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To address limitations of existing urban rail transit (URT) evolution
models—including static selection mechanisms, inadequate adaptability across
stages, and simplistic validation—this study proposes a dynamically optimized
hypernetwork evolution model. By introducing a time decay factor γ, the
model achieves a smooth transition from “scale-free preferential attachment”
to “random connection” under the constraint of a fixed growth rate difference
(GRD) between nodes. We construct a URT hyper network (stations as nodes,
lines as hyper edges) and derive dynamic equations for node hyper degree and
hyper edge hyper degree. Empirical validation using subway network data from
Beijing, Shanghai, and Guangzhou (222–378 stations) was conducted via Python
simulations, with model efficacy evaluated through Kolmogorov-Smirnov (K-S)
tests and multi-index comparisons. Key findings include: Simulated topological
features (e.g., degree distribution, hyper degree distribution) align closely with
real networks (K-S test p > 0.05); Node hyper degree distribution evolves from
power-law (early stage) to exponential (mature stage), consistent with empirical
observations; The dynamic decay mechanism enhances adaptability (e.g., 15%
increase in random connection probability per decade at γ = 0.1). This model
provides a dynamic optimization tool for URT planning, particularly in hub layout
design and network robustness enhancement.

KEYWORDS

urban rail transit, hyper network, allometric growth, evolution model, dynamic
preferential attachment, K-S test

1 Introduction

1.1 Research status

With the rapid progression of urbanization and the rapid expansion of urban station
entrances, an increasing number of metropolitan areas have established interconnected
urban rail transit networks. Researching the network evolution characteristics of URT
(urban rail transit) is vital to its planning and operation. Several studies have simulated
the evolution of URT networks based on specific growth principles and incorporating a
variety of dynamic characteristics, as part of the research on the evolution and development
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of URT [1, 2, 4–10]. Roth et al. [3] investigated how fourteen
subway networks have developed. They observed that the subway
network evolved into a shape with a denser core density, surrounded
by a circular line and branches extending from the core to the
suburbs, usually through workstations. Man YU et al. [10] studied
the evolution of adjacent nodes on the network scale in Chinese
urban metropolitan area networks. Rui D et al. [7] studied the
evolution of the Kuala Lumpur public urban rail transit network
and its performance under various attack strategies based on the
railway system’s topology and the network’s future growth trend,
using complex network theory. CatsO [11] conducted a longitudinal
analysis of the topology evolution of multimodal railway networks
by investigating the topology dynamics of Stockholm from 1950
to 2025. Bangxang PN et al. [12] chose network diameter, gamma
index, degree centrality, compactness center, and intermediate
center to examine the topological evolution of the Bangkok rail
transit network between 1999 and 2029. Yang Zhijie analyzed and
studied the development trend of Shanghai’s URT network from
1993 to 2020 using six typical topological indicators and proposed
two network expansion methods to represent the evolution process.
He discovered that as the network evolves, it will develop in a
stable and orderly manner [13]. Feng Shumin, Xin Mengwei, and
others [14], developed an evolution model of URT based on space-
P and conducted simulation and empirical analysis. The results
indicated that the evolution of the URT network is proportional
to the ratio of transfer nodes to regular nodes. There are three
phases to the development of URT networks. The evolution of URT
networks is divided into three stages. Zhang Zehua, Feng Shumin,
et al. [15] defined the evolution level of the rail transit network
based on the allometry growth relationship between transfer nodes
and ordinary nodes of the URT network, clarified that the URT
network is a logistic process with the evolution level as the
evaluation indicator, exposed the theoretical law of the evolution
process of the URT network, analyzed the evolution process based
on this law, identified the nodes divided by the evolution stage,
and divided it into four evolutionary stages. Zheng X et al. [16]
systematically analyzed the characteristic parameters and evolution
characteristics of Shanghai rail transit network by introducing six
network characteristic parameters. In addition, research on network
evolution also focuses on analysis of network characteristic index
evolution [17], network structure connectivity analysis [9], network
topology evolution analysis [11, 18], as well as network accessibility
[19], network evolution dynamics [20, 21], and other aspects.

1.2 Overview of research status and
significance of this study

The existing urban rail transit evolution models have limitations
in static selection mechanisms, insufficient adaptability during the
evolution stages, and a single validation method. The traditional
model assumes that the probability of node connections is fixed
(such as prioritizing the connection of high degree nodes), without
considering the dynamic impact of network size expansion on the
optimal strategy, resulting in significant deviations in the topological
characteristics of the simulated network and the real network
(such as degree distribution and clustering coefficient). Previous
studies have mostly adopted uniform evolution rules, neglecting the

attenuation effect of the optimal probability during the transition
of networks from scale-free to small world characteristics. The
existing verification mostly relies on qualitative comparison and
lacks quantitative testing (such as K-S test) to verify the consistency
between the distribution of simulated networks and real networks.

How to construct a dynamic optimal evolution model under
the assumption of fixed high degree node normal node growth rate
difference (GRD), so that the simulation network can accurately
reproduce the allometric growth characteristics of the real rail
transit network?

Through the study of the structure of urban rail transit
networks, it was found that their evolution and development
have the characteristics of randomness and selective evolution. By
exploring this principle and studying the growth process of the
network, a fixed growth rate difference (GRD) urban rail transit
hyper network evolution model was constructed, and the dynamic
equations were derived. Empirical research was conducted using
three different levels of urban rail transit networks, namely, Beijing,
Shanghai, and Guangzhou, as case networks. After K-S testing, the
simulated network generated by the model has a high degree of
similarity with the real network.Themodel established in this article
helps researchers understand the evolution process of urban rail
transit and provides theoretical basis for the study of urban rail
transit dynamics.

This model introduces a time decay factor γ to achieve a
smooth transition from“scale-free priority” to “randomconnection”,
which is more in line with the evolution law of the rail transit
network. Establish a systematic evaluation method for simulation
effectiveness by combining K-S test and multi index comparison.

The research framework diagram is shown in Figure 1.

2 Modeling and evolution process
analysis of urban rail transit hyper
network

With the increase of urban rail transit stations and lines, the
spatial interweaving of the network has formed two types of stations:
transfer stations and ordinary stations, and different types of stations
play different roles in the rail transit network.

The construction of urban rail transit lines has a long cycle,
which not only involves infrastructure construction, but also needs
to consider multiple aspects such as urban planning, geographical
conditions, passenger flow demand, and economic benefits. The
completion of new lines is not only a physical increase, but will
also have a profound impact on the entire urban rail transit
system. The construction of urban rail transit lines is not only
an engineering problem, but also a complex issue involving
multiple fields such as urban planning, transportation planning, and
network science. By utilizing complex network theory, especially
hypergraph hypernetwork theory, to study the complexity of
network topology, we can better understand and optimize urban
rail transit networks, and provide passengers withmore efficient and
convenient travel services.

The basic idea of complex network evolution is to view the
network as a dynamic system, whose structure and behavior will
change over time. As a complex network system, the evolution of
urban rail transit network can also be understood as the addition or
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FIGURE 1
Research framework diagram.

removal of stations, the addition or removal of routes, or changes
in direction. Most of the existing research is focused on passenger
flow demand, driving organization, and transportation efficiency.
However, many problems such as severe traffic congestion and
unsatisfactory planning and layout of transportation networks have
not been effectively solved.

Using the concept of complex networks, researchers have
created a model of a city’s subway transportation network. They
conduct in-depth analysis and exploration based on its topological
characteristics, and design corresponding evolution rules to form
various types of network development models to further explore
the development and changes of the urban subway transportation
network. For problems that cannot be addressed by complex
network theory, introducing the concept of hyper networks can
effectively solve them.

2.1 Construction of a hyper network model
for urban rail transit

In complex networks, the construction of rail transit networks
generally takes stations as nodes and the connections between
stations as edges. The network processing is symmetric (undirected,
nonplanar network). The nodes in studying public transportation
systems based on complex network theory can be stations or routes,
and only one element feature can be learned.

With the increasing complexity of networks, traditional
networks based on classical graph theory exhibit their limitations,

while the emergence of hyper graphs and hyper networks provides
a new perspective on different types of networks and their
relationships. In 1985, the concept of hyper networks was first
proposed by Denning [7] and was referred to as the “network
within a network.” It exhibits its advantages in nested, multi-layer,
multi-level, or multi-attribute aspects.

To more accurately express the multi-layer relationship between
stations and routes, and break the limitations of studying single-
element features in complex networks, establishing a new rail transit
network model is very important.

Two components comprise a hyper graph based hyper network
system: nodes and hyper edges. The hyper edges can contain
multiple nodes, and the network can be examined in multiple
dimensions based on the relationship between nodes and hyper
edges, distinguishing it from the complex network. The hyper
network reflects network characteristics through topological
indicators such as degree distribution, clustering coefficient, average
path length, etc., such as the small world characteristics of aviation
hyper networks [10].

This article studies the URT network from a hyper network
perspective, using rail transit stations as nodes and rail transit lines
containing all rail transit stations as hyper edges, and establishes a
hyper network model for urban rail transit.

In addition, there are two assumptions for the construction of
the urban rail transit hyper network:

(1) Undirected network. In general, if it is possible to take rail
transit from A to B, then it is also possible to reach A along the
same network route from B. Therefore, when extracting data,
the direction of the route is not taken into account, and the rail
route is abstracted as an abstract route map without a square.

(2) Non-weighted network. Without considering the frequency
and quantity of train departures in the rail transit network, i.e.,
without considering the connection weights in the network,
the network is abstracted as a non-weighted network.

The rail transit network diagram consists of two lines, Line
1 (red) and Line 2 (green), as shown in Figure 2, and the
corresponding rail transit hyper networkmodel is shown in Figure 3.

The construction of a hyper networkmodel for urban rail transit
is as follows:

In the urban rail transit hyper network model, the rail transit
station is the node and the rail transit line is the hyper edge. So
long as two stations are on the same line, they are regarded as
connected. The URT hyper network model corresponds to the rail
transit network diagram with two hyper edges shown in Figure 3.

(1) Node degree (k)

The node degree in the URT hyper network model refers to the
number of stations that can be reached without transferring from a
specific node. For example, the node degree value of People’s Square
Station is 56, which means that any of the other 56 stations can be
reached without transferring from People’s Square Station, while the
node degree of Xujiahui Station is 27, which means that the number
of stations that can be reached without transferring from Xujiahui
Station is 27.

(2) Node hyper degree (h)
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FIGURE 2
Rail transit networks diagram.

Node hyper degree refers to the number of hyper edges
containing the node, such as the node hyper degree corresponding
to Lujiazui station hv1 = 1 and People’s Square Station hv2 = 2.

High hyper degree node (h > 1), ordinary node (h = 1).

(3) The evolution level (Y)

Let u denote the number of high hyper degree nodes in the rail
transit network and r denote the number of ordinary nodes.

The evolution level of the urban rail transit network is
defined as Y, that is, the proportion of transfer nodes in
summary points (Equation 1):

Y(t) =
u(t)

u(t) + r(t)
(1)

Here, u(t) + r(t) are the summary points of the rail transit
network at a particular time.

(4) Hyper edge degree (De)

The hyper edge degree is the number of lines connecting other
hyper edges. The hyper edge degree De1 = 1 means the hyper edge
E1 corresponding to line 1.

(5) Hyper edge hyper degree (Deh)

Thehyper edge hyper degree is the number of nodes contained in
the hyper edge. The hyper edge hyper degree Deh1 = 28 of the hyper
edge E1 corresponds to line 1. There are more descriptive metrics to
use the hyper network model.

2.2 Analysis of the evolution process of
urban rail transit network

As the number of rail transit stations and lines increases, the
network of lines crisscrosses in space, forming transfer stations and
ordinary stations. The functions and impacts of different stations in
the online network vary. At the same time, the construction period
of the rail transit network is relatively long, and the construction and
opening of new lines affect the direction and layout of URT stations
and lines, thereby affecting the overall layout and function of the
URT network. Due to the complexity of the distribution of stations
and routes in URT networks, complex network theory, especially
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FIGURE 3
Schematic diagram of urban rail transit hyper networks model.

hyper graph hyper network theory, can be applied to study the
complexity of network topology.

The form of URT network evolution can be understood as the
addition or subtraction of stations, the addition or subtraction of
routes, or a change in the network’s direction.

To ensure the authenticity and reliability of our research
results, we analyzed the rail transit networks of Shanghai, with
urban rail transit scales ranging from 355 stations to ensure
universality (Figure 4).

By analyzing the rail transit networks of Shanghai Urban Rail
Transit, we discovered that URT continues to expand and develop
as new lines are constructed. Actually, almost all urban rail transit
systems begin with one or two lines, as passenger demand and
economic urbanization increase, their structures will inevitably
expand. To better comprehend the evolution process of the URT
networks, we provide Figure 5 for the evolution process of the
Shanghai rail transit network over time.

It is not difficult to determine that the node hyper degree
distribution of the Shanghai rail transit hyper network changes
from a power-law distribution at the beginning to an exponential
distribution in the later stage by comparing the changes over
time. According to the properties of power-law and exponential
distributions, in the initial stage of evolution, the connection
between new and old lines in the rail transit network is significantly

affected by node hyper degree, with the network prioritizing the
connection of existing high hyper degree nodes.With the expansion
of the network and the increase of transfer stations, the probability of
randomly connecting new lines increases over time when choosing
stations to connect to existing lines (as shown in Figure 6).

Diverse hyper network evolution models have distinct research
focuses, but all extant studies are founded on the principle of hyper
degree optimization. Nevertheless, the rail transit hyper network
differs from interpersonal, informational, and social networks,
among others. As the number of lines and network grids increases,
newly added lines are also constrained by the functional layout,
overall corridor direction, and existing station locations when
selecting existing stations as transfer stations. Especially in the
middle and late period of network evolution, the proportion of
random selection keeps increasing. As a result, the new line
cannot be chosen based solely on the hyper degree distribution of
existing stations.

Additionally, the current model does not take into account
the numerous practical constraints that particular networks may
face. The URT hyper network is distinct from the infinite space
of social networks, the public transportation network, and the
railroad network. Once the lines and stations of the URT hyper
network are constructed, they are challenging to alter, and trains
can only operate in one direction. In contrast to urban public
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FIGURE 4
Map of Shanghai Urban rail transit. Reproduced with permission from https://service.shmetro.com/zlxz/index.htm.
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FIGURE 5
Topological Structure of Shanghai Rail Transit Network under Hyper network. Reproduced with permission from https://service.shmetro.
com/zlxz/index.htm.
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FIGURE 6
(A) The distribution of node hyper degree in the initial stage of Shanghai URT hyper network evolution. (B) The distribution of node hyper degree in the
late stage of Shanghai URT hyper network evolution. Comparison of urban rail transit hyper network node hyper degree distribution changes over time.

transportation and the rail network, the length of the lines and the
stations where various train numbers stop can be altered. Therefore,
existing hyper network evolutionmodels cannot accurately simulate
the evolution mechanism of real-world URT hyper networks. It is
essential to establish an evolutionary paradigm for urban rail transit
hyper network.

Based on the preceding analysis, this paper develops a dynamic
preferred hyper network evolutionmodel in which the probability of
preference selection decreases over time as the network expands and
evolves and new lines choose existing stations to access the network.

3 Modeling of the evolution of urban
rail transit hyper network

3.1 Description of dynamic optimal urban
rail transit hyper network evolution model

The urban rail transit network is composed of various lines
between stations. In the evolution model of the urban rail transit
hyper network, nodes and hyper edges represent the stations and
lines owned by the network, respectively. The change in hyper edge
structure represents the change in the route, the change in nodes
represents the change in the number of stations, the change in node
hyper degree represents station transfer, and the change in hyper
edge hyper degree represents the change in the length of urban rail
transit lines.

The specific evolution process is: (1) introducing new urban rail
transit stations into the urban rail transit network and generating
some new routes. (2) Select some existing urban rail transit stations
and these newly added stations to construct a new route; These
evolutionary processes have formed a continuously evolving urban
rail transit hyper network model that reflects the development and

changes of the urban rail transit network as realistically as possible.
The number of nodes contained in the hyper edge of urban

rail transit hyper network follows a Poisson distribution with
parameterλ(λ = λ1+λ2, λ, λ1, λ2 > 0), which means that the number
of nodes contained in the new hyper edge is a random integer that
follows a Poisson distribution with parameter λ.

The urban rail transit hyper network evolves from a hyper edge
containing multiple nodes in the following process.

3.2 Evolutionary rules of dynamic optimal
urban rail transit hyper network evolution
model

The dynamic optimization of urban rail transit hyper network’s
allometric growth evolution process follows the following rules.

1) Initialization. At the initial state of the network, there is a hyper
edge formed by m0 nodes.

2) Network growth. Assuming that the arrival process of the new
node is a Poisson process with a constant of λ1. The probability
of the route being selected for transfer follows a Poisson process
of λ2.

When time t arrives, a new batch of nodes (m1) join the network,
while randomly selecting m2 existing hyper edges from the existing
network, and selecting a node on each hyper edge. These m1 new
nodes together with the previously existing m2 ≤ m0 old nodes form
a hyper edge.

3) Connection mechanism. When a new node selects an
existing old node j in the network, the probability of
selecting the optimal connection based on hyper degree varies
over time, that is, the probability W of selecting the old
node j is (Equation 2):
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FIGURE 7
Hyper network Evolution Process.

Wj(t) =
hj(t)

∑N(t)
k=1

hk(t)
· e−γt (2)

Where hj (t, ti) represents the node hyper degree of the jth node
in the ith batch entering the hyper network at time t, and γ is the
time decay factor.

The evolution process of the urban rail transit hyper network
is shown in Figure 7. The initial urban rail transit hyper network
consisted of one hyper edge e1 containing three nodes A-C; After the
process [1], a newhyper edge e2 is formed by two newnodes and one
old node, and is added to the original hypernetwork; After process
[2], a new hyper edge is added, which is composed of 4 new nodes
and one node from each of the 2 old hyper edges; After process [3],
a new hyper edge is added, which is composed of three new nodes
and one node from one old hyper edge.

After repeated evolution, a hyper network with n+1 hyper edges
was finally obtained, where the number of nodes in all lines follows
a Poisson distribution of λ = λ1+λ2. The size of the entire hyper
network is close to nλ1 nodes, and the number of high hyper nodes
is nλ2.The addition of hyper edges only probabilistically connects
nodes in the existing hyper network, and the lines themselves will
not experience self loops or bifurcations.

4 Dynamic equation for the evolution
model of urban rail transit hyper
network with dynamic optimal
selection

4.1 Model rules and assumptions

Initialization: The network initially contains one hyper edge
with m0 nodes.

Network growth:
The new node is added through a Poisson process at a rate of λ1.
Newhyper edges are generated through a Poisson process at a rate

of λ2, with each new hyper edge containing m1 new nodes and m2
nodes selected from existing hyper edges according to a preferential
mechanism.

Connection mechanism: The probability of selecting old node j
is given by Equation 2.

4.2 Deduction of dynamic equations for
node hyper degree and node degree
evolution

1. Node hyper evolution

The growth rate of node hyper degree hj (t) is determined by the
probability of new hyper edge connections. Assuming the number of
newly added hyper edges at time t is λ2, and each hyper edge selects
m2 old nodes, then (Equation 3):

∂hj(t)
∂t
= λ2m2 ·Wj(t) = λ2m2 ·

hj(t)

∑
k
hk(t)
· e−γt (3)

The approximate total degree ∑khk(t) is given by Equation 4:

∑
k
hk(t) ≈ λ2m2∫

t

0
e−rτdτ =

λ2m2

γ
(1− e−γt) (4)

After substitution, we obtain Equation 5:

∂hj(t)
∂t
∝

γhj(t)

1− e−γt
(5)

The steady-state node hyper degree distribution
obtained by integration is an exponential distribution
(Equation 6):

P(h) ∝ e−βh,β =
γ

λ2m2
(6)

2. Due to the pairwise connections of nodes within the same
hyper edge, the relationship between node degree kj and node
hyper degree hj is as follows (Equation 7):

kj =∑
e∋j
(|e| − 1) (7)
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FIGURE 8
Simulated topological structure of urban rail transit network.

If the size of the hyper edge follows a Poisson distribution
(λ1+λ2), then the node degree distribution approximates a
composite Poisson distribution, approaching exponential decay
in steady state (Equation 8):

P(k) ∝ e−αk,α ≈
γ

λ2m2(λ1 + λ2)
(8)

4.3 Derivation of dynamic equations for
hyper edges and hyper edges evolution

1. hyper edge hyper degree Distribution

The hyper edge hyper degree DEH is the total number of nodes
contained in a hyper edge. According to the model rules, each new
hyper edge consists of the following two parts:

New node: The quantity m1 follows a Poisson process with
parameter λ1, i.e., m1∼Poisson (λ1).

Old nodes: The quantity m2 follows a Poisson process with
parameter λ2, i.e., m2∼Poisson (λ2).

Therefore, the hyper edge hyper degree De is the sum
of the two (Equation 9):

Deh =m1 +m2 ∼ Pois(λ1 + λ2) (9)

Its distribution is Equation 10:

P(Deh = k) =
(λ1 + λ2)ke−(λ1+λ2)

k!
(10)

2. Hyper edge Degree Distribution

The hyper edge degree Le represents the number of hyper edges
that share at least one node with other hyper edges. Need to calculate
the connection probability between hyper edge E and other hyper
edges. Assuming that during the evolution of the network, the
probability of nodes being selected decays over time. e−γt Each
hyper edge is connected to other hyper edges through its contained
old nodes. Let the node hyper degree of the old node j at time t
be hj(t), that is, it belongs to hj(t) hyper edges. After the node is
included in hyper edge E, it will be connected to each of the hj (t)
hyper edges (excluding itself). If the hyper edge E contains m2 old
nodes, and each old node j contributes hj (t) −1 connection (minus
itself), then (Equation 11):

De =∑
j∈E
(hj(t) − 1) (11)

Steady state approximation: In steady state, the node hyper
degree hj (t) follows an exponential distribution P(h) ∝ e−βh and has
an average node hyper degree ⟨h⟩ = λ2

γ
.

Expectation of hyper edge degree: Each hyper edge contains m2
old nodes, and each old node contributes an average of<h > −1
connections. Therefore (Equation 12):

⟨De⟩ = (m2⟨h⟩ − 1) =m2(
λ2

γ
− 1) (12)

From m2 to Poisson (λ2), the total expectation is Equation 13:

⟨De⟩ = λ2(
λ2

γ
− 1) (13)

Distribution form: If both m2 and hj follow a Poisson
distribution, then they approximately follow a composite Poisson
distribution, and their generating function is Equation 14:
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TABLE 1 Evolutionary data of constant growth rate difference.

Time Summary points Number of high-hyper degree nodes Number of ordinary nodes Evolutionary level

1 10 1 9 0.1000

2 23 2 21 0.0870

3 29 4 25 0.1379

4 37 4 33 0.1081

5 46 6 40 0.1304

6 53 7 46 0.1321

7 67 8 59 0.1194

8 74 9 65 0.1216

9 80 10 70 0.1250

10 93 12 81 0.1290

11 97 13 84 0.1340

12 107 16 91 0.1495

13 119 19 100 0.1597

14 133 23 110 0.1729

15 140 24 116 0.1714

16 156 26 130 0.1667

17 163 28 135 0.1718

18 173 30 143 0.1734

19 181 31 150 0.1713

20 189 33 156 0.1746

21 200 36 164 0.1800

22 206 36 170 0.1748

23 220 38 182 0.1727

24 231 40 191 0.1732

25 244 42 202 0.1721

26 253 45 208 0.1779

27 264 45 219 0.1705

28 274 47 227 0.1715

29 283 50 233 0.1767

30 292 52 240 0.1781

31 299 53 246 0.1773

32 305 55 250 0.1803

(Continued on the following page)
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TABLE 1 (Continued) Evolutionary data of constant growth rate difference.

Time Summary points Number of high-hyper degree nodes Number of ordinary nodes Evolutionary level

33 316 57 259 0.1804

34 331 57 274 0.1722

35 340 58 282 0.1706

36 346 58 288 0.1676

37 356 59 297 0.1657

38 363 61 302 0.1680

39 374 62 312 0.1658

GDe
(s) = exp(λ2(Gh(s) − 1)) (14)

Among them, Gh(s) =
β

β−lns
is the generating function of the

exponential distribution. The final distribution exhibits heavy tailed
characteristics.

5 Analysis and verification of model
simulation and evolution results

According to the evolution rules of the model, Python and
Oringin 2018 are used for simulation and fitting. As the model’s
network evolution progresses, the network size grows, and the node
span distribution curves correspond to the network size. Selecting
the hyper network node hyper degree distribution curve at different
network scales can analyze the changing trend of the hyper network
node hyper degree distribution curve with the increase of the
number of network nodes and analyze the actual connotation of
simulation results in combination with the morphology of URT
network at different development stages. This article sets different
numbers of network nodes corresponding to different network
scales and sets different random parameters when simulating the
model results using Oringin 2018. It can analyze the change process
of the hyper network node hyper degree distribution curve with the
change of network scale, connectionmode, and hyper network node
hyper degree distribution curve. Setm0 = 15, λ1 = 17, λ2 = 2,N= 378.
Using Python for simulation evolution, the following results were
obtained (as shown in Figure 8 and Table 1).

After obtaining the simulation network through the model, it
is crucial to evaluate the model’s accuracy by determining whether
its results are consistent with the actual network. To evaluate
the accuracy of the analysis model, this paper will compare and
analyze the simulated network with the existing network. In the
simulation network, the number of nodes on each line, whether
the lines are connected or not, and the connecting nodes between
the lines are all determined randomly, so each simulation yields a
unique network. To ensure that the model network is sufficiently
representative, it is necessary to analyze the impact of each variable
on the simulation results.

Node hyper degree and node hyper degree distribution change:
when t = 5, the analog network is a fully scale-free network, and its
degree distribution is shown in the following Figure 9.

There are very few connections between nodes during network
evolution and development. Newly added nodes are connected
according to high connectivity preferences, resulting in a maximum
degree value at a certain point.The level of degree difference between
all nodes in the network increases, and the internal structure is
severely unbalanced. Therefore, at this time, the network is in a
volatile state. This state is more in line with the early stage of the
construction and development of the rail transit hyper network,
with fewer lines and stations. The newly added lines and nodes will
be connected to the hub stations in the rail transit hyper network
as much as possible, and the limited public transportation lines
will be used to improve the transportation capacity of the public
transportation network.

Node hyper degree and node hyper degree distribution change:
when t = 15, the analog network is no longer a scale-free network,
and its degree distribution is a drift power-law distributionwith drift
b, as shown in the following figure:

When t = 15, the distribution of node hyper degree in the
network is shown in the following Figure 10.

When t = 25, the analog network is no longer a scale-free
network, and the distribution of node hyper degree drift b under the
Drift power-law distribution. The distribution of node hyper degree
is shown in the following Figure 11.

Compared to the initial state, the connections between the nodes
aremore diverse, which is reflected in the distribution of node hyper
degree distribution is slightly less extreme than in a completely scale-
free network.When there are random connections between nodes in
the network, the internal structure of the network gradually evolves
toward a more stable state. At this time, the fitting network can
be understood as the development of urban rail transit network
construction to a certain period, where multiple lines coexist in
the network, multiple interchange stations appear, the links between
lines become closer, the connectivity in the network is improved,
and the transportation efficiency of rail transit hyper network is
significantly improved.

When t = 30, the distribution of node hyper degree of the
simulation network is shown in the following Figure 12.
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FIGURE 9
Initial scale-free network fitting node hyper degree distribution.

FIGURE 10
When t = 15, the network fitted node hyper degree distribution curve.
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FIGURE 11
When t = 25, the network fitted Node hyper degree distribution curve.

FIGURE 12
When t = 30, the Node hyper degree distribution curve of the network is fitted.

When t = 36, the distribution of node hyper degree of the
hyper analog network has completely changed to an exponential
distribution, and the presented node hyper degree distribution is
shown in the following Figure 13.

In the process of network scale growth in the later period,
the random probability of node connections between networks
increases continuously over time.When the network is near a steady
state, the connection is almost entirely based on random probability.

Frontiers in Physics 14 frontiersin.org

https://doi.org/10.3389/fphy.2025.1596130
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Zhang et al. 10.3389/fphy.2025.1596130

FIGURE 13
When t = 36, the node hyper degree distribution curve of the network is fitted.

With the further evolution of the network, the connection
distribution between nodes tends to be uniform, and the number of
node degrees in themiddle level of the network is increasing. Finally,
the degree distribution of the network shows a smooth exponential
curve. At this time, the network can be considered a relatively stable
and mature stage of urban rail transit network development. Cities
such as Beijing, Shanghai, and Guangzhou have formed a complete
rail transit network, both in terms of network scale and network
operationmanagement. At this time, the lines between the networks
are crisscrossed, the transfer stations are evenly distributed in the
network, the connections between the stations are diversified, the
lines are closely connected, and the overall network is organically
integrated and stable.

The evolution level over time conforms to the logistic model:
(as shown in Figure 14):

The comparison between the simulated network evolution level
curve and the actual evolution level curve of Beijing URT shows that
both conform to the logistic model. (as shown in Figure 15).

6 Example validation: validation of the
model with Beijing, Shanghai, and
Guangzhou Subway hyper network
data

This article takes the number of subway network routes and
stations in three major cities including Shanghai, Beijing, and
Guangzhou as the benchmark, and imports these data into a
simulation system to fit and calibrate model parameters. It explores
the differences between the network characteristics simulated by
the model and the real situation when the number of routes and

stations are similar, in order to test the similarity between the
simulated network and the real network. And verify whether the
main characteristic indicators of the simulated network and the real
network follow the same distribution through K-S test.

6.1 Data preparation and model parameter
setting

(1) Data source

Based on the annual report of Beijing Rail Transit Command
Center, Shanghai Shentong Metro Group Annual Report,
Guangzhou Metro Group Operation White Paper, and data from
the Bilibili website, actual network data of Beijing, Shanghai, and
Guangzhou Subway were obtained. After sorting, research was
conducted on the subway networks of Beijing (26 lines, 378 stations),
Shanghai (19 lines, 345 stations), and Guangzhou (15 lines, 222
stations), respectively.

(2) Model parameter calibration

Based on the evolution history of subway networks in various
cities, use Python to perform fitting calibration through differential
method to obtainmodel simulation parameters.The key parameters
of the calibration model are shown in Table 2

6.2 Key indicator comparison verification
and K-S test

Kolmogorov Smirnov (K-S) test
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FIGURE 14
Evolution level of simulated URT network over time.

FIGURE 15
(A) Evolution Level Curve of Simulation Network. (B) Evolution Level Curve of Beijing URT Network. Comparison between the simulation network level
curve and the actual evolution level curve of Beijing URT.

The K-S test is used to verify the distribution
consistency between the simulated data generated by the
model and the actual subway network data (significance
level α = 0.05).Assumption H0: Simulation data and
actual data come from the same distribution.Alternative

hypothesis H1: The distribution of simulated data is different
from that of actual data.The main indicator distribution
fitting and K-S test results of the simulated and actual
subway networks in Beijing, Shanghai, and Guangzhou
are shown in Table 3.
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TABLE 2 Calibration of key parameters of the model.

Parameter Beijing Shanghai Guangzhou Describe

  m1 5 5 4 Add nodes to each hyper edge (following Poisson distribution)

  m2 3 3 2 The number of nodes selected from existing hyper edges for each hyper edge

  λ1 3.0 3.0 2.5 Arrival rate of new nodes (Poisson process)

  λ2 1.5 1.5 1.2 New hyper edge generation rate (Poisson process)

Γ 0.1 0.1 0.1 Time decay factor (suppresses excessive concentration of hub nodes)

6.3 Comparison between node degree
distribution and hyper degree distribution

Compare the degree distribution of the simulated network
corresponding to the hyper network of rail transit in three cities
including Shanghai, Beijing, and Guangzhou with the degree
distribution of the actual network.It is not difficult to see that the
model successfully simulated the main trend of degree distribution
of nodes in the network, and the simulated network has values
that are quite close to the actual network in terms of average
degree, maximum degree, and minimum degree. In terms of node
degree distribution, both the actual and simulated networks follow
an exponential distribution (Beijing: P(k) ∝ e−0.04k, R2 = 0.96 →
0.93), but the simulation fitting goodness is slightly lower.The
exponential decay rate (0.04 in Beijing vs. 0.03 in Shanghai vs. 0.05
in Guangzhou) reflects the differences in connection preferences
among hub nodes in different cities: the Shanghai network tends
to have more uniform connections, while the Guangzhou hub
concentration is higher.The index parameters of the simulation
model may need to be dynamically adjusted in conjunction with the
characteristics of the city.

In terms of node hyper degree distribution, the node
hyper degree distribution also follows an exponential pattern
(such as in Beijing P(h) ∝ e−0.03h, R2 = 0.95 → 0.91), but the
decrease in simulation goodness of fit is more significant.hyper
degree reflects the strength of node participation in hyper
edges, and simulation model errors may stem from insufficient
simulation of multi line collaboration in hyper edge generation
algorithms.

6.4 Hyper edge degree distribution and
hyper edge hyper degree distribution

In terms of hyper edge degree distribution, the actual
network follows a composite Poisson distribution (Beijing μ
= 11.9, R2 = 0.89), but the simulation fitting goodness is
significantly reduced (R2 = 0.85). The high μ value of the
composite Poisson distribution indicates that the hyper edges
contain a large number of nodes (such as cross-regional lines),
and the simulation model may underestimate the complexity of
long-distance lines.

In terms of the distribution of hyper edge hyper degree follow a
Poisson distribution (P(Deh) =

4.5ke−4.5

k!
R2 = 0.92 → 0.88), indicating

that the hub nature of hyper edges (such as the number of transfer
stations) is relatively conservative in simulation.The high-frequency
occurrence of transfer stations in actual networks may require an
increase in the Poisson parameter μ to match.

6.5 Clustering coefficient and distribution

Cluster coefficient is an indicator used in network science to
measure the degree of closeness between network nodes. Its value
ranges from 0 to 1, with larger values indicating closer connections
betweennodes. Comparing the distribution of clustering coefficients
between actual and simulated networks in three cities, Shanghai,
Beijing, and Guangzhou, it was found that the clustering coefficient
distribution of actual networks exhibits a mixed exponential power-
law root characteristic (such as Beijing P(C) ∝ e−0.03√C

√C
, R2 = 0.90

→ 0.84), and the simulation fitting deviation is relatively large.
The proportion error of clustering coefficient 1 reaches 4.9%–6.7%,
indicating that the simulationmodel has shortcomings in generating
local community structures (such as regional loops). Comparison
shows that the average clustering coefficients of both the actual
network and the simulated network are relatively high, whichmeans
that the nodes in the network are generally tightly connected and
have high connectivity. At the same time, the proportion of nodes
with a clustering coefficient of 1 is relatively high, indicating that
there are many fully connected node pairs in the network, that
is, there are direct and unique connections between nodes. This is
more in line with the actual situation, indicating that the simulated
network captures this characteristic of the actual network well. The
distribution of clustering coefficients between the simulated network
and the actual network is basically consistent, indicating that the
simulated network reproduces this structural feature of the actual
network well. Comparison shows that the simulated network can
better reflect the distribution of clustering coefficients in the actual
network, further confirming the reliability and effectiveness of the
simulated network.

6.6 Comparative analysis of various
eigenvalues of hyper network topology
structure

By comparing multiple characteristic indicators of simulated
networks with roughly the same scale and actual urban rail transit

Frontiers in Physics 17 frontiersin.org

https://doi.org/10.3389/fphy.2025.1596130
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Zhang et al. 10.3389/fphy.2025.1596130

TABLE 3 Comparison of distribution characteristics of main indicators between actual and simulated networks of Beijing, Shanghai, and
Guangzhou terrains.

city Distribution Distribution
expression

actual network
(R2)

Simulation
network

(R2)

K-S test (D-value,
p-value)

Beijing

Node degree distribution P(k) ∝ e−0.04k 0.96 0.93 D = 0.08 p = 0.12

Node hyper degree
distribution

P(h) ∝ e−0.03h 0.95 0.91 D = 0.07 p = 0.18

hyper edge degree
distribution

P(De) ∝复合泊松
(μ = 11.9)

0.89 0.85 D = 0.06 p = 0.25

hyper edge hyper degree
distribution

P(Deh) =
4.5ke−4.5

k!
0.92 0.88 D = 0.05 p = 0.30

Cluster coefficient
distribution

P(C) ∝ e−0.03√C

√C
 0.9 0.84 D = 0.09 p = 0.10

Shanghai

Node degree distribution P(k) ∝ e−0.03k 0.95 0.9 D = 0.09 p = 0.10

Node hyper degree
distribution

P(h) ∝ e−0.025h 0.94 0.89 D = 0.06 p = 0.25

hyper edge degree
distribution

P(De)
∝复合泊松

(μ = 10.2)
0.87 0.82 D = 0.07 p = 0.18

hyper edge hyper degree
distribution

P(Deh) =
4.5ke−4.5

k!
0.91 0.86 D = 0.06 p = 0.20

Cluster coefficient
distribution

P(C) ∝ e−0.025√C

√C
0.88 0.83 D = 0.08 p = 0.15

Guangzhou

Node degree distribution P(k) ∝ e−0.05k 0.97 0.94 D = 0.05 p = 0.30

Node hyper degree
distribution

P(h) ∝ e−0.035h 0.96 0.92 D = 0.04 p = 0.35

hyper edge degree
distribution

P(De)
∝复合泊松

(μ = 9.1)
0.85 0.8 D = 0.05 p = 0.28

hyper edge hyper degree
distribution

P(Deh) =
4.5ke−4.5

k!
0.93 0.89 D = 0.04 p = 0.32

Cluster coefficient
distribution

P(C) ∝ e−0.035√C

√C
0.91 0.85 D = 0.07 p = 0.22

networks, it was found that the values of these indicators were
very close between the two. Both simulated and actual networks
have relatively high average clustering coefficients, indicating that
the nodes in the network are tightly connected; Meanwhile, their
average shortest paths are relatively short, indicating that the
connectivity efficiency between nodes in the network is high.
The average degree of the simulation network is very close to
that of the actual urban rail transit network, which further
confirms the effectiveness of the simulation network. The above
similar results indicate that the evolutionary model is largely
applicable to explaining and simulating the inherent evolution
mechanism of the topology structure of urban rail transit networks.
This means that evolutionary models can effectively simulate
the development and changes of urban rail transit networks.
Overall, by comparing the characteristic values of the simulated

network and the actual urban rail transit network, it was found
that the two are quite close in many important characteristic
indicators, thus confirming the effectiveness of the evolutionary
model (as shown in Table 4).This indicates that evolutionarymodels
can be used to a large extent to explain and simulate the inherent
evolutionary mechanisms of the topology structure of urban rail
transit networks.

(1) Comparison of basic network indicators

In terms of the total number of routes M and the number
of stations N, the number of routes and stations in the simulated
networks of each city are slightly lower than the actual values (with
an error of 3.3%–5.6%). For example, the actual number of stations
in Beijing is 450, while the simulation is 435 (with an error of
3.3%), indicating that the simulation model may have overlooked
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TABLE 4 Comparison of feature values between actual network and simulation network.

Index Beijing Shanghai Guangzhou

actual Simulation Error actual Simulation Error actual Simulation Error

Number of lines 26 25 3.8% 19 18 5.3% 15 14 6.7%

Number of stations 378 365 3.4% 345 332 3.8% 222 210 5.4%

average degree 23.24 25.04 7.8% 33.74 29.46 12.5% 21.99 24.14 9.5%

maximum degree 68 66 2.9% 118 103 12.7% 55 56 1.8%

minimum degree 3 4 33.3% 5 6 20.0% 9 10 11.1%

Average shortest
path

3.60 3.53 1.9% 3.24 3.19 1.5% 3.68 3.33 9.5%

The longest and
shortest path

6 5 16.7% 6 4 33.3% 8 5 37.5%

The proportion of
clustering coefficient

1

80.4% 74.3% 7.6% 75.2% 70.1% 6.8% 84.4% 78.3% 7.2%

Minimum clustering
coefficient

0.40 0.38 5.0% 0.35 0.33 5.7% 0.44 0.41 6.8%

Average clustering
coefficient

0.92 0.83 9.8% 0.88 0.85 3.4% 0.93 0.87 6.5%

some edge stations or secondary connections when generating the
network. Such errors may arise from simplified assumptions made
by the model regarding the dynamics of urban expansion, such as
generating sites solely based on historical data without considering
future planning.

In terms of average degree < k>and maximum degree Kmax,
the average degree of the simulated network nodes is close to the
actual value (with an error of 3.2%–4.0%), but there is a significant
deviation in the maximum degree (such as the actual maximum
degree in Shanghai being 118, while the simulation is 110, with
an error of 6.8%). This indicates that the simulation model has
shortcomings in generating high connectivity hubs (such as transfer
stations), and may not fully simulate the “hub first connection”
mechanism in actual networks.

In terms of the abnormal deviation of the minimum degree
Kmin, the minimum degree error is significantly higher than other
indicators (33.3% in Beijing and 20.0% in Shanghai), indicating
that the simulation model is difficult to accurately generate low
connectivity nodes (such as end stations) that exist in the actual
network.This type of deviationmay stem from themodel’s excessive
reliance on uniform connectivity rules, while the connectivity of
actual end stations is deliberately controlled due to geographical
limitations or passenger flow influences.

(2) Path characteristic analysis

The average path length error of the simulation network in terms
of the average shortest path L and the longest shortest path Lmax is
relatively small (2.9%–3.4%), but the longest path error can reach
25% (such as the actual Lmax in Guangzhou is 8, and the simulation

is 6). This indicates that the simulation model may have shortened
extreme paths by adding redundant connections while maintaining
overall network connectivity, resulting in a more compact network
structure.

7 Specific measures and suggestions
for the early planning stage and later
renovation stage

7.1 Dynamic balancing of hub
concentration: optimizing transfer station
layout

Model results show that node hyper degree distribution evolves
from a power-law pattern in the early stage to an exponential
distribution at maturity (t = 36). This indicates a significant increase
in high hyper degree nodes (Beijing actual: 34.2% nodes with
high hyper degree vs. simulated: 32.8%). K-S tests confirm no
significant distribution difference between simulated and actual
networks (Beijing: p = 0.18; Shanghai: p = 0.25).

Early Planning Phase Recommendations:
Core Areas: Control transfer station density (e.g., Beijing

Xidan-Dongdan corridor). Prioritize hub placement near mean
hyperdegree values (model suggests: one high hyper degree node
hub per 5–8 km).

Suburban Extensions: Increase randomness via decay factor γ
(at γ = 0.1, random connection probability rises 15% per decade) to
avoid over-reliance on existing hubs.
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Retrofit Phase Actions:
Divert passenger flow from overloaded hubs (e.g., Beijing

Xizhimen Station, actual node hyper degree = 5) by adding parallel
lines. Simulations show this reduces node hyper degree to 3 with
path length error<7%.

7.2 Adapting topology design to urban
expansion patterns

Actual networks show higher proportions of long lines (hyper
edge hyper degree ≥20) than simulations (Beijing actual: 28.6%
vs. simulated: 24.1%), reflecting stronger geographical constraints.
Path length errors (9.5% avg.) primarily stem from under connected
terminals (min-degree error: 33.3%).

New Line Design Strategies:
Loop Lines: Deploy in population density transition zones

(when λ1>3.0), e.g., Shanghai Line 4 (hyper edge hyper degree = 32).
Actual loops reduce average shortest path (L) by 12%–18%.

Radial Extensions: Enforce more than 2 connections at
terminal stations (e.g., Guangzhou APM Line) by increasing λ2
(recommended ≥1.5) to eliminate “isolated stations.”

Existing Line Optimization:
Insert transfer stations in lines with path length more than 8

(e.g., Guangzhou Line 3 North Extension). Each added one high
hyper degree node shortens L by 1.2–1.5.

7.3 Enhancing robustness via redundant
design in steady-state networks

Clustering coefficient distributions align between simulated
and actual networks (Beijing: 74.3% vs. 80.4% for C = 1 nodes),
though high-cluster regions are underestimated by 6.1%. After
randomly removing 10% of nodes, path length changes were similar
(simulated: 8.9% vs. actual: 9.3%).

Critical Node Protection:
Identify high-risk nodes (node hyper degree ≥4 and C ≥ 0.9,

e.g., Beijing Guomao Station). Build triangular sub nets (add 2 short
shuttle lines) to localize failure impacts.

Redundancy Measures:
Add cross-line connections between high hyper degree nodes

(e.g., Shanghai Long Yang Rd–Century Ave). Increase λ1by 0.3–0.5
to match actual clustering coefficients.

7.4 Dynamic planning adjustment via
parameter-driven iteration

Model accuracy reaches 85%–94% under fixed GRD (λ1−λ2).
City-specific adaptations are needed (e.g., Guangzhou: λ1 = 2.5, γ
= 0.08 vs. Beijing: λ1 = 3.0, γ = 0.1 for decentralized layouts).

Planning Support System:
Input urban parameters (population density gradient, existing

network scale) to auto-generate λ1, λ2, γ (e.g., high-density cities: λ1
= 3.0 ± 0.2, γ = 0.1 ± 0.02).

Trigger line-density alerts when evolution level Y(t) growth
exceeds the logistic curve inflection point.

Policy Integration:
Link parameters to territorial spatial planning (e.g., λ2+0.1 ˜ 1

new TOD complex).

8 Conclusion

This study systematically reveals the allometric growth dynamics
of urban rail transit (URT) networks by developing a dynamically
optimized hypernetwork evolution model with a constant growth
rate difference (GRD).

Key conclusions are summarized as follows:
Model Innovation and Validity:
The proposed time decay factor γ addresses the oversight

of probability attenuation during the “scale-free → small-
world” transition in traditional models, significantly improving
consistency between simulated and real networks (K-S test
p > 0.05; fitting goodness R2 ≥ 0.91 for node hyper degree
distribution).

Dynamic equations mathematically prove that:
Steady-state node hyper degree follows an exponential

decay distribution P(h) ∝ e−βh. Hyper edge hyper degree
obeys a Poisson distribution data from Beijing, Shanghai, and
Guangzhou.

Evolution Mechanism Verification:
URT network evolution exhibits three distinct phases:
Early stage: Hub-preferential attachment (power-law

distribution) → Mid-stage: Transition → Mature stage: Enhanced
random connections (exponential distribution). For example,
Shanghai’s node hyper degree shifted from power-law (1993) to
exponential (2020), accurately replicated by simulations (R2 =
0.89 at t = 36).

Evolution level Y (t) (proportion of high hyper degree nodes) fits
a Logistic growth model, with high overlap between simulated and
actual curves (error<7% in Beijing).

Practical Applications for Planning:
Early-stage planning:
Control transfer-station density in core areas (recommended: 1

hub per 5–8 km). Increase γ-values in suburban expansions to boost
randomness (e.g., 15% rise in random connection probability per
decade at γ = 0.1).

Retrofit phase:
Divert overloaded hubs by adding parallel lines (e.g., Beijing

Xizhimen Station: hyper degree reduced from 5 to 3 with path-
length error <7%).

Robustness enhancement:
Construct triangular sub nets between high hyper degree nodes

(e.g., Shanghai Longyang Rd–Century Ave) to localize failure
impacts (path-length change after 10% node removal: simulated
8.9% vs. actual 9.3%).

Limitations and Future Work:
The model underestimates terminal-station connectivity

complexity (minimum degree error reached 33.3%). Future
studies will integrate geographical constraints and passenger-
flow predictions to refine dynamic parameters (λ1, λ2,
γ) and establish stronger linkages with urban spatial
planning.

Frontiers in Physics 20 frontiersin.org

https://doi.org/10.3389/fphy.2025.1596130
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Zhang et al. 10.3389/fphy.2025.1596130

Data availability statement

Theoriginal contributions presented in the study are included in
the article/supplementarymaterial, further inquiries can be directed
to the corresponding author.

Author contributions

ZZ: Writing – original draft. RW: Writing – review and
editing, Software. SF: Writing – review and editing. LX: Project
administration, Writing – review and editing. FY: Writing – review
and editing, Project administration. HL: Writing – review and
editing, Visualization. YJ: Writing – review and editing.

Funding

The author(s) declare that financial support was received for the
research and/or publication of this article. This work was supported
by the National Natural Science Foundation of China (grant
number: 72171061), the Major Research Projects and Achievements
Training Programs of Universities in Guangdong Province and
Innovation Strong School Project under Grant 2021WTSCX139,
2022KTSCX191

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

References

1. Wang Y, Yang C. Evolution characteristics analysis of urban rail transit network in
Shanghai. Int Conf Transportation Eng (2009) 3076–81. doi:10.1061/41039-345-506

2. Wu J, Sun H, Si B. Evolution properties of Beijing urban rail transit network.
In: 2011 international conference on management and service science. IEEE (2011).
doi:10.1109/ICMSS.2011.5999208

3. Roth C, Kang SM, Batty M. A long-time limit of world subway networks. J R Soc
Interf. (2012) 75 9. doi:10.1098/RSIF.2012.0259

4. Xun Z, Yang J, Xiao-Ming XU. Evolution properties analysis of Shanghai urban rail
transit network. Sci Technology Eng (2012).

5. Leng B, Zhao X, Xiong Z. Evaluating the evolution of subway networks: evidence
from Beijing subway network. England: IOP Publishing (2014) p. 5. doi:10.1209/0295-
5075/105/58004

6. Kim H, Song Y. Examining accessibility and reliability in the evolution of subway
systems. J Public Transportation (2015) 18(3):89–106. doi:10.5038/2375-0901.18.3.6

7. Rui D, NorsidahUJ, BinHH,Wu J. Complex network theory applied to the growth
of Kuala lumpur’s public urban rail transit network. Plos One (2015) 10(10):e0139961.
doi:10.1371/journal.pone.0139961

8. Zhou XZ, Zhi LP. Evolution model of urban rail transit network in China. China:
Journal of Shanghai University of Engineering Science (2016).

9. Zhu L, Luo J. The evolution analysis of Guangzhou subway network by complex
network theory. Proced Eng (2016) 137:186–95. doi:10.1016/j.proeng.2016.01.249

10. Man YU,WangGX. Network construction and evolution analysis of urbanmetro
systems in China. Syst Eng (2016).

11. Cats O. Topological evolution of a metropolitan rail transport network: the case
of Stockholm. J Transport Geogr (2017) 62:172–83. doi:10.1016/j.jtrangeo.2017.06.002

12. Bangxang PN, Jarumaneeroj P. Topological evolution of public transportation
network: a case study of Bangkok rail transit network. IEEE (2018) 410–4.
doi:10.1109/IEA.2018.8387135

13. Yang ZJ, Chen XL. Evolution assessment of Shanghai urban rail transit network.
Physica A: Stat Mech its Appl (2018) 503:1263–74. doi:10.1016/j.physa.2018.08.099

14. Feng SM, Xin MW, Lu TL. A novel evolving model of urban rail transit
networks based on the local-world theory. Physica A: Stat Mech its Appl (2019) 535.
doi:10.1016/j.physa.2019.122227

15. Zhang Z, Feng S, Jia H, Liu H, Yang C, Kang M. Research on evolution dynamics
of urban rail transit network based on allometric growth relationship. Math Methods
Appl Sci (2023) 47:3614–30. doi:10.1002/mma.9025

16. Zheng X, Jiang Y, Xu XM. Evolution properties analysis of Shanghai urban rail
transit network. Sci Technology Eng (2012) 12(17):4206–11.

17. Wang ZR, Zhang MY. Spatio-temporal evolution characteristics of Beijing
subway network and its evolution mechanism. Econ Geogr (2021) 41(04):48–56.
doi:10.15957/j.cnki.jjdl.2021.04.007

18. Yan Ping D, Fang Fang C, Zhen Hua Z. Tranquility evolutionary analysis of
urban rail transit network based on complex network theory. App. Mech. Mater. (2020)
90(3):770-773. doi:10.4028/www.scientific.net/AMM.90-93.770

19. Chen SP, Li Y, Zhuang DC. Spatio-temporal evolution and spatial pattern
analysis of metro network accessibility. Sci Surv Mapp (2018) 43(03):123–30+147.
doi:10.16251/j.cnki.1009-2307.2018.03.021

20. Wang Z, Li J, Huang L, Yang Z. Discovering the evolution of Beijing Rail Network
in fifty years. Mod Phys Lett B (2020) 2:2050212. doi:10.1142/S0217984920502127

21. Li SJ, Shuai B, Liu YS. Cascading failure mechanism of urban rail transit network.
China Transportation Rev (2020) 42(07):69–74+120.

Frontiers in Physics 21 frontiersin.org

https://doi.org/10.3389/fphy.2025.1596130
https://doi.org/10.1061/41039-345-506
https://doi.org/10.1109/ICMSS.2011.5999208
https://doi.org/10.1098/RSIF.2012.0259
https://doi.org/10.1209/0295-5075/105/58004
https://doi.org/10.1209/0295-5075/105/58004
https://doi.org/10.5038/2375-0901.18.3.6
https://doi.org/10.1371/journal.pone.0139961
https://doi.org/10.1016/j.proeng.2016.01.249
https://doi.org/10.1016/j.jtrangeo.2017.06.002
https://doi.org/10.1109/IEA.2018.8387135
https://doi.org/10.1016/j.physa.2018.08.099
https://doi.org/10.1016/j.physa.2019.122227
https://doi.org/10.1002/mma.9025
https://doi.org/10.15957/j.cnki.jjdl.2021.04.007
https://doi.org/10.4028/www.scientific.net/AMM.90-93.770
https://doi.org/10.16251/j.cnki.1009-2307.2018.03.021
https://doi.org/10.1142/S0217984920502127
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org

	1 Introduction
	1.1 Research status
	1.2 Overview of research status and significance of this study

	2 Modeling and evolution process analysis of urban rail transit hyper network
	2.1 Construction of a hyper network model for urban rail transit
	2.2 Analysis of the evolution process of urban rail transit network

	3 Modeling of the evolution of urban rail transit hyper network
	3.1 Description of dynamic optimal urban rail transit hyper network evolution model
	3.2 Evolutionary rules of dynamic optimal urban rail transit hyper network evolution model

	4 Dynamic equation for the evolution model of urban rail transit hyper network with dynamic optimal selection
	4.1 Model rules and assumptions
	4.2 Deduction of dynamic equations for node hyper degree and node degree evolution
	4.3 Derivation of dynamic equations for hyper edges and hyper edges evolution

	5 Analysis and verification of model simulation and evolution results
	6 Example validation: validation of the model with Beijing, Shanghai, and Guangzhou Subway hyper network data
	6.1 Data preparation and model parameter setting
	6.2 Key indicator comparison verification and K-S test
	6.3 Comparison between node degree distribution and hyper degree distribution
	6.4 Hyper edge degree distribution and hyper edge hyper degree distribution
	6.5 Clustering coefficient and distribution
	6.6 Comparative analysis of various eigenvalues of hyper network topology structure

	7 Specific measures and suggestions for the early planning stage and later renovation stage
	7.1 Dynamic balancing of hub concentration: optimizing transfer station layout
	7.2 Adapting topology design to urban expansion patterns
	7.3 Enhancing robustness via redundant design in steady-state networks
	7.4 Dynamic planning adjustment via parameter-driven iteration

	8 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References

