themodel structure, and improve the interpretability and robustness
of the model. Specifically, ablation experiments can reveal the key
roles of CNN and LSTM components in the model and how they
jointly affect the final results. By removing or modifying these
components one by one, we can deeply analyze the contribution
of each part to the performance of the model, so as to discover
potential weaknesses and improve them. It not only helps to verify
the assumptions in the model design, but also provides direction
for future research and quantifies the specific contribution of each
method when comparing different models or algorithms.
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FIGURE 8
Comparison of five methods on a dataset of residential electricity consumption in a Chinese city.

FIGURE 9
Comparison of five methods on the US EIA2024 electricity dataset.

In order to conduct ablation experiments, we use the following
6 model configurations to compare the effects, namely, bidirectional
long short-term memory network Bi-lstm, long short-term
memory network LSTM, convolutional neural network CNN,
recurrent neural network RNN, attention mechanism-based model
Transformer, back propagation neural network BPNN. To verify
the impact of different modules on the algorithm and compare
the effects between algorithms, we compare them on a Chinese
city residential electricity consumption information dataset, the US
EIA2024 electricity dataset, and the MyGridGB2016 28-day power
generation dataset. The results are shown in Tables 2, 3, 4.

It can be seen that on the three data sets, compared with the
use of CNN or LSTM alone, CNN+LSTM has better results in
accuracy, recall, and F1 score. The joint model of CNN and LSTM
combines the strengths of CNN in spatial feature extraction and
the advantages of LSTM in time series analysis. This integration
enables the model to effectively process and analyze complex data

sets containing spatiotemporal information, and can capture the
temporal dynamics and spatial layout of the data at the same time,
which is very suitable for performing complex data analysis tasks,
such as the power consumption anomaly detection case discussed
in this article, in which the comprehensive use of spatiotemporal
information significantly improves the prediction accuracy. In
addition, compared with a single type of model, the CNN+LSTM
combination also shows better expressiveness in generalization
performance, because it can learn richer and more diverse feature
expressions from the data, so as to better cope with the complex
nonlinear relationships within the data. And compared with other
compared algorithms, our model also has the highest accuracy,
which can give full play to the hybrid advantages of CNN and LSTM
to implement complex tasks.

In order to further analyze the impact of environment and
time on user electricity consumption, we conducted an ablation
experiment for correlation analysis. Through ablation experiments
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FIGURE 10
Comparison of five methods on the MyGridGB 2016 28-day power generation dataset.

TABLE 2 Ablation experiment on a dataset of residential electricity
consumption in a Chinese city.

A dataset of residential
electricity consumption in
a Chinese city

Accuracy Recall F1

Ours (CNN+LSTM) 99.69 97.63 92.17

Bi-lstm 96.52 95.70 89.15

LSTM 98.39 94.45 90.74

CNN 95.42 92.19 90.21

RNN 97.74 92.99 87.00

Transform 95.38 95.74 92.56

BPNN 92.19 92.55 92.11

TABLE 3 Ablation experiment on the US EIA2024 power dataset.

US EIA2024 electricity
dataset

Accuracy Recall F1

Ours (CNN+LSTM) 96.23 95.10 93.45

Bi-lstm 93.89 92.69 91.08

LSTM 95.11 94.45 91.02

CNN 94.56 90.63 92.99

RNN 93.68 91.11 90.36

Transform 92.96 91.20 91.78

BPNN 94.63 93.61 92.09

TABLE 4 Ablation experiment on MyGridGB 2016 28-day power
generation dataset.

MyGridGB 2016 28-day
power generation dataset

Accuracy Recall F1

Ours (CNN+LSTM) 97.96 94.67 93.10

Bi-lstm 93.52 92.74 87.99

LSTM 95.79 91.78 88.96

CNN 92.46 89.17 88.52

RNN 94.39 93.50 86.09

Transform 92.89 93.70 93.60

BPNN 93.18 93.65 92.19

on factors such as temperature, humidity, weekends, and holidays,
we hope to reveal how these factors affect users’ electricity
consumption patterns independently and jointly. Using the method
of controlling variables, we gradually introduced various factors for
ablation experiments. The ablation experiment results for each data
set are shown in Figures 11–13.

It can be clearly seen from the above figure that humidity, an
environmental factor, has a high impact on the accuracy of user
power forecasting in three different data sets. Specifically, in the
residential power consumption information data set of a certain
city in China and the US EIA2024 power data set, humidity not
only significantly affects the accuracy of the forecast, but also
largely affects the recall rate. In the MyGridGB2016 28-day power
generation data set, although temperature has a greater impact on
the recall rate, humidity is still a factor that cannot be ignored, and
it has a significant impact on the accuracy of user power forecasting
in this data set.
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FIGURE 11
Association analysis and ablation on a dataset of residential electricity consumption in a Chinese city.

FIGURE 12
Correlation analysis and ablation on the US EIA2024 electricity dataset.

FIGURE 13
Correlation analysis and ablation on the MyGridGB 2016 28-day power generation dataset.
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Further observing the comprehensive evaluation index of F1
score, we found that the influence of temperature and humidity
on the residential electricity consumption information dataset of a
certain city in China is not much different, which shows that in this
dataset, the impact of these two environmental factors on model
performance is relatively balanced. However, in the US EIA2024
power dataset, the weekend time factor is particularly important,
which has a significant impact on the prediction performance of
the model. In the MyGridGB2016 28-day power generation dataset,
humidity once again becomes a key factor and has a great impact on
the F1 score of the model.

Although these environmental and time factors affect the
prediction performance of the model to varying degrees, our
method still shows the highest accuracy, recall rate, and F1 score.
Regardless of the environment, our method can stably complete the
task of predicting the user’s power load. This powerful prediction
capability enables our method to be further applied to the field of
power anomaly detection, and to timely detect power anomalies
through accurate power load forecasting. At the same time, our
method can also effectively analyze and identify users who are
sensitive to power outages, providing valuable reference information
for power suppliers to help them better manage and optimize power
resources.

6 Conclusion

In summary, this article proposes a CNN+LSTM model
that integrates spatiotemporal feature modeling for the complex
interaction characteristics of energy systems under the background
of CPSS. It demonstrates significant applicability in the analysis
and identification of power outage sensitive users in energy systems
based on multi-source heterogeneous big data. This model uses
CNN to extract hierarchical features of local correlations in spatial
dimensions such as household electricity consumption patterns
and power generation type distributions. Combined with LSTM’s
ability to model long-term dependencies in time series data such
as energy consumption fluctuations and cost income dynamic
correlations, it constructs a multidimensional data fusion analysis
mechanism across physical layers (energy flow), information
layers (data flow), and social layers (user behavior) under the
CPSS framework.

Experiments on typical CPSS scenario datasets covering
household electricity usage profiles, regional energy structures, and
full lifecycle costs have shown that the model improves the accuracy
of electricity load forecasting to industry-leading levels through
joint learning of spatiotemporal features. Especially in complex
scenarios with intermittent fluctuations in renewable energy and
uncertainty in user behavior, the detection accuracy of electricity
anomalies is better than traditional methods, effectively solving
problems such as multi-source data noise interference and difficulty
in modeling nonlinear relationships in CPSS environments. The
identification results of power outage sensitive users output by the
model can be directly mapped to the operation and regulation of
the energy system. Through real-time warning mechanisms, power

suppliers can dynamically adjust their demand side management
strategies. In typical CPSS application scenarios such as smart
microgrid supply-demand balance control, precise pricing of
tiered electricity prices, and optimization of emergency power
supply configuration, a closed-loop from data-driven to decision
optimization is achieved. This provides quantifiable technical
support and practical path for building a more flexible energy
information physical social system, significantly improving the
scientific and refined level of energy system management in
digital transformation.
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