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Introduction: Crime forecasting is crucial for urban safety management, as
it facilitates the optimization of police resource allocation, crime prevention,
and the enhancement of public security. However, existing supervised learning
methods encounter several limitations in processing crime data, including
inadequate spatiotemporal representation capabilities, poor generalization and
robustness, and high computational complexity, all of which hinder forecasting
efficiency.

Methods: To address these challenges, this paper proposes a deep learning-
based spatiotemporal sequence forecasting model, named ACSAformer.
The model integrates the Transformer architecture with adaptive graph
convolutional layers and a sparse attention mechanism. The incorporation
of adaptive graph convolution significantly enhances the model’s ability to
representmultivariate spatiotemporal sequences, enabling it to capture complex
inter-feature relationships and dynamic correlations, thereby improving
generalization and predictive accuracy. The sparse attention mechanism further
reduces the number of key tokens each query needs to attend to by computing
similarity scores only for query-key pairs selected according to predefined
patterns, reducing the computational complexity from O(L2) to O(L log L)
and greatly improving the efficiency of long-sequence processing. Extensive
experiments were conducted on five real-world crime datasets—four from Los
Angeles and one from Chicago—covering the period from 2020 to 2023.

Results: The results demonstrate the superior performance of ACSAformer
compared to traditional spatiotemporal forecasting models across multiple
evaluation metrics. Specifically, on the DS1 dataset, the proposed model
achieved a 17.6% reduction in Mean Squared Error (MSE) and a 9.2% reduction in
Mean Absolute Error (MAE).

Discussion: These findings confirm that ACSAformer not only improves
predictive accuracy and robustness but also offers better computational
efficiency, showcasing its potential for application in complex spatiotemporal
tasks such as crime forecasting.

KEYWORDS

crime spatiotemporal forecasting, sparse attention, adaptive graph convolutional layer,
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1 Introduction

Crime has always been a significant factor affecting social
stability and security. Accurate crime forecasting is crucial for the
rational allocation of police resources, the formulation of preventive
strategies, and the safeguarding of public safety [1]. Crime is not
randomly distributed in space and time but exhibits certain patterns
and clustering characteristics [2]. TakingLosAngeles andChicago as
an example, an analysis of crime data from2020 to 2023 revealed that
crime rates are relatively higher in specific areas such as commercial
centers and transportation hubs, and more frequent during certain
periods like nights and holidays [3].

Traditional time series models have been widely used in the field
of crime forecasting. Among them, ARMA, ARIMA, and SARIMA
are typical representatives. The ARMA model is constructed
based on the autocorrelation and moving average properties of
time series and can effectively predict stationary time series [4].
The ARIMA model extends the applicability of the model by
transformingnon-stationary sequences into stationary ones through
differencing ZAKI [5]. The SARIMA model further takes into
account the seasonal characteristics of time series, showing certain
advantages in predicting crime data with seasonal fluctuations
[6]. However, with the deepening of research, traditional models
have revealed many problems in crime forecasting. These models
usually assume that data have stationarity and linear relationships
[7]. However, actual crime data are often influenced by various
complex factors and exhibit non - stationarity and non - linearity.
Crime data may be affected by socio - economic development,
population mobility, policy changes, and other factors, resulting
in changes in the statistical characteristics of the data over time
[8]. This makes it difficult for traditional models to accurately
capture the complex patterns and trends in the data, limiting their
forecasting accuracy [9].

To address the shortcomings of traditional models, the
Transformer model has gradually been introduced into the field
of crime forecasting. Based on the self-attention mechanism, the
Transformer can effectively capture long-range dependencies in
sequences and has achieved great success in natural language
processing [10]. In crime forecasting, it can better capture the
associations between crime data at different time points compared to
traditional models [11]. However, the Transformer has the problem
of high computational complexity. The computational complexity
of its self-attention mechanism is quadratic to the sequence length,
resulting in extremely high computational costs and demanding
hardware requirements, which limit its application efficiency in
practical scenarios. Aiming at the problems of high computational
complexity and large memory consumption in traditional self-
attention mechanisms when dealing with long sequence data,
Informer [12] proposes a sparse attention mechanism, namely,
probabilistic sparse self-attention. This mechanism is based on
the sparsity of queries in the self-attention mechanism and selects
important attention weights for calculation through probabilistic
methods, thus significantly reducing the computational complexity.
SFDformer [40] leverages Fourier Transform to reduce noise and
integrates a sparse attention mechanism to focus on key frequency
components, reducing computational complexity. Moreover, the
Transformer has certain limitations in capturing spatial features.
Crime data often have complex spatial distribution characteristics,

and crime behaviors in different areas may influence each other. The
Transformer struggles to fully capture the relationships between
these spatial features, leading to unsatisfactory forecasting results
for crime data with spatial dependencies. Despite the great success
of the Transformer in natural language processing, it still has
deficiencies in capturing spatial features. Therefore, relevant studies
have attempted to combine Graph Convolutional Networks (GCN)
to enhance the spatial feature capture ability of the Transformer [41].
GCN can effectively mine spatial relationships in graph-structured
data through convolution operations [13].However, the static nature
of GCN reveals significant limitations in crime forecasting tasks. It
assumes that the graph structure is fixed and unchanging, unable to
adapt to the dynamic changes in the crime network. Moreover, its
aggregationmechanism assigns equal weights to neighboring nodes,
making it difficult to distinguish the importance of key nodes from
ordinary ones, which dilutes key crime features. Additionally, GCN
is sensitive to graph structure noise and can easily reduce forecasting
accuracy due to erroneous connections.

In recent years, adaptive convolution, as a novel convolution
method, has gradually attracted widespread attention. Its core lies in
the ability to dynamically adjust the parameters of the convolution
kernel according to the features of the input data, thereby achieving
precise capture of features in different regions. By optimizing
the shape, size, or weights of the convolution kernel, adaptive
convolution significantly performs well in handling complex spatial
structure data [14].Moreover, adaptive convolution can dynamically
adjust the receptive field to effectively capture high-frequency
information, avoiding the loss of details caused by fixed parameters
in traditional convolution methods [15].

In order to solve the issues of high computational complexity
and insufficient spatial feature capture, This study proposes
ACSAformer, ACSAformer introduces sparse attention mechanism
and adaptive convolution layers. Sparse attention takes advantage
of the sparsity of self-attention weights to compute the dot product
of the most relevant keys for each query, thereby significantly
reducing computational complexity and memory requirements
and lowering the model’s complexity to improve computational
efficiency. The adaptive graph convolution layer can dynamically
learn the parameters of the convolution kernel according to the
features of the input data, thereby better adapting to the relationships
and feature distributions between different nodes. It enhances the
capture of correlations between multiple features by automatically
identifying and reinforcing the associations between key features
while suppressing the interference of unimportant features through
feature fusion and channel interaction mechanisms. The specific
contributions of this study are mainly reflected in the following
key aspects:

• Through extensive experiments on five real-world datasets, we
provide empirical evidence demonstrating that ACSAformer
exhibits remarkable superiority in the task of crime
spatiotemporal sequence forcasing.
• ACSAformer employs a sparse attention mechanism,

effectively reducing the model’s computational complexity
to O(L log L) and enhances the model’s ability to capture
critical features, then improves its performance in crime
spatiotemporal sequence forecasting.
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• ACSAformer introduces adaptive graph convolution layers to
enhance the capture of complex relationships and dynamic
correlations between different features, thereby improving the
model’s generalization ability and prediction accuracy.

The rest of this paper is organized as follows. Section 2 reviews
the application of previous techniques in crime spatiotemporal
sequence prediction and the research on convolutional layers
in capturing multivariate correlations. Section 3 describes the
proposed ACSAformer framework, including the sparse attention
mechanism and adaptive convolutional layer techniques. Section 4
introduces the experimental setup, evaluation metrics, and
comparative results on benchmark datasets. Section 5 discusses
the advantages of our method. Section 6 concludes the paper with a
summary of the findings and contributions.

2 Related work

2.1 Crime spatio-temporal sequence
forcasting

The research on crime spatiotemporal sequence forecasting
originated in the late 20th century, primarily relying on statistical
models and Geographic Information Systems (GIS). For instance,
hotspot detection models identify high-risk areas by analyzing the
spatial clustering of crimes, while near-repeat prediction models
focus on the temporal proximity of crime events to capture short-
term repetitive patterns of criminal behavior. Although these
methods are straightforward and intuitive, they struggle to handle
the dynamic nature and nonlinearity of complex spatiotemporal
data [16]. In the 21st century, with the advent of big data
and artificial intelligence technologies, especially the rise of deep
learning and Graph Neural Networks (GNNs), significant progress
has been made in crime spatiotemporal forecasting. Machine
learning algorithms, such as random forests and Support Vector
Machines (SVMs), have been widely used for processing high-
dimensional crime data, yet they are limited in capturing complex
spatiotemporal dependencies Saha et al. [17]. Deep learning
techniques, particularly Recurrent Neural Networks (RNNs) and
their variants (LSTM and GRU), have demonstrated remarkable
capabilities in capturing the dynamic characteristics of time series
data but are prone to issues of gradient vanishing or exploding
[18]. Graph Neural Networks (GNNs) capture spatial dependencies
through information propagation between nodes. For example,
Graph Convolutional Networks (GCNs) can link crime events
across different urban areas, thereby better understanding the
spatial propagation patterns of crimes [19]. In recent years, the
Transformer architecture has made breakthroughs in handling long
sequence data and capturing long-range dependencies through
its self-attention mechanism. When combined with GCNs, it
further enhances the ability to capture spatial features, significantly
improving the accuracy and efficiency of crime spatiotemporal
sequence forecasting[20]. However, the Transformer is not without
flaws in crime spatiotemporal sequence forecasting. On the one
hand, its self-attention mechanism has high time and space
complexity, O (L2) (where L is the sequence length). This leads to
substantial consumption of computing resources and high memory

usage when processing large-scale crime data. On the other hand,
crime data exhibit complex spatial distribution characteristics,
with crime behaviors in different areas influencing each other.
The Transformer has certain limitations in capturing spatial
features and is unable to fully explore the relationships between
these spatial features, which affects its forecasting performance
for crime data with spatial dependencies [21]. To address these
challenges, researchers have proposed a variety of improved
methods. For example, the AFSTGCNmodel constructs an adaptive
fused spatiotemporal graph convolutional network to dynamically
capture potential spatiotemporal correlations, thereby enhancing
forecasting accuracy [22]. These methods provide new ideas and
solutions for crime spatiotemporal sequence forecasting.

2.2 Research on convolutional layers in
crime forecasting

Traditional convolution has primarily focused on extracting
local spatial features in the field of crime forecasting. However,
it has significant limitations in capturing the correlations among
multiple features [23]. Convolutional Neural Networks (CNNs)
extract local spatial information through convolutional and pooling
layers, which makes it difficult to effectively handle complex
spatiotemporal dependencies [24]. For instance, crime data exhibit
spatiotemporal heterogeneity and complex spatial distribution
characteristics. Crime behaviors in different areas influence each
other, yet traditional convolutional models struggle to fully explore
the relationships between these spatial features. Moreover, existing
studies have shown that traditional crime forecasting methods have
limitations in dealing with long-range spatiotemporal dependencies
in spatiotemporal data, resulting in suboptimal forecastings [25].

Adaptive Graph Convolutional Layers (AGCLs) have gradually
emerged in the field of spatiotemporal sequence forecasting, driven
by the need for a deeper understanding and exploitation of complex
spatiotemporal data features [26]. In spatiotemporal sequence
forecasting, data often contain rich spatiotemporal information,
with complex interrelationships between data at different time
steps and spatial locations. The unique design of AGCLs aims
to better capture these relationships and enhance forecasting
performance Li et al. [27].

The core advantage ofAGCLs lies in their ability to automatically
learn the correlations between different features through feature
fusion and channel interaction mechanisms [28]. They can
dynamically adjust the weights of convolutional kernels based on
the characteristics of the data, thereby better capturing the complex
relationships between multiple features [29]. When processing
spatiotemporal sequence data, AGCLs can integrate the data features
from different spatial locations and time steps. Through channel
interactions, they promote the flow of information between different
features, achieving hierarchical feature learning [30].

In the context of crime spatiotemporal sequence forecasting,
AGCLs have shown great potential. Compared with traditional
graph convolution operations, they can more effectively handle the
features of crime data at different spatial scales [31]. For example,
when analyzing crime data at different scales such as neighborhoods
and urban districts, AGCLs can adaptively adjust their focus on
features at different scales. This allows for better integration of these
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features, thereby enhancing the understanding and forecasting of
complex crime patterns [32].

3 Methodology

As illustrated in Figure 1, the architecture of the ACSAformer
model consists of three key processing modules. The adaptive
graph convolution module dynamically adjusts the parameters
of the convolutional kernel based on the characteristics of the
input data, enabling it to capture dynamic correlations among
multiple variables. In the context of crime spatiotemporal sequence
forecasting, this module adaptively modulates the connection
strengths between nodes according to evolving crime patterns,
thereby enhancing the model’s ability to represent spatiotemporal
dependencies. The sparse attention module reduces computational
complexity by restricting each query to interact with only a
subset of key elements, while preserving critical information, thus
significantly improving efficiency. In the decoder component, a
masked multi-head sparse self-attention mechanism is employed,
which integrates causal masking with sparse attention strategies.
This design effectively prevents information leakage from future
time steps, ensuring the autoregressive nature of sequence
generation. Additionally, the sparsified computation substantially
reduces the computational burden for long-sequence modeling. The
multi-head structure, operating in parallel across multiple attention
heads, captures diverse patterns within the input sequence, further
enhancing the model’s representational capacity and enabling
the decoder to efficiently reconstruct and generate the target
sequence. This architectural design not only improves forecasting
accuracy but also substantially reduces computational resource
consumption, making ACSAformer particularly well-suited for
large-scale spatiotemporal sequence processing.

3.1 Problem setting

This study addresses the task of crime spatiotemporal sequence
forecasting, which aims to predict the variation of key variables at
future time steps based on historical records incorporating both
spatial and temporal features. Let the input sequence be denoted as
Z ∈ ℝL×d, where L represents the length of the time series and d is the
feature dimension (e.g., timestamps, latitude, longitude, etc.). The
objective is to predict the target variable at a future time step t+ h,
denoted as Ẑt+h, using the preceding L time steps. Formally, the task
is defined as learning a mapping function fθ:Z = {Z1,Z2,…,ZL} →
Ẑt+h, where Zi ∈ ℝd denotes the feature vector at the i-th time step,
and θ represents the model parameters.

3.2 Embedding

The input layer initially combines the spatiotemporal sequence
data Z ∈ ℝL×d with positional embeddings PE to obtain the
embedded representation E, as defined in Equation 1:

E = Z+ PE (1)

Here, Z represents the raw input sequence, where L is the sequence
length and d is the feature dimension. The positional embedding
PE is designed to enhance the temporal representation of the
input sequence, and is computed using sine and cosine functions
as follows Equation 2:

PE (pos,2j) = sin(
pos

2L2j/d
), PE (pos,2j+ 1) = cos(

pos

2L2j/d
) (2)

In this formulation, pos denotes the position index within the
sequence, j is the embedding dimension index, and L is the input
sequence length.

To further enrich temporal modeling, the final input
representation integrates three components: positional embeddings,
global time stamp embeddings, and scalar-projected values.
Specifically, for each time step t and sequence index x, the
processed input representation Zfeed[x] is computed as follows
Equation 3:

Zfeed ⁢ [x] = α Conv1D(Zt ⁢ [x]) + PE (L× (t− 1) + x)

+∑
p
SEp ⁢ (L× (t− 1) + x) (3)

Here, α is a balancing factor that modulates the scale between
scalar projection and embedding components. Conv1D denotes
the one-dimensional convolution operation applied to the raw
input features. PE(⋅) represents the position embedding function,
and SEp(⋅) is the p-th global time stamp embedding. Each SEp
corresponds to a specific temporal feature, such as year, month,
day, or weekday, allowing the model to explicitly encode multiple
temporal granularities.

3.3 Adaptive layer

Crime events are not uniformly distributed across space and
time but exhibit pronounced dynamic clustering and dependency
structures, which evolve with changes in the social environment.
Static graph structures fail to capture such fluid spatial semantics.
To address this limitation, we introduce an adaptive graph
convolutional layer within the ACSAformer framework. Traditional
graph convolutional networks typically assume a fixed graph
topology and assign equal importance to neighboring nodes.
However, this assumption can dilute critical spatial features and
introduce noise from irrelevant connections. In contrast, the
adaptive graph convolutional layer dynamically learns the adjacency
matrix based on the characteristics of the input sequence, enabling
the model to adaptively adjust the connection strength between
nodes in response to evolving spatial patterns. The corresponding
formula is as follows:

The adaptive graph learning process in ACSAformer begins by
generating two trainable parameter matrices, Ex1 ∈ ℝ

n×de and Ex2 ∈
ℝn×de , where n is the number of nodes and de is the embedding
dimension.Thesematrices are used to compute a dynamic adjacency
matrix Ax as follows Equation 4:

Ax = SoftMax(ReLU(Ex1(E
x
2)
⊤)) (4)

Here, the ReLU function ensures non-negative edge
weights, while the SoftMax function is applied row-
wise to normalize the adjacency matrix and produce a
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FIGURE 1
The ACSAformer model consists of three modules: the Adaptive Graph Convolution Module, which dynamically captures data features; the Sparse
Self-Attention Module, which reduces computational complexity; and the Masked Multi-Head Sparse Self-Attention Module, which ensures that the
model focuses only on valid information during sequence generation while capturing diverse features from the input sequence.

probabilistic and direction-aware representation of inter-node
connections.

After obtaining the adaptive adjacency matrix Ax, the node
features are updated using a MixHop-based graph convolution
strategy, which facilitates information interaction across different
variables. Specifically, the input node features Hx ∈ ℝn×d are
aggregated through multiple powers of Ax, and the output is
computed as Equation 5.

Hx
out = σ(‖ 

j∈P
(Ax)jHx) (5)

In this formulation: σ(⋅) is a non-linear activation function (e.g.,
ReLU or GELU); (Ax)j denotes the j-th power of the adjacency
matrix, capturing j-hop neighbor interactions; ‖‖ represents
concatenation along the feature dimension.

3.4 Sparse attention

Conventional self-attention mechanisms face high
computational complexity and memory overhead when modeling
long sequences, which severely limits their efficiency in large-
scale spatiotemporal forecasting tasks. To improve computational
performance and suppress redundant information in long-
sequence processing, ACSAformer incorporates a sparse attention
mechanism. This mechanism is based on the principle of
probabilistic sparsity, computing dot-product attention only for
representative query-key pairs, thereby significantly reducing
complexity and enhancing the response to critical features. By
reconstructing the attention distribution in a sparse manner, the

model becomes more sensitive to key time steps, enabling effective
long-range dependency modeling while minimizing redundant
computation and memory usage. This strategy not only improves
the model’s practicality in resource-constrained environments
but also enhances its ability to capture critical events in complex
spatiotemporal sequences.

The conventional self-attention mechanism computes
interactions between all query-key pairs, resulting in a quadratic
computational complexity of O(L2), where L is the sequence length.
Specifically, given a query matrix Q ∈ ℝL×d, key matrix K ∈ ℝL×d,
and value matrix V ∈ ℝL×d, the attention output is computed as
Equation 6:

A (Q,K,V) = Softmax(QK
⊤

√d
)V (6)

This process can also be interpreted from a probabilistic
perspective. For the x-th query qx, the attention weight
over key kj is defined by an asymmetric kernel smoother
Equation 7:

A(qx,K,V) =∑
j

k(qx,kj)

∑
j
k(qx,kj)

vj = 𝔼p(kj|qx) [vj] (7)

Where p(kj|qx) =
exp (qxk

⊤
j /√d)

∑j exp (qxk
⊤
j /√d)

and vj ∈ V. While this formulation

enables flexible aggregation, its full attention computation incurs
substantial memory and runtime costs.

To alleviate this problem, we introduce a sparsity-aware
mechanism inspired by the ProbSparse attention framework, which
prioritizes query-key pairs based on their attention distribution
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entropy. Specifically, we define a sparsity score M(qx,K) for the x-
th query to quantify the concentration of its attention distribution
Equation 8:

M(qx,K) = − ln(
L

∑
j=1

exp(
qxk
⊤
j

√d
))+ 1

L

L

∑
j=1

qxk
⊤
j

√d
(8)

A higher M(qx,K) value indicates a sparser attention distribution,
implying stronger preference for a few dominant keys. Based on this
measure, we select the top-umost informative queries to participate
in attention computation, where Equation 9:

u = c ⋅ ln L (9)

Here, c is a sparsity control factor. This logarithmic sparsity strategy
reduces the attention complexity from O(L2) to O(L log L), while
retaining the most impactful query-key interactions. By integrating
this mechanism, the model improves both computational efficiency
and interpretability in long-sequence forecasting tasks.

4 Experiments

4.1 Datasets

According to the data published by https://www.
neighborhoodscout.com/ca/crime, the crime rate in Los Angeles
is significantly higher than the national average in the United
States. In terms of overall safety, Los Angeles is safer than only
approximately 6% of cities nationwide, while the situation in
Chicago is even more severe, with a safety score better than just 5%
of American cities. The distribution of crime risk across different
areas of Los Angeles and Chicago is illustrated in Figure 2. To
scientifically evaluate the performance of the ACSAformer model
in spatiotemporal crime sequence forecasting, this study collected
historical crime records from Los Angeles and Chicago, covering
the period from 1 January 2020, to 10 September 2023. During
the data preprocessing stage, non-essential attributes were removed
to focus on core features, reduce noise, and improve processing
efficiency. Subsequently, the Los Angeles dataset was divided into
four yearly intervals—corresponding to the years 2020, 2021, 2022,
and 2023—each with 2,500 randomly sampled records, resulting
in four sub-datasets labeled DS1 through DS4. Additionally, 3,000
records were randomly sampled from the entire Chicago dataset
to form an external dataset, DS5. The year-based segmentation
of the Los Angeles data ensures that the model learns long-term
temporal patterns, while the inclusion of the Chicago dataset
facilitates the evaluation of the model’s generalization capability
across different urban scenarios. To ensure the scientific rigor and
effectiveness of the training process, all datasets were partitioned
chronologically into training, validation, and test sets at a ratio
of 7:1:2. As shown in Table 1, The dataset is rich in features,
including key attributes such as crime date, location, offense type,
and case status, providing a robust foundation for assessing the
spatiotemporal forecasting performance of the ACSAformer model.

4.2 Implementation details

During the training process, ACSAformer employs Mean
Squared Error (MSE) and Mean Absolute Error (MAE) as the

primary evaluation metrics and is optimized using the Adam
optimizer with an initial learning rate of 0.0001 and a batch size of
16. The model training is prematurely terminated after 10 epochs
to prevent overfitting. Each experiment is repeated three times to
ensure the stability and reliability of the results. All experiments are
conducted within the PyTorch framework and executed on a single
NVIDIA RTX 3090 24 GB GPU, ensuring efficient computational
support. These implementation details lay a solid foundation for
the excellent performance of ACSAformer in crime spatiotemporal
sequence forecasting tasks.

4.3 Baselines

In this study, we selected seven spatiotemporal sequence
forecasting methods for comparative analysis to comprehensively
evaluate the performance of different models in handling complex
spatiotemporal data. These methods encompass both mainstream
techniques and innovative modeling approaches in the field of
spatiotemporal sequence forecasting.

Firstly, models based on the Transformer architecture have
been a research hotspot in recent years. We chose LightTS Campos
et al. [33] and Autoformer Wu et al. [34] as representatives.
LightTS has garnered attention for its efficient computational
performance and superior handling of long sequences, while
Autoformer has significantly enhanced the model’s ability to
capture long- and short-term dependencies in time series data
through its innovative self-attention mechanism. Additionally, the
classic Transformer [35] model was included in our study. As the
pioneeringwork on self-attentionmechanisms, Transformer has laid
the foundation for the development of many subsequent models.
Its powerful parallel computing capabilities and ability to model
long-range dependencies have enabled it to perform outstandingly
in various sequence forecasting tasks. Regarding frequency-
domain analysis, the FreTS Yi et al. [36] model transforms time
series data into the frequency domain for analysis, effectively
capturing periodic and seasonal patterns in the data. This approach
provides a unique perspective for dealing with time series that
exhibit significant periodicity. The FEDformer [37] model, on the
other hand, combines Fourier transforms with sparse attention
mechanisms. By integrating frequency- and time-domain analyses,
FEDformer further enhances the model’s ability to handle complex
spatiotemporal sequences. This combination not only leverages
the strengths of Fourier transforms in frequency-domain analysis
but also effectively reduces computational complexity through
sparse attention mechanisms. In terms of multi-scale modeling, the
Pyraformer Liu et al. [38] model is based on a pyramid structure
and constructs multi-scale representations of time series. This
enables it to capture both long- and short-term dependencies
simultaneously, providing an effective solution for dealing with data
that have complex temporal dependency structures. Finally, the
FiLM Zhou et al. [39] model dynamically integrates relationships
between multidimensional variables through Feature-wise Linear
Modulation. This method excels in handling multivariate time
series with complex interactions, effectively capturing the dynamic
changes and interactions between variables. By modulating model
parameters based on the features of different variables, FiLM can
better adapt to complex interaction scenarios.
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FIGURE 2
The intensity of the color represents the degree of danger in different regions of Los Angeles and Chicago.

TABLE 1 Data indicators of Los Angeles and Chicago.

City Los Angeles Chicago

Time date date

Spatial Feature

AREA NAME Beat

Rpt Dist No Wards

LAT District

LON

Zip Codes

Latitude

Longitude

Census Tracts

Police Beats

Community Area

Case Attributes

Part 1-2 Arrest

Premis Cd

Domestic

Status

Status Desc

Victim Feature

Vict Age

Vict Se2

Vict Descent

Through comparative analysis of these seven methods, we aim
to provide a comprehensive assessment of model performance in
the field of spatiotemporal sequence forecasting and offer valuable
references for subsequent research and practical applications.

4.4 Results and analysis

In this study, we employ Mean Squared Error (MSE) and Mean
Absolute Error (MAE) as the two primary metrics to evaluate the
forecasting accuracy of the ACSAformer model. The calculation
formulas are as follows Equations 10, 11:

MSE = 1
n

n

∑
i=1
(yx − ŷi)

2 (10)

MAE = 1
n

n

∑
i=1
|yx − ŷi| (11)

In the formulas of MSE and MAE n is the total number of samples.
yx is the true value of the x-th sample. ŷx is the predicted value of the
x-th sample.

4.4.1 Multivariate result
In this study,Multivariate forecasting refers to the use ofmultiple

input feature variables as joint inputs to the model for learning
and predicting the target variable. Specifically, the input features
include not only the historical sequence of the victim’s age, but
also contextual information associated with each crime record, such
as timestamps (e.g., year, month, day) and spatial locations (e.g.,
latitude, longitude, administrative region). Multivariate modeling
enables the extraction of spatiotemporal dependencies and feature
interactions within the data, thereby enhancing the accuracy
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and generalization ability of the prediction. Table 2 summarizes
the forecasting performance of all methods across five datasets,
highlighting the superior results achieved by ACSAformer. The
generalization capability of the models is evaluated by calculating
their average rankings across all datasets. Notably, ACSAformer
outperforms other models in average ranking, demonstrating
the best performance. More specifically, compared to LightTS,
ACSAformer reduces the MSE on the DS1 dataset by 17.1%, 21.2%,
12.2%, and 19.9% for forecasting lengths of 12, 36, 58, and 96,
respectively, while the MAE is reduced by 8.9%, 11.1%, 6.7%,
and 10.4% for the same forecasting lengths. LightTS indirectly
captures temporal dependencies through linear or convolutional
layers, making it challenging to model complex relationships
among multiple variables. In contrast, ACSAformer integrates
adaptive graph convolutional layers and ProbSparse self-attention.
The adaptive graph convolutional layer dynamically learns the
inter-variable dependency structures, enabling the capture of
more complex relationships, while the ProbSparse self-attention
mechanism employs a sparsity strategy to selectively compute and
focus on key time steps, enhancing the ability to capture critical
information. The combination of these two components allows
ACSAformer to simultaneously capture local details and global
dependencies in spatiotemporal sequence, thereby significantly
enhancing forecasting accuracy and robustness. Particularly in
scenarios with intricate inter-variable relationships, ACSAformer
exhibits even more outstanding performance.

4.4.2 Univariate result
In contrast, Univariate forecasting refers to the use of only

the historical sequence of the target variable as the model input,
without incorporating any auxiliary features. In this study, the
univariate prediction task relies solely on the past values of
victim age for modeling and forecasting, omitting contextual
information such as time and location. This setup is used to evaluate
the model’s basic sequence modeling capability and predictive
performance in the absence of external inputs. Table 3 presents
the forecasting performance comparison of various methods across
five datasets, with ACSAformer demonstrating superior results. The
generalization capability of the models is evaluated by calculating
their average rankings across all datasets. ACSAformer significantly
outperforms othermodelswith the best average ranking, showcasing
its exceptional performance. Compared to LightTS, ACSAformer
reduces the MSE on the DS1 dataset by 21.1%, 22.5%, 21.8%, and
23.2% for forecasting lengths of 12, 36, 58, and 96, respectively, while
the MAE is reduced by 12.6%, 13.8%, 13.2%, and 14.0% for the
same forecasting lengths.This significant performance improvement
is attributed to the introduction of the adaptive graph convolution
module in ACSAformer, which is capable of dynamically learning
the dependency structures among variables in time series data. Even
in the context of univariate time series forecasting, this module can
capture the intrinsic dynamic characteristics of the time series by
modeling the implicit relationships between data points, thereby
enabling more accurate predictions of future data changes.

4.4.3 Ablation study
Table 4 presents the ablation study results of the ACSAformer

model on five datasets. We designed five ablation methods to

validate the effectiveness of each module in the model. The specific
implementations are as follows:

• O-C: The adaptive graph convolutional layer is removed
from the model.
• T-ST: The sparse attention mechanism is replaced with the

traditional self-attention mechanism.
• O-C/T-ST: Both the adaptive graph convolutional layer is

removed and the sparse attention mechanism is replaced with
the traditional self-attention mechanism.

Through the analysis of the experimental results, we draw the
following conclusions:

• Importance of the Adaptive Graph Convolutional Layer:
After removing the adaptive graph convolutional layer, the
model performance significantly declines. This indicates that
adaptively learning inter-sequence correlations is crucial for
multivariate spatiotemporal sequence forecasting tasks.
• Improvement of the Sparse Attention Mechanism: Compared

with the results of the trans-attention variant, the sparse
attention mechanism outperforms the traditional self-
attention mechanism in capturing global features, thereby
enhancing the model’s performance.
• Synergistic Effect of the Adaptive Graph Convolutional Layer

and Sparse Attention: The results of the o-AdapGlyer and
trans-attention variant further validate that the combination of
the adaptive graph convolutional layer and the sparse attention
mechanism significantly improves the model’s performance.
• Superiority of the Sparse Attention Mechanism: Compared

with FEDformer’s frequency-domain decomposition + hybrid
attention mechanism and Reformer’s Locality-Sensitive
Hashing (LSH) attention + chunked attention + reversible
layer mechanism, ACSAformer’s sparse attention mechanism
demonstrates superior performance in capturing global
features, highlighting its advantage in complex spatiotemporal
sequence modeling.

In summary, the ablation experiments confirm the effectiveness
of the adaptive convolutional layer and the sparse attention
mechanism. By effectively combining these two components,
ACSAformer significantly enhances the performance ofmultivariate
spatiotemporal sequence forecasting.

5 Discusion

5.1 Efficiency evaluation

Figure 3 illustrates the speed comparison of ACSAformer,
CrossFormer, Autoformer, Pyraformer, and FEDformer on the
DS1 and DS4 datasets under different forecasting steps (12, 36,
58, 96). The computational efficiency (speed) of each model
was evaluated by measuring the time required to complete one
iteration (iter), expressed in milliseconds. The models differ
in their attention mechanisms: CrossFormer, based on cross-
attention, captures multi-scale dependencies through cross-feature
interactions, with a complexity of O (L2). Autoformer combines
self-attention with a sequence decomposition architecture,
achieving a complexity of O (L2), making it suitable for
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TABLE 2 Multivariate forecast results with 96 review window and forecasting length12, 36, 58, 96. The best result is represented in bold.

Model ACSAformer LightTS FreTS Transformer FEDformer Autoformer

Metric Mse mae mse mae mse mae mse mae mse mae mse mae

DS1

12 1.026 0.757 1.239 0.831 1.061 0.760 1.043 0.796 1.063 0.768 1.071 0.767

36 1.028 0.755 1.305 0.850 1.055 0.756 1.038 0.758 1.061 0.755 1.080 0.765

58 1.037 0.751 1.182 0.805 1.039 0.748 1.046 0.759 1.083 0.756 1.148 0.785

96 1.055 0.761 1.315 0.850 1.070 0.751 1.064 0.745 1.109 0.757 1.136 0.773

DS2

12 0.805 0.716 0.955 0.757 0.837 0.731 0.819 0.718 0.832 0.733 0.846 0.726

36 0.802 0.719 0.998 0.763 0.816 0.726 0.824 0.728 0.821 0.717 0.851 0.733

58 0.804 0.725 0.889 0.738 0.801 0.723 0.824 0.717 0.829 0.719 1.088 0.830

96 0.793 0.721 0.973 0.761 0.801 0.722 0.809 0.713 0.829 0.716 0.864 0.740

DS3

12 0.964 0.831 1.140 0.877 1.000 0.838 0.968 0.840 0.997 0.832 1.007 0.835

36 0.964 0.833 1.203 0.895 0.981 0.873 0.964 0.830 0.987 0.821 1.008 0.832

58 0.968 1.071 0.856 0.969 0.835 0.965 0.833 0.995 0.826 0.844 1.352 0.935

96 0.963 0.837 1.177 0.888 0.978 0.837 0.968 0.844 1.005 0.825 1.013 0.826

DS4

12 0.940 0.810 1.106 0.855 0.969 0.815 0.945 0.805 0.969 0.811 0.977 0.806

36 0.939 0.806 1.175 0.876 0.955 0.814 0.948 0.802 0.961 0.801 0.982 0.806

58 0.952 0.804 1.052 0.838 0.946 0.813 0.954 0.81 0.973 0.806 1.242 0.898

96 0.948 0.814 1.158 0.872 0.958 0.816 0.955 0.806 0.985 0.808 1.014 0.815

DS5

12 1.025 0.834 1.207 0.885 1.059 0.841 1.031 0.842 1.059 0.851 1.060 0.847

36 1.026 0.830 1.227 0.893 1.047 0.839 1.030 0.835 1.054 0.844 1.064 0.845

58 1.028 0.834 1.235 0.895 1.043 0.838 1.031 0.835 1.049 0.836 1.077 0.848

96 1.027 0.833 1.252 0.902 1.038 0.837 1.036 0.835 1.042 0.837 1.083 0.849

Aug Rank 1.675 5.825 3.075 2.400 3.125 4.675

handling complex temporal patterns. Pyraformer employs a
pyramidal attention mechanism, hierarchically modeling multi-
scale temporal dependencies, with a complexity of O (L log L).
FEDformer leverages frequency-domain attention, enhancing
temporal modeling through frequency-domain transformations,
with a complexity of O (L2). In contrast, ACSAformer utilizes
a sparse attention mechanism, selectively computing key time
steps, significantly reducing computational complexity from O
(L2) to O (L log L), thereby minimizing computational and
memory overhead and demonstrating superior speed. As the
forecasting steps increase, the speed of all models decreases, but
ACSAformer remains efficient even for long forecasting steps 96,
showcasing its robustness. In complex scenarios, its efficiency and
stability make it a preferred model for spatiotemporal sequence
forecasting.

5.2 Model’s ability to resist noise

In this study, we conducted a comprehensive assessment
of the robustness of the ACSAformer model in resisting noise
interference in crime spatiotemporal sequence data. Considering
that crime spatiotemporal sequence data are susceptible to multiple
complex noise sources, we paid special attention to the model’s
performance in complex environments. As shown in Figure 4, we
introduced 50% and 100% Gaussian white noise into the DS1
and DS4 datasets, respectively, to simulate the diverse relationships
between signals and noise in real-world scenarios, making the
experimental environment more realistic. The results show that
the ACSAformer model performs outstandingly in handling noisy
data and has significant advantages over other models. The sparse
attention mechanism of ACSAformer is capable of capturing
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TABLE 3 Univariate forecast results with 96 review window and forecasting length12, 36, 58, 96. The best result is represented in bold.

Model ACSAformer LightTS FreTS FiLM Pyraformer Autoformer

Metric mse mae mse mae mse mae mse mae mse mae mse mae

DS1

12 0.992 0.773 1.258 0.885 1.154 0.840 1.200 0.879 1.014 0.787 1.032 0.795

36 0.994 0.774 1.283 0.898 1.065 0.807 1.290 0.889 1.004 0.780 1.021 0.793

58 0.990 0.772 1.266 0.890 1.063 0.805 1.112 0.812 1.012 0.786 1.064 0.813

96 0.972 0.766 1.266 0.891 1.030 0.793 1.158 0.831 0.984 0.773 1.0114 0.787

DS2

12 1.004 0.768 1.267 0.887 1.096 0.817 1.175 0.863 1.004 0.773 1.046 0.795

36 0.994 0.762 1.293 0.899 1.031 0.787 1.273 0.899 0.996 0.766 0.995 0.767

58 0.983 0.758 1.265 0.887 1.026 0.786 1.109 0.824 0.995 0.767 1.088 0.807

96 0.970 0.750 1.261 0.885 1.011 0.778 1.190 0.864 0.970 0.753 0.978 0.756

DS3

12 0.949 0.753 1.196 0.868 1.051 0.802 1.183 0.880 0.981 0.769 0958 0.761

36 0.946 0.755 1.232 0.882 0.999 0.777 1.128 0.841 0.949 0.755 0.954 0.760

58 0.950 0.757 1.218 0.876 1.016 0.788 1.010 0.784 0.959 0.761 0.986 0.779

96 0.946 0.756 1.241 0.886 1.002 0.782 1.067 0.812 0.946 0.757 0.987 0.780

DS4

12 1.073 0.810 1.35 0.924 1.194 0.826 1.292 0.917 1.077 0.815 1.071 0.820

36 1.067 0.806 1.365 0.932 1.139 0.839 1.312 0.917 1.079 0.812 1.065 0.813

58 1.093 0.817 1.373 0.936 1.162 0.851 1.17 0.854 1.086 0.817 1.133 0.843

96 1.108 0.825 1.400 0.946 1.162 0.855 1.258 0894 1.100 0.823 1.108 0.827

DS5

12 1.044 0.876 1.289 0.948 1.200 0.929 1.238 0.962 1.071 0.885 1.039 0.868

36 1.046 0.881 1.333 0.964 1.147 0.915 1.317 0.914 1.058 0.886 1.056 0.880

58 1.041 0.879 1.318 0.959 1.132 0.911 1.288 0.902 1.050 0.884 1.089 0.877

96 1.040 0.882 1.330 0.961 1.110 0.902 1.231 0.887 1.041 0.878 1.045 0.869

Aug Rank 1.250 5.600 3.775 4.650 2.575 2.550

global dependencies in long sequences, while the adaptive graph
convolutional layer excels at extracting local spatial features. The
integration of these two components enables themodel to effectively
perform feature extraction at both global and local levels, thereby
significantly enhancing its prediction accuracy and robustness. This
ensures that the model maintains high prediction accuracy even
under noisy conditions.

5.3 Hyperparameter experiment

5.3.1 Review window
In general, the size of the review window influences the

types of dependencies that a model can learn from historical
information. A proficient spatiotemporal sequence forecasting

model should accurately capture dependencies over extended review
windows, leading to improved results. In a previous study, it
was demonstrated that Transformer-based models tend to exhibit
significant fluctuations in their performance, resulting in either
an overall decline in performance or reduced stability as the
review window lengthens. As illustrated in Figure 5 We conducted
a similar analysis on the DS1 and DS4 datasets, employing four
review windows, namely, 12, 36, 58, 96, to predict the values
for the subsequent 12 time steps. Mean Squared Error (MSE)
and Mean Absolute Error (MAE) were selected as the evaluation
metrics. As shown in the figure, ACSAformer outperformed other
models in the review window experiments, with significantly
lower MSE and MAE values on both DS1 and DS4 datasets.
Notably, it maintained low error rates even at longer forecasting
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TABLE 4 Ablation analysis of five datasets. Results represent the average error of forecasting length 12,36,58,96, with the best performance highlighted
in bold black.

Model ACSAformer O-C T-ST O-C/T-ST FEDformer Reformer

Metric mse mae mse mae mse mae mse mae mse mae Mse mae

DS1

12 1.026 0.757 1.025 0.756 1.032 0.770 1.029 0.765 1.057 0.755 1.030 0.780

36 1.028 0.755 1.028 0.755 1.031 0.755 1.031 0.751 1.045 0.756 1.031 0.767

58 1.037 0.751 1.038 0.755 1.035 0.752 1.040 0.745 1.064 0.754 1.044 0.757

96 1.055 0.761 1.055 0.756 1.057 0.754 1.057 0.745 1.065 0.744 1.058 0.769

DS2

12 0.805 0.716 0.805 0.717 0.815 0.743 0.814 0.740 0.819 0.716 0807 0.718

36 0.802 0.719 0.802 0.720 0.804 0.718 0.809 0.722 0.814 0.713 0.807 0.725

58 0.804 0.725 0.806 0.727 0.809 0.720 0.809 0.719 0.821 0.715 0.807 0.745

96 0.793 0.721 0.794 0.723 0.797 0.723 0.800 0.722 0.807 0.702 0.794 0.722

DS3

12 0.964 0.831 0.964 0.831 0.965 0.834 0.966 0.834 0.989 0.832 0.964 0.838

36 0.964 0.833 0.964 0.833 0.961 0.834 0.961 0.833 0.977 0.828 0.962 0.837

58 0.968 0.840 0.967 0.840 0.968 0.841 0.970 0.844 0.996 0.810 0.964 0.838

96 0.963 0.837 0.964 0.837 0.963 0.835 0.963 0.832 0.977 0.822 0.964 0.841

DS4

12 0.940 0.810 0.940 0.810 0.942 0.810 0.949 0.811 0.956 0.811 0.936 0.803

36 0.939 0.806 0.939 0.806 0.938 0.802 0.940 0.803 0.950 0.808 0.941 0.807

58 0.952 0.804 0.951 0.805 0.946 0.802 0.951 0.813 0.964 0.808 0.939 0.796

96 0.948 0.814 0.948 0.813 0.948 0.808 0.951 0.806 0.957 0.801 0.949 0.811

DS5

12 1.025 0.834 1.038 0.834 1.025 0.834 1.036 0.833 1.059 0.851 1.028 0.833

36 1.026 0.830 1.038 0.837 1.026 0.830 1.037 0.836 1.054 0.844 1.032 0.833

58 1.028 0.834 1.032 0.837 1.028 0.834 1.036 0.840 1.049 0.836 1.032 0.836

96 1.026 0.833 1.035 0.835 1.027 0.833 1.037 0.835 1.042 0.837 1.034 0.840

steps (e.g., 96), demonstrating its strong capability in modeling
long-range dependencies. Autoformer and Transformer showed
moderate performance, while FreTS and SCINet exhibited larger
errors at certain forecasting steps, particularly under longer
forecasting horizons. Overall, as the forecasting step increased,
the errors of all models showed an upward trend. However,For
each output feature channel, the adaptive graph convolutional
layer dynamically adjusts the convolution kernel based on the
feature differences between neighboring points. This mechanism
allows the convolution kernel to adaptively adjust according to
changes in the input features, thereby more accurately capturing
local geometric structures. The dynamic adjustment mechanism
enhances the model’s generalization ability and prediction accuracy
when processing complex data the robustness and generalization
ability of ACSAformer made it particularly outstanding in complex
data scenarios.

5.3.2 Dropout
In spatiotemporal sequence forecasting, the dropout rate is

a crucial hyperparameter. By randomly deactivating neurons
during training, it reduces the model’s reliance on specific features,
thereby enhancing generalization ability. Figure 6 presents the
ACSAformer model’s performance under various dropout rates
(ranging from 0.05 to 0.25) across the DS1 and DS4 datasets,
with respect to the forecasting horizon on Mean Squared Error
(MSE) and Mean Absolute Error (MAE). The experimental
results indicate that the dropout rate has a certain impact on
the model’s error metrics, as there are differences in the MSE
and MAE curves under different dropout rates, demonstrating
the model’s sensitivity to the dropout rate. Moreover, as the
forecasting step increases, both MSE and MAE exhibit a slight
upward trend, suggesting a decrease in predictive accuracy with
an extended forecasting horizon. Nonetheless, the ACSAformer
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FIGURE 3
In this experiment, five distinct models were employed to perform forecastings on the DS1 and DS4 datasets. The input length was fixed at 96, with
forecasting lengths set to 12, 36, 58, and 96.

FIGURE 4
50% and 100% indicating the degree of noise impact on data. Prediction Results Reveal the Noise Resistance Performance of Different Models on DS1
and DS4 Datasets with Input Length 96 and prediction step 36.

model demonstrates commendable stability and generalization
capability when dealing with different dropout rates and
forecasting steps.

5.3.3 Batch-size
In spatiotemporal sequence forecasting, batch size is a pivotal

hyperparameter influencing computational efficiency, convergence
behavior, and generalization capability. Smaller batches facilitate
escaping local minima but may induce training instability, whereas

larger batches yieldmore stable gradients and expedite convergence,
albeit potentially diminishing generalization. Figure 7 presents the
Mean Squared Error (MSE) and Mean Absolute Error (MAE) of
the ACSAformer model under varying batch sizes (ranging from
4 to 20) across the DS1 and DS4 datasets as the forecasting
horizon changes. The experimental results indicate that batch size
has a limited impact on the model’s error metrics, as the MSE
and MAE curves are relatively close across different batch sizes,
demonstrating the model’s robustness to variations in batch size.
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FIGURE 5
DS1 and DS4 datasets forecastings for 12 time steps withdifferent review windows. We use four other models for comparison.

However, as the forecasting step increases, both MSE and MAE
exhibit a slight upward trend, suggesting a decrease in predictive
accuracy with an extended forecasting horizon. Nonetheless, the
ACSAformer model demonstrates commendable stability and
generalization capability when dealing with different batch sizes and
forecasting steps.

5.3.4 Encoder layer
The number of encoder layers plays a crucial role in

spatiotemporal sequence modeling. Appropriately increasing the
depth can enhance the model’s ability to capture complex temporal
dependencies, particularly in long-sequence forecasting tasks.
However, excessively deep architectures may lead to training
instability, increased risk of overfitting, and decreased inference
efficiency. As illustrated in Figure 8, we analyze the impact of
different encoder depths on prediction performance using the DS1
andDS4 datasets.The vertical axis represents the number of encoder
layers, and each heatmap cell denotes the average evaluation score
across four prediction lengths (12, 36, 58, 96), thereby mitigating

the randomness introduced by individual step sizes. From the
MSE heatmap, we observe a slight increase in error on DS1 as
the number of layers grows (from 1.036 to 1.046), indicating that
deeper encoders do not significantly improve modeling capability
for this dataset. In contrast, performance on DS4 remains stable
(ranging from 0.945 to 0.954), suggesting better robustness and
generalization. A similar trend is seen in the MAE heatmap: DS1
shows minor fluctuations, while DS4 maintains consistent results
across all depths (0.806–0.808). Notably, themodel achieves optimal
performance with the default single-layer encoder (layer = 1),
demonstrating the high efficiency of the proposed architecture. This
lightweight configuration not only reduces training and inference
costs but also enhances the model’s stability and adaptability in
practical applications.

5.3.5 Learning rate
As a key hyperparameter in deep learning models, the learning

rate significantly affects both the convergence speed and the final
performance. An excessively small learning rate may lead to slow
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FIGURE 6
The figure illustrates the variations in Mean Squared Error (MSE) and Mean Absolute Error (MAE) for two distinct datasets, DS1 and DS4, under different
dropout parameters.

convergence and difficulty in escaping local minima, while an overly
large learning rate can cause gradient oscillations, resulting in
unstable training and degraded performance. As shown in Figure 9,
we evaluate the impact of four different learning rate settings
(0.0001, 0.0003, 0.0005, and 0.001) on model performance using
MSE and MAE metrics across the DS1 and DS4 datasets, in order
to assess the model’s robustness and sensitivity to this parameter.
The figure illustrates the prediction errors under different learning
rates, where the darker segments represent MSE and the lighter
segments indicate MAE. The height of each bar corresponds
to the magnitude of the error. On the DS1 dataset, increasing
the learning rate from the default value of 0.0001 leads to a
noticeable rise in both MSE and MAE, suggesting that a larger
learning rate may impair the model’s ability to fit local patterns,
thus reducing prediction accuracy. In contrast, the performance
on the DS4 dataset remains relatively stable across different
learning rates, particularly in terms of MSE, reflecting stronger

generalization and robustness. Notably, the model achieves the best
performance on both datasets when the learning rate is set to
the default value of 0.0001, further confirming the validity and
practicality of this parameter choice. In summary, while the model
demonstrates consistent robustness across different learning rates,
its optimal performance under the 0.0001 setting highlights the
scientific rationale and effectiveness of this configuration for the
current task.

5.3.6 Embedding dimension
Embedding dimension is a critical factor influencing the

performance of spatiotemporal sequence modeling. A dimension
that is too low may result in insufficient feature representation,
making it difficult to capture complex temporal dependencies;
conversely, an excessively high dimension can introduce redundant
information and increase model complexity, thereby impairing
generalization and stability. To comprehensively assess the impact
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FIGURE 7
The figure illustrates the variations in Mean Squared Error (MSE) and Mean Absolute Error (MAE) for two distinct datasets, DS1 and DS4, under different
batch_size parameters.

FIGURE 8
With the review window length set to 96, experiments were conducted under four prediction horizons: 12, 36, 58, and 96. In the heatmap, the color
intensity of each block represents the average of the Mean Squared Error (MSE) and Mean Absolute Error (MAE) obtained across these four
prediction settings.

of this parameter, we evaluate four embedding dimension
settings (64, 256, 512, and 1024) on the DS1 and DS4 datasets,
as shown in Figure 10, using MSE and MAE as evaluation metrics.
The figure presents the average MSE and MAE values computed
across four prediction horizons under each embedding dimension.
These results are visualized in radar charts for the two datasets,
providing an intuitive overview of how embedding size affects
overall model performance. From the radar chart of DS1, it can
be observed that the default embedding size of 256 yields relatively
better performance on both MSE and MAE. However, when the
dimension increases to 1024, the model performance degrades

slightly, suggesting that high-dimensional embeddings may lead
to overfitting due to redundant information. In contrast, the DS4
results exhibit smaller fluctuations across different dimensions,
indicating a more stable performance and stronger robustness.
In summary, an embedding dimension of 256 provides a good
balance between accuracy and stability across both datasets,
confirming the effectiveness of this default setting in the current
task.These findings also suggest that properly controlled embedding
sizes can enhance model prediction, while both under- and
over-dimensioned configurations may have adverse effects on
performance.
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FIGURE 9
Under a review window length of 96, experiments were conducted with four prediction lengths: 12, 36, 58, and 96. The height of each color block in
the figure represents the average Mean Squared Error (MSE) and Mean Absolute Error (MAE) across these four prediction settings.

FIGURE 10
With the review window length fixed at 96, we configured four prediction horizons: 12, 36, 58, and 96. In the figure, each vertex represents the average
of the Mean Squared Error (MSE) and Mean Absolute Error (MAE) obtained across these four prediction settings.

6 Conclusion

In this study,we propose an innovative spatio - temporal sequence
prediction framework named ACSAformer, aiming to overcome the
limitationsofexistingdeeplearningmodelsinhandlingcomplexspatio
- temporal data.ACSAformer combines a sparse attentionmechanism
and knowledge distillation operations and employs a probabilistic
method to screen out important attention weights for calculation,
successfully reducing the computational complexity of the model to
O(L log L). Moreover, by applying one - dimensional convolution, the
ELU activation function, and max - pooling operations for feature

downsampling, ACSAformer significantly enhances the model’s
ability to capture key features. This series of improvements enables
ACSAformer to perform excellently in crime spatio - temporal
sequence prediction tasks.

Furthermore, ACSAformer introduces an adaptive graph
convolutional layer, which dynamically adjusts the size, shape,
or parameters of the convolutional kernel to enhance the
model’s ability to capture the complex relationships and dynamic
correlations among different features. This innovation not only
improves the generalization ability of the model but also further
enhances the prediction accuracy.
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Through extensive experiments on five real - world datasets,
ACSAformer demonstrates its significant advantages in prediction
accuracy, generalization ability, and robustness. Overall, the
application of ACSAformer in spatio - temporal sequence prediction
tasks has achieved certain results, laying a foundation for further
optimization and expansion in the future.
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