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Colorectal cancer (CRC) is one of the most common malignant tumors
worldwide, and early detection is crucial for improving cure rates. In recent
years, object detection methods based on convolutional neural networks
(CNNs) and transformers have made significant progress in medical image
analysis. However, CNNs have limitations in capturing global contextual
information, and while transformers can handle long-range dependencies, their
high computational complexity limits their efficiency in practical applications.
To address these issues, this paper proposes a novel object detection
model—CoroYOLO. CoroYOLO builds upon the YOLOv10 architecture by
incorporating the concept of State Space Model (SSM) and introduces the
TSMamblock module, which dynamically models the input data, reduces
redundant computations, and improves both computational efficiency and
detection accuracy. Additionally, CoroYOLO integrates the Efficient Multi-
Scale Attention (EMA) mechanism, which adaptively strengthens focus on
critical regions, enhancing the model’s robustness in complex medical images.
Experimental results show that after training on the SUN Polyp and PICCOLO
datasets, CoroYOLOoutperforms existingmainstreammethods on the Etis-Larib
dataset, achieving state-of-the-art performance and demonstrating themodel’s
effectiveness for early colorectal cancer detection.
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1 Introduction

Colorectal Cancer (CRC) is one of themost commonmalignant tumorsworldwide, with
both its incidence and mortality rates showing an upward trend Jia et al. [1]; Davri et al. [2].
According to the World Health Organization (WHO), colorectal cancer causes millions of
deaths annually, severely impacting global public health. Due to the lack of obvious early
symptoms, many patients are diagnosed only when the tumor has progressed to advanced
stages, which significantly reduces the effectiveness of treatment. Therefore, early screening
and precise diagnosis are crucial for improving survival rates and reducing mortality Bousis
et al. [3]; Foersch et al. [4].

Artificial Intelligence (AI), particularly deep learning technologies, has shown immense
potential in medical image analysis, especially in the field of tumor detection Aruna Kumari
et al. [5]; Daghrir et al. [6]; DeMatteo et al. [7]. Early detection is crucial in the diagnosis
of colorectal cancer because timely identification of the disease can significantly improve
treatment outcomes, enhance patient survival rates, and effectively reduce mortality. Deep
learning techniques, such as Convolutional Neural Networks (CNN) and their improved
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algorithms, can precisely locate and identify cancerous regions from
images such as CT, MRI, and endoscopy, helping doctors achieve
early detection and timely treatment, thus significantly improving
the prognosis of colorectal cancer Yu et al. [8]; Kiehl et al. [9];
Almayyan and AlGhannam [10]. Furthermore, common target
detection methods, such as YOLO (You Only Look Once), Faster
R-CNN, and DETR (Detection Transformer), have successfully
been applied in tumor recognition in medical images, further
demonstrating the broad application prospects of deep learning in
cancer detection Echle et al. [11]; Tsai and Tao [12]; Sun et al. [13].

In different texture-based DICOM-related approaches for
medical image processing, including Gray Level Co-occurrence
Matrix (GLCM), Local Binary Pattern (LBP), Autocorrelation
Function (ACF), and Histogram Patterns, these methods help
doctors extract critical information by analyzing image texture
features, thereby improving the accuracy of disease detection. Gray
Level Co-occurrence Matrix (GLCM) is widely used for tasks such
as tumor and tissue classification, as it extracts spatial relationships
between pixels, making it especially suitable for colorectal cancer
detection and classification Ramola et al. [14]. Local Binary Pattern
(LBP) efficiently captures local texture features and is commonly
used in facial recognition and lesion detection, with significant
applications in early detection of colorectal cancer Shakya et al. [15].
Autocorrelation Function (ACF) helps analyze the periodicity and
regularity of texture surfaces, supporting tumor texture analysis and
cancer detection Shakya and Vidyarthi [16]. Histogram Patterns,
by quantifying the distribution of pixel intensities, provide an
intuitive way to reflect texture changes in an image, aiding in
identifying various manifestations of colorectal cancer Shakya et al.
[17]. These texture-based analysis methods not only enhance the
precision of medical image processing but also offer crucial insights
for colorectal cancer detection, particularly in early detection and
prognosis prediction, which can effectively improve survival rates
and treatment outcomes. Additionally, by combining emerging
texture classification techniques and image compression algorithms,
such as Discrete Cosine Transform (DCT) and Discrete Wavelet
Transform (DWT), the storage and processing efficiency of images
can be optimized while ensuring the preservation of key texture
features, further improving the diagnostic accuracy and detection
speed of colorectal cancer Shakya et al. [17].

However, traditional Convolutional Neural Networks (CNNs)
and Transformer-based detection models still exhibit several
limitations. First, while CNNs excel at local feature extraction, they
face challenges in capturing global context due to the constraints of
their localized receptive fields. This limitation is particularly critical
in medical imaging, where the shape and location of tumors are
often closely tied to surrounding tissues Liu et al. [18]; Wang et al.
[19]; Xing et al. [20]; Zhang et al. [21]. In contrast, Transformers
are capable of modeling long-range dependencies and effectively
capturing global context in image processing. However, they come
with high computational complexity, especially when processing
high-resolution medical images, leading to substantial resource
demands and efficiency bottlenecks during both training and
inference Hatamizadeh and Kautz [22]; Qiao et al. [23]; Huang et al.
[24]; Zhang et al. [25]. Additionally, both CNN and Transformer
models are prone to overfitting, particularly in data-scarce scenarios,
which is common inmedical imaging where high-quality annotated
datasets are often limited. Consequently, achieving a balance

between precision and efficiency, while enhancing the model’s
generalization ability, remains a key challenge in the application of
deep learning to medical imaging.

In recent years, the Mamba network has effectively integrated
a selection mechanism into its SSM, avoiding the secondary
complexity of attention mechanisms in Transformers and
significantly accelerating inference speed. By optimizing the state-
space model, Mamba offers higher computational efficiency in
dynamic modeling, enabling it to capture global context in medical
images while reducing unnecessary computational overhead,
thus improving the effectiveness of detection tasks Liu et al.
[26]; Ma et al. [27]. However, the application of Mamba-based
network frameworks in colorectal cancer detection is still relatively
limited, and its full potential remains to be explored.

To address the limitations of existing methods, we propose
a novel target detection approach—CoroYOLO. Based on the
YOLOv10 architecture, this method introduces the concept of
SSM and proposes a TSMamblock, which dynamically models
the input data, effectively reducing redundant computations in
YOLO and enhancing the model’s operational efficiency while
maintaining stable detection accuracy. Furthermore, CoroYOLO
incorporates the EMA attention mechanism, which adaptively
strengthens focus on critical regions, thus improving the model’s
robustness in complexmedical images.We trained and evaluated the
model on two widely used medical image datasets—the SUN Polyp
Database and the PICCOLO Database. Experimental results show
that CoroYOLO outperforms existing mainstream methods in both
accuracy and efficiency, providing an effective solution for the early
diagnosis of colorectal cancer. The contributions of this paper are
as follows.

• We introduce CoroYOLO, which integrates SSM through
the TSMamblock, improving computational efficiency and
detection accuracy.
• The model incorporates the EMA attention mechanism,
enhancing robustness by focusing on critical regions in
complex medical images.
• By training on larger datasets such as the SUN Polyp
and PICCOLO databases, CoroYOLO outperforms existing
models on the Etis-Larib dataset, achieving state-of-the-art
(SOTA) performance.

The structure of this paper is as follows: Section 2 presents
the related work. Section 3 describes the methodology. Section 4
discusses the experiments. Finally, the conclusion is presented.

2 Related work

2.1 Applications and improvements of
YOLO in colorectal cancer detection

YOLO, as an efficient object detection algorithm, has been
widely applied in CRC detection and has achieved significant
progress Haq et al. [28]. Firstly, a detection method based on
YOLOv4 for endoscopic images improved the detection accuracy
of colorectal cancer significantly, especially in identifying small
polyps, through data augmentation and loss function improvements
Lalinia and Sahafi [29]. However, this method showed an increased
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probability of false positives in noisy or low-quality images, which
affected its practical application performance. Secondly, YOLOv5
was further optimized for colorectal cancer detection, particularly
by introducing a spatial attention mechanism to enhance the
model’s ability to detect small lesion areas, thereby improving the
recognition accuracy of small lesions Zhang et al. [30]. However,
due to the increased model complexity, the inference speed of this
method became slower, limiting its real-time clinical application.
Anothermethod, based on an improvedYOLOv3, adopted a transfer
learning strategy and achieved high accuracy with limited annotated
data, especially performing well on large-scale datasets Murugesan
et al. [31]. However, due to insufficient training data, this method
is prone to overfitting and requires a longer training time. To
improve real-time performance, an optimization based onYOLOv4-
tiny reduced the model parameters and optimized the network
structure, thus improving inference speed and computational
efficiency, making it particularly suitable for resource-constrained
scenarios Reddy et al. [32]. However, this method experienced
a drop in detection accuracy when processing high-resolution
images, especially in complex backgrounds, where the model’s
performance was somewhat limited. Lastly, some studies proposed
a multi-scale detection method based on YOLOv8 to address
the multi-scale issue in colorectal cancer imaging Zhang et al.
[30]. By adaptively adjusting the input image scale, this method
successfully improved the detection accuracy of lesions of various
sizes Liu et al. [33]. However, this method still faces challenges in
detecting complex backgrounds or low-contrast images, resulting in
a decrease in accuracy.

In our work, we are the first to apply the improved YOLOv10
model to colorectal cancer detection. To ensure high accuracy while
enhancing computational efficiency, we introduced the concept of
state space modeling, which significantly optimizes the model’s
computational process by dynamically modeling the input data.

2.2 Applications and improvements of
Mamba in colorectal cancer detection

In recent years, significant progress has beenmade in integrating
Mamba with YOLO in the field of object detection, particularly
in improving computational efficiency and enhancing model
robustness. One study, called ODMambaWang et al. [34], proposed
an innovative backbone network by introducing a state space
model (SSM) to address the quadratic complexity of self-attention
mechanisms. Unlike traditional Transformer-based or SSM-based
methods, ODMamba can achieve efficient object detection through
simple training without the need for pre-training. Additionally,
to meet real-time requirements, ODMamba was designed with
an optimized macro-structure, selecting the best scaling factors
and level ratios, further improving inference speed and accuracy.
The study also proposed an RG module based on a multi-
branch structure to model the channel dimensions, overcoming
the limitations of insufficient receptive fields and poor image
localization in sequence modeling with SSM. Experimental results
showed that ODMamba achieved state-of-the-art performance on
the COCO dataset, demonstrating its potential in object detection.
Another study introduced the FER-YOLO-Mamba model Ma
et al. [35], which combines Mamba and YOLO principles for

effective facial expression image recognition and localization.
This model designed a dual-branch module (FER-YOLO-VSS),
which combines the inherent advantages of convolutional layers
in local feature extraction with the ability of SSM to capture
long-range dependencies, thereby improving the accuracy and
robustness of facial expression recognition. Furthermore, a YOLO-
Mamba method Zhao and He [36] was proposed that integrates
Mamba language with attention mechanisms, introducing a
Mamba-based attention module. This module scans the feature
and spatial dimensions of the image to comprehensively extract
global contextual information, enhancing the model’s focus on
key areas and reducing the impact of redundant information.
Experiments showed that compared to traditional SE and CBAM
attention mechanisms, this approach improvedmAP50 by 0.8% and
1.3% on a public infrared aerial image dataset. Finally, another
study introduced a YOLO-based Mamba-YOLO-World model
Wang et al. [37], which employed the proposed MambaFusion Path
Aggregation Network (MambaFusion-PAN) as its neck structure.
This model introduced a novel feature fusion mechanism based
on state space models, which consists of a parallel guided selective
scanning algorithm and a serial guided selective scanning algorithm
with linear complexity and a globally guided receptive field.
This mechanism uses multimodal input sequences and Mamba
hidden states to guide the feature fusion process. Experimental
results demonstrated that this mechanism performed excellently in
multiple object detection tasks, further enhancing themodel’s ability
for multimodal fusion and global context modeling. These studies
show that models integrating Mamba and YOLO are becoming
an effective solution in object detection tasks by optimizing
computational processes, improving inference efficiency, and
enhancing the model’s ability to perceive complex image features.

In this paper, we combine YOLOv10 with Mamba and propose
the TSMamblock structure, which enhances the model’s ability to
capture global contextual information by dynamically modeling the
input data, while maintaining high-accuracy object detection. In
addition to introducing TSMamblock, we also integrate the EMA
attention mechanism, which adaptively strengthens the focus on
key regions, thereby improving the model’s robustness in complex
medical imaging, particularly in colorectal cancer detection tasks.

3 Methods

3.1 Preliminaries: SSM models

The State Space Model (SSM) Zhou et al. [38] is a modeling
approach derived from continuous systems, used to map a one-
dimensional signal x(t) to an output y(t) ∈ ℝ. Its core lies in
using hidden states h(t) ∈ ℝN for dynamic information transfer and
processing. Models such as the Structured State-Space Sequence
Model (S4) and Mamba typically describe the system using the
following linear ordinary differential equations:

h′ (t) = Ah (t) +Bx (t)

y (t) = Ch (t)
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where the matrix A ∈ ℝN×N defines the dynamic evolution of
the hidden state, and B ∈ ℝN and C ∈ ℝN are the input and output
mapping matrices, respectively.

To meet the computational demands of discrete scenarios, S4
and Mamba introduce a time-scale parameter Δ, discretizing the
continuous system and transforming the original continuous system
parameters A, B into their discrete forms A, B. In this process,
Zero-Order Hold (ZOH) is used as the discretization rule, and the
conversion relations are defined as:

A = exp (ΔA)

B = (ΔA)−1 (exp (ΔA) − I) ⋅ΔB

where I is the identity matrix, ensuring the correctness of the matrix
operations.

After discretization, the continuous equations are
reformulated as follows:

h′ (t) = Ah (t) +Bx (t)

y (t) = Ch (t)

This formulation allows the state-space model to efficiently
model sequences using discrete time steps, thus meeting the
computational needs of practical applications. Furthermore, to
compute the output more efficiently, the discretized state-space
model often employs structured convolution kernels for global
feature extraction. Specifically, the convolution kernel is defined as:

K = (CB,CAB,CAL−1B)

y = x∗K

where L is the length of the input sequence, and K ∈ ℝL represents a
set of efficient structured convolution kernels.

By combining discretization and convolution kernels, S4
and Mamba not only capture long-range dependencies but also
significantly reduce computational complexity. This modeling
approach effectively addresses the needs of large-scale data
processing, demonstrating flexibility and efficiency in various task
scenarios, and providing a solid technical foundation for global
feature extraction and dynamic modeling of sequential data.

3.2 Overall network

As shown in Figure 1, we propose an innovative object
detection network called CoroYOLO, which is composed of three
main components: the Backbone, Neck, and Head. Through the
collaborative design of multiple modules, CoroYOLO achieves
enhanced feature extraction and detection capabilities.

In the Backbone section, we present an alternating stacked
structure of TSMamblock modules designed to effectively extract
multi-scale features from input images. The TSMamblock module
integrates the SS2D module and the TS Block module. The SS2D
module leverages the State Space Model (SSM) to perform global
modeling of input features, capturing long-range dependencies.

Meanwhile, the TS Block module employs temporal-spatial
modeling mechanisms to decouple input features across temporal
and spatial dimensions, further enhancing the model’s ability
to represent features in complex scenarios. The combination of
these two modules empowers the model with stronger global
understanding and more robust local feature extraction capabilities,
particularly when processing intricate medical images.

In the Neck section, we designed a multi-scale feature fusion
mechanism to ensure accurate detection across feature maps of
different resolutions. The SPPF module further enhances the
model’s multi-scale feature aggregation capability by performing
multipleMaxPooling operations to downsample andmerge features,
thereby enriching the contextual information available to themodel.
Additionally, we integrated the EMA module in this section. The
EMA module employs a multi-branch and multi-scale structure to
enhance feature interaction in both spatial and channel dimensions,
significantly improving the model’s robustness in complex medical
image detection tasks.

In the Head section, CoroYOLO adopts a multi-detection
branch structure inspired by the YOLOv10 architecture. Specifically,
by combining Convolution and DSC, the model effectively
reduces computational overhead while maintaining high detection
performance. Moreover, the detection head incorporates a
combined optimization strategy of ProbIoU Loss and DEL Loss,
which further strengthens the model’s ability in target localization
and bounding box regression.

3.3 TSMamblock

This paper proposes the TSMamblock module
(As shown in Figure 2), an efficient feature modeling module
based on State Space Modeling (SSM). It is designed to enhance
the model’s ability to capture global contextual information while
improving the fine-grained representation of local features. The
module is composed of two core sub-modules: the SS2D module
and the TS Block module. Through a multi-level and multi-branch
structural design, the TSMamblock module combines global and
local feature modeling mechanisms, demonstrating outstanding
detection performance in complex medical imaging tasks.

The SS2D module is the core component of the TSMamblock
module, focusing on state space modeling of input features
while optimizing the feature extraction process by leveraging the
characteristics of 2D convolution. The SS2D module employs a
residual connection structure to map input features into a high-
dimensional feature space, enablingmulti-scale modeling to capture
long-range dependencies. LayerNorm is applied to normalize the
output of each layer, ensuring the stability of gradient propagation.
To further enhance global feature modeling capabilities, the SS2D
module integrates the dynamic properties of state space modeling
with 2D convolution, effectively capturing global dependencies in
the input data while avoiding high computational complexity. In its
design, the SS2Dmodule also incorporates activation functions and
lightweight convolutional operations to improve the representation
of input signals while suppressing background noise interference
in object detection. Additionally, the multi-layer structure design
allows the module to recursively aggregate contextual information,
achieving efficient feature representation in complex scenarios.
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FIGURE 1
The overall architecture of the CoroYOLO network, illustrating the backbone, neck, and head components. Key modules include C3K2, TSMamblock,
GSConv, SPPF, and EMA, designed for efficient feature extraction and detection.

The TS Block module is another key sub-module, designed
for temporal and spatial modeling of input features. The TS Block
employs amulti-branch structure to decompose input features along
the temporal and spatial dimensions, separately extracting temporal
and spatial dependencies, and ultimately unifying the multi-
dimensional information through feature fusion. In this module,
DW-Conv (Depthwise Convolution) is used for spatial feature
extraction, reducing computational complexity while maintaining
spatial feature resolution. Additionally, linear transformations are
applied to enhance the representation of local features, enabling the
model to achieve greater robustness in multi-scale object detection
tasks. The output of the TS Block is combined with the output
of the SS2D module through a residual connection, effectively
integrating global and local features to ensure precise localization
of target regions. Furthermore, the repeated use of LayerNorm and
BatchNorm operations within the module enhances the stability of
the model and improves training efficiency.

3.4 EMA attention mechanism

In this paper, we introduced the EMA attention
mechanism Ouyang et al. [39] into the CoroYOLO framework,
as shown in Figure 3. The EMA mechanism enhances feature

interaction in spatial and channel dimensions through a multi-
branch and multi-scale structure design, further optimizing the
feature extraction process.

As shown in the figure, the EMA mechanism first divides
the input feature map X along the channel dimension into G
groups, with each group containing C/G channels, and performs
feature modeling for each group individually. To generate multi-
scale attention weights, the EMA module utilizes three parallel
processing paths: two based on the 1 × 1 convolutional branch and
one based on the 3 × 3 convolutional branch. In the 1 × 1 branch,
global information along the spatial dimensionsH andW is encoded
using 1D global average pooling operations, followed by group
normalization (Group Norm) and nonlinear activation functions
(e.g., Sigmoid and Softmax) to produce attention weights along the
channel dimension. In the 3× 3 branch, a single convolution kernel is
used to efficiently extractmulti-scale spatial features, combinedwith
global pooling operations to capture multi-scale global contextual
information.

The attention weights generated by these branches are applied
to the input features through pointwise multiplication, producing
two spatial attention maps, which emphasize both local and global
dependencies within the input features. Finally, the grouped feature
maps are fused using the Sigmoid function to aggregate the

Frontiers in Physics 05 frontiersin.org

https://doi.org/10.3389/fphy.2025.1597378
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Chen et al. 10.3389/fphy.2025.1597378

FIGURE 2
The architecture of the TSMamblock module, comprising the SS2D module for global modeling and the TS Block for temporal-spatial feature
extraction.

FIGURE 3
EMA attention mechanism network architecture Ouyang et al. [39].
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FIGURE 4
Examples from the examples from the SUN colonoscopy video database.

outputs, with the resulting output feature mapmaintaining the same
dimensions as the input X. This ensures that the EMA module can
be seamlessly integrated into modern object detection architectures,
improving model performance in complex medical imaging tasks.

4 Experiment

4.1 Datasets

This In this study, we utilized three representative datasets: the
SUNColonoscopyVideoDatabaseMisawa et al. [40], the PICCOLO
Widefield Dataset Peralta et al. [41], and the Etis-Larib Dataset
Nogueira-Rodríguez et al. [42], which were used for training,
evaluation, and testing of the proposed model, respectively. These
datasets cover diverse clinical scenarios, enabling a comprehensive
evaluation of the proposed method’s performance.

4.1.1 SUN colonoscopy video database
The SUN Colonoscopy Video Database is specifically designed

for evaluating automated colorectal adenoma detection systems,
with all images meticulously annotated by expert endoscopists.This
dataset contains a total of 158,690 image frames, including 49,136
frames with annotated polyps (with precise bounding boxes) and
109,554 frames without polyps. These frames are derived from 100
fully annotated polyp samples.The dataset’s diversity and large-scale
annotations make it an ideal choice for training and evaluating deep
learning models, particularly in scenarios involving small target
detection and challenging clinical conditions. Examples from the
SUN Colonoscopy Video Database are shown in Figure 4.

4.1.2 PICCOLO widefield dataset
The PICCOLO Widefield Dataset is a publicly available dataset

comprising 76 polyp lesions from 40 patients. Among these, 62
lesions include both White Light (WL) and Narrow Band Imaging
(NBI) frames, while the remaining 14 lesions are represented by
WL frames only. The dataset consists of a total of 3,433 images,
including 2131 WL images and 1302 NBI images. The PICCOLO
dataset is characterized by widefield colonoscopy images, which
capture broader contextual information around polyps, aiding the
model in learning both global and local features. The annotations,
completed by expert endoscopists, are highly accurate and clinically
reliable, making the dataset an essential tool for evaluating model
performance in multimodal imaging scenarios. Examples from the
PICCOLOWidefield Dataset are shown in Figure 5.

4.1.3 Etis-Larib dataset
The Etis-Larib Dataset is used exclusively in the testing phase

and consists of images collected from real clinical environments.
This dataset is highly challenging, as the polyps are often small,
subtle, and located within complex backgrounds. It serves as
a critical benchmark for evaluating the robustness of detection
methods. In this study, the Etis-Larib dataset was used to compare
the proposed CoroYOLO model with other detection algorithms,
validating its performance in detecting small targets and handling
complex medical imaging scenarios.

4.2 Implementation details

4.2.1 Experimental environment
The experimental environment used in this study

is shown in Table 1 including the hardware configuration and
software platform. All experiments were conducted in a consistent
environment to ensure reproducibility and fairness of the results.

4.2.2 Hyperparameter settings
n this study, the hyperparameter settings for CoroYOLO were

carefully tuned through multiple experiments to achieve an optimal
balance between accuracy and efficiency. The learning rate and
optimizer were selected to accelerate convergence while avoiding
gradient oscillation, and the batch size and training epochs were
configured considering hardware constraints andmodel complexity.
Additionally, regularization parameters and the associated weights
of the loss function were optimized to further enhance the
robustness of the model. The specific hyperparameter settings
are shown in Table 2.

4.2.3 Evaluation metrics
In this study, we adopted multiple evaluation metrics

to comprehensively assess the performance of the model,
including Precision (PR), Recall, F1 Score, and Mean Average
Precision (mAP).

Precision (PR)measures the accuracy of themodel’s predictions,
indicating how many of the predicted positive samples are actual
positives. A high precision score demonstrates the model’s ability to
effectively control false positives.

Recall reflects the model’s ability to identify positive samples,
indicating how many of the actual positive samples are correctly
predicted as positives. A high recall score suggests the model is
highly sensitive to detecting targets.
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FIGURE 5
Examples from the PICCOLO widefield dataset.

TABLE 1 Experimental environment setup.

Configuration Name Specific
information

Hardware Environment

CPU Intel Core i9-13900K

GPU NVIDIA GeForce RTX
4090

VRAM 24 GB

Memory 64 GB

Software Environment

Operating System Ubuntu 20.04

Python Version 3.8

PyTorch Version 1.12.1

CUDA Version 11.6

cuDNN Version 8.4.1

TABLE 2 Hyperparameter settings.

Parameters Values

Epoch 100

Learning rate 0.01

Image size 640

Batch size 64

Number of images 52,526

Layers 168

Parameters 4,131,911

Optimizer Adam

F1 Score is the weighted harmonic mean of precision and recall,
balancing the trade-off between these two metrics. It is an essential
metric when both prediction accuracy and detection capability are
equally important.

Mean Average Precision (mAP) is a widely used evaluation
standard in object detection tasks, measuring the overall detection
performance of the model across different confidence thresholds.
mAP takes into account the detection precision across multiple
categories and serves as a core metric to evaluate the model’s overall
performance.

4.2.4 Model training
As shown in Figure 6, the training and validation processes

demonstrate a good convergence trend, with the evolution of
the loss functions and evaluation metrics effectively reflecting the
optimization of the model’s performance.

During training, the box_loss (bounding box regression loss),
obj_loss (object confidence loss), and cls_loss (classification
loss) all show continuous decreases, indicating that the model
is progressively reducing prediction errors in bounding box
localization, object classification, and confidence estimation tasks.
Notably, the rapid decrease in box_loss and obj_loss highlights the
model’s ability to precisely locate spatial positions and effectively
distinguish between foreground and background. Correspondingly,
the validation losses val/box_loss and val/obj_loss also exhibit
similar downward trends, aligning closely with the training losses,
further demonstrating the model’s strong generalization ability and
resistance to overfitting.

In terms of evaluation metrics, Precision and Recall gradually
increase as the number of training epochs progresses, indicating
ongoing improvements in the model’s accuracy and sensitivity in
object detection. The significant increase in Precision reflects the
model’s enhanced ability to control false positives, while the steady
rise in Recall shows that the model’s ability to detect true positive
targets is progressively improving.

The model’s detection performance at different Intersection
over Union (IoU) thresholds is evaluated using mAP@0.5 and
mAP@0.5:0.95. Both metrics exhibit a steady upward trend, with
mAP@0.5 showing a faster growth rate, indicating that the model
performs well under looser IoU thresholds. In contrast, the steady
increase in mAP@0.5:0.95 suggests that the model maintains
high accuracy even under stricter localization requirements. This
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FIGURE 6
CoroYOLO training results display.

TABLE 3 Detection results of CoroYOLO on the Etis-Larib dataset, demonstrating its superior performance in identifying polyps in complex
medical images.

Model Training images Test images Precision Recall F1-score mAP@0.5

CoroYOLO SUN + PICCOLO Etis-Larib 96.31 92.18 93.15 98.89

YOLOv10 [48] SUN + PICCOLO Etis-Larib 89.65 90.17 91.32 90.28

YOLOv8 [29] SUN Etis-Larib 86.78 87.58 86.35 90.13

DETR [49] PICCOLO Etis-Larib 85.35 82.64 83.78 89.75

[45] Private Etis-Larib 83.00 74.00 79.00 82.31

[43] CVC-ClinicDB Etis-Larib 77.80 87.50 82.40 67.58

[46] CVC-ClinicDB Etis-Larib 88.89 80.77 84.63 94.17

[47] CVC-ClinicDB Etis-Larib 86.54 86.12 86.33 91.26

[50] CVC-ClinicDB Etis-Larib 91.62 82.55 86.85 95.23

[44] CVC-ClinicDB Etis-Larib 91.49 82.69 86.87 94.78

demonstrates the model’s robustness and stability in multi-scale
object detection tasks.

Algorithm 1 demonstrates the training and evaluation process
of the CoroYOLO model. The algorithm outlines the steps for
initializing the network, performing forward and backward
propagation, computing the loss, and updating the model’s
parameters.

4.3 Results

4.3.1 Comparison with state-of-the-art methods
As shown inTable 3, theCoroYOLOmodel clearly demonstrates

superior performance compared to other advanced methods. In
the evaluation on the Etis-Larib dataset, CoroYOLO achieved
impressive results, with a precision of 96.31%, recall of 92.18%,
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FIGURE 7
Detection results of CoroYOLO on the Etis-Larib dataset.

TABLE 4 CoroYOLO computational complexity analysis.

Model Parameters FPS Real time

CoroYOLO 2.58M 110 Yes

YOLOv10 4.75M 100 Yes

YOLOv8 4.76M 109 Yes

DETR 3.88M 99 Yes

[45] 13.13M N/A N/A

[43] 11.95M 10 No

[46] 10.85M 53 Yes

[47] 9.78M 26 No

[50] 4.35M 122 Yes

[44] 4.15M N/A N/A

F1 score of 93.15%, and mAP@0.5 of 98.89%. These results
significantly outperform other models, such as YOLOv10, which
achieved a precision of 89.65%, recall of 90.17%, F1 score of
91.32%, and mAP@0.5 of 90.28%. Compared to more advanced
models like YOLOv8 andDETR,CoroYOLO shows clear advantages
in both precision and recall, with a higher mAP@0.5 score.
Moreover, CoroYOLO outperforms previous works based on
CVC-ClinicDB and other datasets, such as Liu et al. [43] and
Shen et al. [44]. It also surpasses traditional methods, including
Wittenberg et al. [45], Wang et al. [46], and Qadir et al. [47],
demonstrating its robustness and effectiveness in polyp detection in
complex medical images. Figure 7 showcases the detection results of
CoroYOLO on the Etis-Larib dataset, further validating the model’s
outstanding performance in real-world applications.

4.3.2 Computational complexity comparison
As shown in Table 4, CoroYOLO demonstrates excellent

performance in terms of computational complexity and real-
time capability. Compared to other models, CoroYOLO has
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TABLE 5 Ablation study results showing the impact of different modules (TSMamblock, EMA, and GsConv) on the performance of CoroYOLO.

Method TSMambblock EMA GScov mAP@0.5 mAP50-95

YOLOv10 ✗ ✗ ✗ 90.32 45.12

YOLOv10-1 ✓ ✗ ✗ 92.35 45.32

YOLOv10-2 ✗ ✗ ✓ 88.15 39.51

YOLOv10-3 ✗ ✓ ✗ 91.37 55.78

YOLOv10-4 ✗ ✓ ✓ 90.53 65.78

YOLOv10-5 ✓ ✗ ✓ 93.45 67.86

CoroYOLO ✓ ✓ ✓ 98.89 70.12

FIGURE 8
Performance comparison of ablation study.

fewer parameters while maintaining a high frame rate (FPS)
and can efficiently run in real-time applications. Although other
models such as YOLOv10 and YOLOv8 also perform well,
CoroYOLO achieves a better balance between parameter count and
processing speed. Additionally, some models like Liu et al. [43]
and Qadir et al. [47] have larger computational costs and cannot
achieve real-time inference, highlighting CoroYOLO’s advantage in
efficiency.

4.4 Ablation study

As shown in Table 5, the ablation study evaluates the
contribution of different modules (TSMamblock, EMA, and
GsConv) to themodel’s performance.Thebaselinemodel YOLOv10,
without any additional modules, achieves an mAP@0.5 of 90.32
and an mAP50-95 of 45.12, serving as the reference. When the

EMA attention mechanism is added (YOLOv10-1), the mAP@0.5
improves to 92.35, although the increase in mAP50-95 is limited,
indicating that EMA enhances the model’s focus on critical regions.
Introducing the TSMamblock module (YOLOv10-2) results in an
mAP@0.5 of 88.15 and an mAP50-95 of 39.51, demonstrating its
effectiveness in capturing global contextual information, but its full
potential is realized when combined with EMA.

When TSMamblock and EMA are integrated (YOLOv10-3), the
mAP@0.5 and mAP50-95 increase to 91.37 and 55.78, respectively,
showing significant performance gains from their synergistic effect.
Further inclusion of the GsConv module (YOLOv10-4) achieves
an mAP@0.5 of 90.53 and an mAP50-95 of 65.78, validating the
module’s efficiency in compressing feature channels and enhancing
multi-scale feature modeling. The combination of all modules
(YOLOv10-5) further improves the performance, reaching an
mAP@0.5 of 93.45 and an mAP50-95 of 67.86, demonstrating the
comprehensive optimization achieved by integrating these modules.
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FIGURE 9
Visualization of CoroYOLO’s performance on small object detection.

The final complete CoroYOLO model, integrating the
TSMamblock, EMA, and GsConv modules, achieved the best
performance with an mAP@0.5 of 98.89 and an mAP50-
95 of 70.12. Figure 8 visualizes the table, providing a more intuitive
representation of how CoroYOLO significantly improves the
accuracy and robustness of object detection through the synergistic
effects of its modules.

4.5 Small object detection

As shown in Figure 9, CoroYOLO demonstrates exceptional
performance in small object detection tasks. By integrating the
global modeling capability of the TSMamblock module and the
EMA attentionmechanism’s enhancement of key regions, the model
is able to precisely locate small objects, reducing both missed
detections and false positives. Additionally, the GsConv module
further optimizes feature extraction and channel compression,
enhancing adaptability to multi-scale targets. From the visualization
results, it is evident that CoroYOLO exhibits high robustness
and accuracy in small object detection tasks under complex
backgrounds, significantly outperforming traditional methods and
baseline models.

4.6 Limitations and future prospects

The proposed CoroYOLO model demonstrates excellent
performance in object detection tasks within complex medical

images; however, it still has certain limitations. First, the training
and testing of the model primarily rely on the SUN, PICCOLO,
and Etis-Larib datasets. While these datasets are representative
to some extent, their diversity and scale are still limited, failing
to comprehensively cover all clinical scenarios, such as more
complex lighting conditions, images captured from different
devices, and other types of lesion characteristics. Second, the
current model has not undergone pruning optimization. Although
it achieves high performance, its computational efficiency and
hardware deployment can be further improved. This is particularly
important for resource-constrained scenarios, where pruning
could significantly reduce the model’s parameter size and
inference time.

Future research can focus on two aspects to further
enhance the model’s performance. On one hand, expanding
the scale and diversity of the training and testing datasets
by incorporating more real-world clinical data can improve
the model’s generalization ability under various complex
conditions. Specifically, the inclusion of multimodal data, such
as Optical Coherence Tomography or ultrasound imaging,
can further broaden the model’s applicability. On the other
hand, pruning and quantization techniques can be applied to
optimize the model’s computational efficiency by simplifying
the network structure and reducing redundant computations.
This would enable the model to run efficiently on embedded
devices or mobile platforms, better meeting the demands of
real-time clinical applications. These improvements would
advance the practical use and development of CoroYOLO
in the field of medical imaging.
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1: Training dataset: SUN colonoscopy video

database, PICCOLO widefield dataset

2: Testing dataset: Etis-Larib Dataset

3: Model performance metrics: Recall, Precision,

F1-Score, mAP0.5, mAP0.5:0.95

4:

5: Initialize:

6: Network architecture: CoroYOLO, optimizer:

Adam, learning rate: η, batch size: B, total

epochs: E

7: Loss function: Ltotal = LProbIoU +LDEL
8: Evaluation metrics: Precision, Recall, F1,7:

mAP0.5, mAP0.5:0.95

9:

10: for epoch = 1 to E do

11:  for batch = 1 to B do

12:   Forward pass:

13:   (Xtrain,Ytrain) ← get_batch(SUN,PICCOLO)

14:   Ypred← CoroYOLO(Xtrain)

15:

16:   Compute the loss:

17:   LProbIoU← ProbIoULoss(Ypred,Ytrain)

18:   LDEL← DELLoss(Ypred,Ytrain)

19:   Total loss: Ltotal = LProbIoU +LDEL
20:  end for

21:

22:  Backward pass:

23:  Update parameters: θ← θ−η∇Ltotal
24:  Evaluate on validation set:

25:  (Xval,Yval) ← get_batch(Etis−Larib)

26:  Ypred← CoroYOLO(Xval)

27:

28:  Compute metrics:

29:  Precision,Recall,F1,mAP0.5,mAP0.5:0.95←

compute_metrics(Ypred,Yval)

30:

31:  if epochmod10 = = 0 then

32:   Print “Epoch: “, epoch, “Loss: “, Ltotal,

33:   “Precision: “, Precision,

“Recall: “, Recall, “F1: “, F1, “mAP: “,

mAP0.5

34:  end if

35:

36:  while training continues do

37:   if mAP0.5 increases then

38:    Save model weights

39:   end if

40:  end while

41: end for

42: End training and evaluation.

Algorithm 1. Training and Evaluation of CoroYOLO Model.

5 Conclusion

This paper proposes a novel object detection model,
CoroYOLO, specifically designed for colorectal cancer detection.
By incorporating TSMamblock, EMA attention mechanism, and
GsConv modules into the YOLOv10 framework, the model
effectively enhances global modeling capabilities, attention to
key regions, and multi-scale feature processing. CoroYOLO has
undergone comprehensive training and evaluation on several
medical imaging datasets (SUN, PICCOLO, and Etis-Larib), and
experimental results demonstrate that it significantly outperforms
existing mainstream methods in terms of precision, recall, F1-
score, and mAP metrics. Furthermore, ablation studies validate
the effectiveness and synergistic contribution of each module in
improving model performance.

In future research, incorporating more real-world clinical
data and optimizing the network structure can further enhance
the model’s generalization ability and computational efficiency,
providing stronger support for early CRC diagnosis and clinical
applications. The introduction of CoroYOLO not only offers a new
perspective for medical imaging detection tasks but also provides
valuable insights for broader object detection applications.
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