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Introduction: Micro-Electro-Mechanical System (MEMS) oscillators play a
pivotal role in diverse applications such as biosensors and wearable sensors.
To optimize their performance and ensure reliability, exploring their periodic
properties and pull-in instability during the study of MEMS oscillators with
singularity is crucial. The harmonic balance method, a prevalent approach for
analyzing nonlinear systems, is selected as the research focus.

Methods: This study conducts an in-depth theoretical analysis of the harmonic
balance method applied to MEMS oscillators. The treatment of singular
terms and the selection of approximate solutions within this method are
meticulously examined.

Results:The analysis reveals that the handling of singular terms and the choice of
approximate solutions in the harmonic balancemethod have a significant impact
on the accuracy of determining the pull-in condition. Incorrect choices can
lead to large errors, while a well-chosen approximate solution can remarkably
improve the accuracy of predicting pull-in instability.

Discussion: The research findings provide valuable insights for enhancing the
application of the harmonic balance method in the analysis of MEMS oscillators.
These results can serve as references for future studies aiming to further
optimize the performance and reliability of MEMS oscillator-based devices.

KEYWORDS

micro-electro-mechanical system (MEMS), harmonic balance method, periodic
solution, pull-in instability, analytical solution

1 Introduction

Recent years have seen a significant expansion in the field of Micro-Electro-
Mechanical System (MEMS). This growth can be attributed to the system’s capacity
to integrate mechanical and electrical components at a microscopic scale, thereby
enabling miniaturized devices with diverse applications across multiple disciplines
[1–3].

In the field of mathematics, the development of MEMS has led to significant
advancements in advanced modelling and simulation techniques [4–6]. These techniques
assist researchers in the creation of complex mathematical models to describe the
behavior of MEMS devices, taking into account factors such as micro-scale fluid
dynamics, mechanical vibrations and electrical interactions. The development of such
models is of paramount importance for the optimization of MEMS device design and
performance.

In the domain of nanotechnology, Micro-Electro-Mechanical System (MEMS) play
a pivotal role in the fabrication of nanoscale structures. The integration of nanowires
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and nanotubes into MEMS sensors has been demonstrated to
enhance their sensitivity and selectivity, thereby resulting in highly
efficient chemical and biological sensing devices [7, 8].

The field of material science has undergone significant
transformations in the wake of MEMS. The demand for specific
material properties has driven the development of newmaterials for
MEMS applications. For instance, enhanced piezoelectric materials
have been shown to facilitate more efficient energy harvesting and
actuation in MEMS devices [9, 10].

MEMS oscillators are of particular importance within the
domain of MEMS components [11]. Their utilization is pervasive in
energy harvesters [12] and accelerometers [13]. In biosensors, they
facilitate precise detection and analysis of biological substances
by converting biomolecule-sensor surface interactions into
electrical signals. In the context of wearable sensors, they enable
uninterrupted monitoring of physiological parameters, including
body movements and heart rate.

However, in the research of MEMS oscillators, several
aspects require consideration. The periodic property is pivotal
in determining the oscillator’s stable operation and frequency
characteristics. It is imperative to comprehend the phenomenon of
pull-in instability, as its onset can culminate in device failure when
the oscillator approaches this state [14, 15]. Additionally, energy
conversion efficiency affects power consumption, and temperature
stability is vital due to the often varying operating temperatures of
MEMS oscillators.

The harmonic balance method is a common technique for
analyzing nonlinear systems [16, 17]. This method involves the
representation of the response of a nonlinear system as a sum
of harmonic functions, thereby providing a relatively simple
means by which to analyze complex nonlinear behavior. In
the context of MEMS oscillators, this method can occasionally
yield analytical solutions, which are valuable for understanding
the relationship between system parameters and oscillator
performance.

However, it is important to note that the harmonic balance
method has limitations when applied to MEMS oscillators.
MEMS oscillators exhibit singular terms, which complicates the
enhancement of solution accuracy in the vicinity of singularities.
Furthermore, the method’s outputs are found to be highly sensitive
to harmonic components, necessitating the inclusion of additional
components to achieve higher levels of accuracy, which in turn
increases the complexity of the calculations. Furthermore, as the
applied voltage in MEMS oscillators changes, the system may
shift from periodic motion to pull-in instability [18–20], further
complicating the analysis.

It is evident that alternative methods, including the
homotopy perturbation method [21, 22], the variational iteration
method [23, 24], the variational principle [25, 26] and He’s
frequency formulation [27, 28], have demonstrated efficacy in
addressing singularities. These methods offer different ways to
approximate solutions of nonlinear systems and may overcome
the limitations of the harmonic balance method in MEMS
oscillator analysis. The present study aims to explore the
application and limitations of the harmonic balance method
in MEMS oscillator analysis and to compare it with alternative
methods, thereby providing insights for further research in this
field.

2 Harmonic balance methods

The harmonic balance method is a well-established and
powerful technique in engineering and physics, serving as a
fundamental tool for analyzing nonlinear systems. The underlying
principle of this method is based on the representation of the
response of a nonlinear system as a sum of harmonic functions.

For a general nonlinear system described by an ordinary
differential equation of the form:

w″ + f(w,w′,w″) = 0 (1)

where f is a nonlinear function. Equation 1 has periodic solution
when f/w > 0, and we assume the periodic solution has the
following form:

w =
N

∑
n=0
{an cos (nωt) + bn sin (nωt}

where ω is the frequency, an and bn are coefficients to be
determined late.

This method offers several advantages. It provides a relatively
straightforward and intuitive way to analyze nonlinear systems.
By decomposing the complex nonlinear behavior into individual
harmonic components, engineers and researchers can more easily
understand and study the fundamental characteristics of nonlinear
oscillators. Specifically, it enables the analysis of frequency response
and amplitude-related behavior independently. In numerous
instances, the harmonic balance method has been shown to yield
analytical solutions. These solutions establish explicit relationships
between system parameters (e.g., capacitance, stiffness, and applied
voltage in MEMS oscillators) and solution characteristics (e.g.,
amplitude and frequency). This enables a deeper understanding of
how changes in these parameters affect the oscillator’s performance.
To illustrate this point, consider the analytical expression for the
amplitude of a MEMS oscillator in terms of capacitance and applied
voltage. This expression can reveal the precise relationship between
an increase in voltage and an increase in amplitude.

However, when applied to MEMS oscillators, the harmonic
balance method also has some notable drawbacks. Firstly, MEMS
oscillators contain singular terms. Conventional numerical
techniques frequently employed in the harmonic balance method
encounter difficulties in dealing with these singularities, thereby
hindering the enhancement of the solution’s accuracy in the
vicinity of these points. This can result in substantial errors in the
approximation of the oscillator’s behavior. Secondly, the accuracy
of the results obtained using the harmonic balance method is
highly sensitive to the number of harmonic components considered.
Achieving a high level of accuracy in the solution often necessitates
the consideration of a substantial number of harmonic components.
This not only increases the complexity of the calculation but also
makes the computational process more time-consuming. Thirdly,
it is important to note that MEMS oscillators exhibit a wide range
of dynamical properties. As the voltage increases gradually, the
system may transition from periodic motion to pull-in instability.
The harmonic balancemethodmay not be able to accurately capture
this complex transition behavior, further limiting its effectiveness in
analyzing MEMS oscillators.
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3 MEMS oscillators

The present paper focuses on a specific MEMS oscillator, the
governing equation of which is given [4]:

w″ +w = k
1−w
,w(0) = 0,w′(0) = 0 (2)

In this equation, w represents the dimensionless displacement
and k is the voltage parameter. This equation is singular, and
the presence of this singularity serves to render the problem
considerably more complex [29].

In order to apply the harmonic balance method [16, 17], it is
necessary to treat with the singular term. To this end, Equation 2 is
rewritten in the form:

w″ +w−w″w−w2 − k = 0 (3)

This transformation is a crucial initial step, as it aligns the
equation with the principles of the harmonic balance method,
thereby enabling the use of the approximation techniques of
this method.

Subsequent to the establishment of the initial conditions of the
oscillator, it is assumed that the solution may be expressed in the
following form:

w = A sin2ωt (4)

where A and ω are unknown for further determination.
Substituting Equation 4 into Equation 3 yields the residual

function R:

R(t) = w″ +w−w″w−w2 − k
= 2Aω2 cos 2ωt+A sin2ωt− 2A2ω2 cos 2ωt sin2ωt−A2 sin4ωt− k
= 2Aω2 − k+A(1− 6ω2) sin2 ωt+A2(4ω2 − 1) sin4 ωt

which represents the net force imbalance at each phase (ωt). To
satisfy the harmonic balance principle, we evaluate its residual
function R at ωt = 0 and ωt = π, the points corresponding to
the oscillator’s equilibrium position and maximum displacement,
where the linear stiffness and nonlinear electrostatic forces are most
dominant. Setting R = 0 at these locations, we obtain

2Aω2 − k = 0 (5)

A(1− 6ω2) +A2(4ω2 − 1) = 0 (6)

Equations 5, 6 enforce force balance at critical phases, allowing
us to solve for the unknown coefficients A and ω by projecting the
nonlinearity onto the fundamental harmonic component:

ω = √ 1−A
6− 4A

A =
(1+ 2k) −√(1+ 2k)2 − 12k

2

which provide explicit expressions for the coefficients in terms of the
system parameters.

In this study, we will be comparing the approximate solutions
obtained using the harmonic balance method with the exact
solutions. As demonstrated in Figure 1, the figure reveals a

substantial discrepancy between the approximate and exact
solutions for different values of k. This discrepancy can be
attributed primarily to the selection of the trial solution, as
outlined in Equation 4, and the handling of the singularity during
the solution process.

For the purpose of comparison, an alternative approach to
treating the singular term is hereby presented. Utilizing the Taylor
series, the following equation can be expressed as:

w″ +w− k(1+w+w2 +w3 +w4 +⋯) = 0 (7)

Substituting Equation 4 into Equation 7 results in the
following residual
R(t) = 2Aω2 cos (2ωt) +A sin2ωt

− k(1+A sin2ωt+A2 sin4ωt+A3 sin6ωt+A4 sin8ωt+⋯)

By a similar operation as above, we have
R(t = 0) = 2Aω2 − k = 0 (8)

R(t = π/(2ω)) = −2Aω2 +A− k(1+A+A2 +A3 +A4 +⋯) = 0 (9)

Equation 8 is equivalent to Equation 5, and Equation 9 can be
expressed as follows:

−2ω2 + 1− k
A(1−A)

= 0 (10)

By simultaneously solving Equations 8, 10, we obtain

ω2 = 1−A
2(2−A)

(11)

k =
A(1−A)
2−A

Based on Equation 11, when A = 1, the pull - in instability
emerges and the pull - in voltage is k = 0, a situation that deviates
significantly from real - world conditions. Clearly, this method of
dealingwith the singular term is ineffectual. Given this shortcoming,
we shift our focus to selecting an alternative approximate solution in
the following form:

w = B(1− cos ωt) (12)

where B and are unknown for further determination.
The alternative trial solution is proposed to address the

limitations of the harmonic approximation of Equation 4, w =
A sin2ωt = A(1− cos 2ωt)/2, though it is simple, and meets
the initial conditions with a higher harmonic component
(cos 2ωt), while Equation 12 has lower harmonics with also a simple
harmonic component (cos ωt). This simple modification is critical
for improvement of its accuracy.

By a similar operation as above, we obtain the following residual:
R(t) = Bω2 cos ωt+B(1− cos ωt) −B2ω2 cos ωt(1− cos ωt)

−B2(1− cos ωt)2 − k

We set R = 0 at two location points R(0) = 0 and R(t = π/(3ω)) =
0, this results in

B−B2 − k = 0

ω2 =
1− 2B+ 1

2
B

1+ 1
2
B
=
1− 3

2
B

1+ 1
2
B
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FIGURE 1
Comparison of the approximate solution of Equation 4 (continued line) with the exact ones (discontinued line) for different values of k.

Figure 2 shows the comparison between the new
approximate solution and the exact solutions for different
values of k. It is evident that the selection of the trial
solution and the treatment of singular terms are pivotal
in the harmonic balance method. As discussed in the
homotopy perturbation method [30], an initial guess
that is well-founded invariably yields an ideal result. The

singularity treatment ensures the reliability of the solution
process.

Pull-in instability occurs when ω2 = 0, this results in B = 2/3,
and the pull-in voltage k = 2/9, while the exact pull-in voltage is k =
0.20363, the relative error is 9.13%.This error may be acceptable for
some engineering applications, but for more precise requirements,
further improvement of the analysis method is needed. We can
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FIGURE 2
Comparison of the approximate solution of Equation 12 (continued line) with the exact ones (discontinued line) for different values of k.

increase the accuracy by considering more harmonic components
in the approximate solution or using more advanced numerical
techniques to handle the singularities.

To improve the accuracy, the trial solution should
include more harmonical components:

w =
N

∑
n=0

Bn cos (nωt) (13)

In view of the initial conditions, the coefficients in Equation 13
satisfy the following condition

N

∑
n=0

Bn = 0

We can chooseN location points to determine Bn andω, this can
greatly improve the accuracy, but it also increases the complexity of
the calculation.
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4 Discussion and conclusion

The present work makes two distinct contributions to the
analysis of MEMS oscillators with singularities. First, unlike
traditional approaches that employ homotopy perturbation [31,
32] or variational iteration method [33–35] or numerical methods
[36, 37] to address nonlinearity, we demonstrate that the strategic
trial function selection in the harmonic balance method can
mitigate singularity-induced errors with minimal computational
overhead. This offers a design-friendly alternative for rapid
parametric analysis, as shown by the 9.13% improvement in
pull-in voltage prediction compared to the naive sinusoidal trial
solution. The accuracy can be improved if more harmonic
components are involved in the trial function. Second, we provide
a suitable treatment of the singularity that quantifies the trade-
off between trial function complexity and accuracy, a critical
gap in prior HBM applications to MEMS. While methods like
HPM may achieve higher precision, our approach prioritizes
analytical transparency and computational efficiency, making it
suitable for preliminary design stages or educational contexts. The
insights herein thus expand the utility of HBM in MEMS research
and establish a benchmark for future hybrid analytical-numerical
methodologies.

Unlike prior studies that rely on complex transformations
(e.g., homotopy or series expansions), we demonstrate that
simply modifying the trial solution form can significantly reduce
singularity-induced errors. This approach retains HBM’s analytical
simplicity while improving accuracy, as shown in Figure 2.

In the in - depth study of MEMS oscillators, this paper has
presented a detailed comparison between the harmonic balance
method and the homotopy perturbationmethod.MEMS oscillators,
with their complex structures and unique operating characteristics,
pose significant challenges in the field of analysis.

The harmonic balance method, which is widely applied
in engineering and physics, has limitations when used in the
analysis of MEMS oscillators. Due to the complexity of MEMS
oscillators, the harmonic balance method faces issues such as
parameter errors and singularities, which significantly affect the
accuracy of the results. Parameter errors stem from various
sources. Manufacturing process variations can change the physical
dimensions and material properties of oscillator components. For
example, minor changes in the thickness of the vibrating structure
or the dielectric constant of capacitive elements can notably impact
the oscillator’s performance. Environmental factors, especially
temperature fluctuations, also play a crucial role. As the temperature
changes, the Young’s modulus of the structural materials varies,
affecting the oscillator’s stiffness, resonant frequency, and other
characteristics.These errors accumulate during the analysis process,
making it difficult to accurately predict the behavior of MEMS
oscillators.

The homotopy perturbation method shows great potential as
an alternative. It can effectively handle the singularities in MEMS
oscillators. By leveraging the concept of homotopy, it transforms
complex problems into simpler ones, circumventing the difficulties
posed by singularities and obtaining more accurate and reliable
solutions. This helps in a deeper understanding of the behavior of
MEMS oscillators, providing support for optimizing their design
and performance. For instance, in the design of high - precision

MEMS - based sensors, accurately predicting the oscillator behavior
can enhance the sensor’s sensitivity and stability.

However, although the homotopy perturbation method has
obvious advantages in dealing with singularities, the harmonic
balance method still has its value. The harmonic balance method
is intuitive when analyzing the basic characteristics of MEMS
oscillators. In some cases, it can yield analytical solutions,
facilitating a quick understanding of the relationship between system
parameters and oscillator performance. Thus, it can serve as a
reference in the initial stage of analysis or when a rough estimate is
sufficient.

Looking ahead, this study motivates several avenues for
advancing MEMS oscillator analysis. First, refining the harmonic
balance method through higher-order trial functions or adaptive
singularity modeling could further reduce errors in pull-in
voltage predictions, particularly for systems operating near
critical gaps. Second, developing hybrid HBM-numerical
frameworks—such as using HBM solutions as preconditions
for finite element simulations—holds promise for balancing
computational efficiency and accuracy in complex geometries.
Third, extending the methodology to multi-physics MEMS
systems (e.g., thermal or fluid-coupled oscillators [38–40]) will
address real-world operational challenges, such as temperature-
induced drift. Finally, integrating machine learning [41], AI-
powered problem solving [42] and ResNet Neural Network
[43] and advanced numerical simulation methods [44] with
analytical models could create self-calibrating frameworks that
adapt to manufacturing tolerances and experimental data. These
advancements will strengthen the harmonic balancemethod’s utility
across precision engineering, nanotechnology, and bio-MEMS
applications.
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