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Reflection and transmission of
P-wave incident obliquely at the
interface between an elastic solid
and a fluid-saturated porous
medium: a comprehensive study
via the model of soil mechanics
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Hebei University of Architecture, Zhangjiakou, China, 3Hebei Innovation Center of Transportation
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Introduction: A model of soil mechanics is used to study the problem
of reflection and transmission of an obliquely incident plane P-waveon a
discontinuous interface. Based on the propagation theory of elastic waves in
an elastic solid and a fluid-saturated porous medium, the propagation analysis
model of P-wave incident obliquely at the interface of suchmedia is established.

Methods: The theoretical formulas of reflection coefficients of P- and SV-waves
and the transmission coefficients of P1-, P2-, and SV-waves are obtained in
terms of the boundary conditions of the interface between an elastic solid and
a saturated two-phase medium. Furthermore, the derived formulas in this paper
are reduced to the reflection and transmission problems of P-wave incident on
two different single-phase media to verify their correctness. Finally, numerical
investigations are carried out on the variations of the reflection and transmission
coefficients with the incident angle for various boundary conditions, wave
frequency, and material characteristics (i.e., dynamic permeability coefficient,
porosity, and Poisson’s ratio).

Results: It is shown that the effects of incident angles, boundary conditions,
wave frequency, and material characteristics on the reflection and transmission
coefficients cannot be ignored.

Discussion: These conclusions are of guiding significancefor theoretical
research of soil dynamics and engineering seismic exploration.

KEYWORDS

saturated two-phase medium, elastic solid, model of soil mechanics, dispersion
equation, boundary conditions, reflection coefficients, transmission coefficients

1 Introduction

The reflection and transmission of elastic waves at discontinuous interfaces have always
been an important subject of soil dynamics, which is of considerable interest in various fields
such as soil dynamics, geotechnical engineering, earthquake engineering, geophysics, and
so on.The interface between an ordinary elastic solid and a fluid-saturated porous medium
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is one of the important research branches. For the two-phase
medium, due to the existence of pore water in the soil frame,
its mechanical properties become very complex, which leads to
the problem of wave propagation being much more complicated
than that of a single-phase medium [1, 2]. The lower crust can
be approximately treated as a single-phase medium, and the upper
crust can be regarded as a saturated two-phase medium when the
earthquake wave propagates outward from the seismic hypocenter
to the surface [3]. Hence, when the seismic wave travels towards
the surface, it will encounter the interface between elastic and two-
phase medium and show complicated reflection and transmission
characteristics.

It is well known that Biot first revealed the existence of three
body waves in a two-phase medium, i.e., the fast P1-wave, the
slow P2-wave, and the S-wave. The three body waves are dispersed
and attenuated, the speed and attenuation of which are affected
by the frequency and the properties of saturated soil materials [4,
5]. All of the above laid the foundation for the theoretical study
of wave propagation in a fluid-saturated porous medium. Since
then, more and more researchers studied various aspects of wave
propagation in such medium. The P2-wave with strong dispersion
and high attenuation characteristics was successively confirmed
through experiments by Plona [6] and Berryman [7]. Following the
Biot model, many scholars established different two-phase medium
models, including the Zienkiewicz model [8, 9], the Men Fu-lu
model [10, 11], the model of soil mechanics [12], and the theory of
mixture [13]. Chen and Liao [14] compared the first fourmodels and
theoretically explained that the model of soil mechanics is a special
case of the Biot model, which has the advantage of the clear physical
meaning of modeling parameters.

Gutenberg [15] was the first to study the reflection and
transmission of elastic waves incident at the interface between
different semi-infinite solidmedia. After that, numerous researchers
made use of the Biot model to investigate the reflection and
transmission of elasticwaves on the interface between an elastic solid
and a fluid-saturated porous medium. The problem of reflection
and transmission of elastic waves from one elastic solid to another
porous medium was simply examined by Geertsma and Smit
[16]. Then, Deresiewicz and Rice [17] derived the expressions for
amplitude ratios and phase shifts of the displacements for the P-wave
traveling from an elastic solid into a porous medium. However, both
publications were confined to a special case of normal incidence.
Hajra and Mukhopadhyay [18] considered the obliquely incident
seismic waves (P- and SV-waves) across the interface between an
elastic solid and a fluid-saturated porous medium and calculated
the amplitude and energy ratios for all reflected and refracted waves
theoretically and numerically in the absence of dissipation. Sharma
and Gogna [19] and Vashisth et al. [20] also studied the reflection
and refraction of P- and SV-waves at the interface between an elastic
solid and a fluid-saturated porous solid. Unlike Ref. [18], Sharma
andGogna [19] considered the dissipation caused by liquid viscosity.
Among them, Hajra and Mukhopadhyay [18] and Sharma and
Gogna [19] assumed the interface in welded contact, but Vashisth
et al. [20] provided that the boundary is a loosely bonded interface,
introduced a bonding constant ψ and stated that the smooth (ψ =
0) and welded interfaces (ψ = 1) are the special cases. Zhao et al. [3,
21] deduced the reflected and transmitted coefficients in the cases
of seismic waves (P- and SV-waves) propagating from the elastic

solid to the liquid-saturated porous solid (considering the energy
dissipation) and P1-wave traveling through the liquid-saturated
porous solid to the elastic solid (free of the energy dissipation).
Ye et al. [22] presented the expressions of reflection and refraction
coefficients when the S-wave propagates from fluid-saturated soil
to elastic soil and analyzed the dependence on the incident angle,
wave frequency, and interface drainage condition. The concept
of homogeneous pore fluid was applied to the Biot model to
simulate the partially saturated soil. Based on this, the reflection
and transmission of P- and SV-waves propagating from an elastic
solid to partially saturated soil were investigated by Yang [23, 24]
and Yang and Sato [25, 26]. Similarly, Li [27] analyzed the reflection
and transmission when the P1-wave in the partially saturated soil
was incident on the elastic solid. And they all explained the effect of
water saturation on the reflection and transmission. Xu and Xia [28]
also studied the reflection and transmission of the incident plane P1-
wave from the nearly saturated soil to the elastic soil, but the model
used was the governing equation of nearly saturated soil. Following
Fillunger’s model, Kumar et al. [29] discussed the reflection and
transmission of waves on the interface between a fluid-saturating
incompressible porous medium and an elastic medium. Moreover,
the reflection and refraction problem of elastic waves from an elastic
solid to other different soil was also widely studied, such as a
transversely isotropic liquid-saturated porous medium [30, 31], a
double porosity medium [32], an unsaturated medium [33, 34], a
swelling porous half-space [35], porous solid saturated with-two
immiscible viscous fluids [36, 37], a saturated frozen soil medium
[38, 39], and water [40–42], etc. Recently, this wave propagation can
be extended to other distinct media [43, 44].

Since Chinese scholar Men proposed the model of soil
mechanics, quite a few researchers have also used it to study thewave
propagation characteristic in a two-phase medium from theoretical
[45–52] and practical views [53–56]. Among them, it is worth
mentioning that Chen and Men [54] and Cui [53] presented a new
method to understand themechanismof soil liquefaction. Chen [45]
andChen et al. [46] analyzed the near-fieldwavemotions combining
the transmitting boundary. Recently, Xiao et al. [50] investigated
the propagation and attenuation characteristics of Rayleigh waves
in ocean sites. A preliminary analysis of the characteristics of wave
propagation in the infinite and finite saturated medium based on
the model of soil mechanics has been conducted by Zhang et al.
[51] and Zhang and Qiu [52].The results showed that the frequency
and soil properties significantly shaped the velocity and attenuation
coefficient of the three bodywaves. For this reason, these parameters
are bound to affect the reflection and transmission of each wave
incident upon the interface between an elastic solid and a fluid-
saturated porous medium.

2 Theory of wave propagation

2.1 Elastic solid medium

For the homogeneous isotropic elastic solid, the equation of
motion in vector form can be written as [57, 58].

(λ′ + μ′)∇(∇ · u′) + μΔu′ = ρ ̈u′ (1)
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Where, λ′ and μ′ are the Lame’s constants. u′ and ̈u′ are
the displacement and acceleration vectors in the elastic solid,
respectively. ρ is the mass density of an elastic solid. Δ denotes the
Laplace operator, and Δ = ∇2. ∇ is the Hamilton operator.

To gain a deeper understanding of plane wave
solutions of Equation 1, we assume the direction of wave
propagation lies in the x-z plane. Then, we consider a Helmholtz
resolution of the displacement u′, which may be the sum of the
gradient of scalar potential ϕ′ (for P-wave) and the curl of vector
potential ψ′ (for SV-wave), namely, u′ = ∇ϕ′ + ∇×ψ′. For the two-
dimensional motion (i.e., P-SV system), the potential functions of
P- and SV-waves only contribute to the displacement components
in the x and z directions, not to the displacement component in
the y direction, so they are independent of y and depend only on x,
z, and time t, i.e., ϕ′ = ϕ′(x,z, t), and ψ′ = (0,ψ′(x,z, t),0). Hence,
the displacement components u′x and u′z, the normal stress σ′zz, and
shear stress σ′xz are described by

{{{
{{{
{

u′x =
∂ϕ′

∂x
−
∂ψ′

∂z

u′z =
∂ϕ′

∂z
+
∂ψ′

∂x

(2a)

{{{{
{{{{
{

σ′zz = λ′∇2ϕ′ + 2μ′(
∂2ϕ′

∂z2
+
∂2ψ′

∂x∂z
)

σ′xz = 2μ′
∂2ϕ′

∂x∂z
+ μ′(

∂2ψ′

∂x2
−
∂2ψ′

∂z2
)

(2b)

2.2 Fluid-saturated porous medium

Provided that the liquid phase is an ideal fluid, the solid
phase is isotropic and elastic, and the solid particles with infinite
compression modulus are in point contact. In the model of soil
mechanics proceeding as in Men [12], Xiao [50], Zhang [51], and
Zhang andQiu [52], the field equations for a liquid-saturated porous
medium are written as follows.

{{{{{
{{{{{
{

μΔu+ (λ+ μ)∇(∇ · u) + (1− n)∇p f + [B](U̇ − u̇) = ρ1ü

n∇p f − [B](U̇ − u̇) = ρ2Ü

(1− n)∇ · u+ n∇ ·U − n
Ew

p f = 0

(3)

where u, u̇, and ü correspond to the displacement, velocity, and
acceleration of the solid, respectively, and U , U̇ , and Ü those of the
fluid. ρ1 and ρ2 are the mass of solid and liquid per unit volume,
separately, with ρ1 = (1− n)ρs and ρ2 = nρw. ρs denotes the mass
density of the solid and ρw that of the liquid. n is the porosity.
p f represents the true pore pressure. λ and μ (i.e., shear modulus)
are the Lame’s constants, in which λ = Eν/((1+ ν)(1− 2ν)) and μ
= E/2(1+ ν). ν is the Poisson’s ratio. E is the Young’s modulus of
the solid phase. [B] is a third-order diagonal matrix concerning the
dissipation coefficients, of which the diagonal elements b = bx = by
= bz = n2/k. k (Unit: m3 s/kg) refers to the dynamic permeability
coefficient, and k =K/ρwg, in whichK (Unit: m/s) is the permeability
coefficient corresponding to Darcy’s law and g is the gravitation
acceleration. Ew is the pore fluid bulk modulus.

Similar to the single-phase medium, to gain the plane wave
solutions of a saturated two-phase medium, the Helmholtz

decomposition is considered, and the displacement vectors of the
solid phase u (liquid phase U) can be the sum of the gradient of a
scalar potential ϕs (ϕw) and the curl of a vector potential ψs (ψw).

{
{
{

u = ∇ϕs +∇×ψs

U = ∇ϕw +∇×ψw

(4)

Plugging Equation 4 into Equation 3, we can get the wave
equations of potentials in the following form [48].

{{{{{{{{{{{
{{{{{{{{{{{
{

ρ1ϕ̈s − (λ+ 2μ)Δϕs = p f − ρ2ϕ̈w
ρ1ψ̈s − μΔψs = −ρ2ψ̈w

np f − [B](ϕ̇w − ϕ̇s) − ρ2ϕ̈w = 0

ρ2ψ̈w + [B](ψ̇w − ψ̇s) = 0

(1− n)Δϕs + nΔϕw −
n
Ew

p f = 0

(5)

Similarly, the potentials in the solid phase ϕs = ϕs(x,z, t), and ψs
= (0,ψs(x,z, t),0). The potentials in the liquid phase ϕw = ϕw(x,z, t),
and ψw = (0,ψw(x,z, t),0), in the xz plane. The relations of the
displacement components in the solid and liquid phases (ux, uz, Ux,
andUz) and the stresses (σzz, σxz, and p f) with potentials are given by

{{{
{{{
{

ux =
∂ϕs
∂x
−
∂ψs

∂z

uz =
∂ϕs
∂z
+
∂ψs

∂x

(6a)

{{{
{{{
{

Ux =
∂ϕw
∂x
−
∂ψw

∂z

Uz =
∂ϕw
∂z
+
∂ψw

∂x

(6b)

{{{{{{{{{
{{{{{{{{{
{

σzz = (λ+
1− n
n

Ew)∇2ϕs + 2μ(
∂2ϕs
∂z2
+
∂2ψs

∂x∂z
)+Ew∇2ϕw

σxz = 2μ
∂2ϕs
∂x∂z
+ μ(

∂2ψs

∂x2
−
∂2ψs

∂z2
)

p f =
1− n
n

Ew∇2ϕs +Ew∇
2ϕw

(6c)

Then, assume that the plane harmonic wave solutions of the
potentials are as follows.

{{{{{{{
{{{{{{{
{

ϕs = Ase
i(ωt−kP·r)

ϕw = Awe
i(ωt−kP·r)

ψs = Bse
i(ωt−kS·r)

ψw = Bwe
i(ωt−kS·r)

(7)

where As and Aw are the amplitudes of P-wave in the solid and
liquid phases, Bs and Bw those of S-wave. i = √−1. r is the location
vector. ω denotes the circular frequency of a wave. kP and kS are the
wave vectors of P- and SV-waves, which indicate the propagation
directions of waves. kP and kS are the magnitudes (wave numbers). t
represents the travel time.

Substituting Equation 7 into Equation 5 provides the
characteristic equations of elastic waves [51, 52]. By introducing
four variables (A, B, C, and D), the characteristic equations can
be reduced to

A(
kP
ω
)
4
−B(

kP
ω
)
2
+C = 0 (8a)

D(
kS
ω
)
2
+C = 0 (8b)
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where A = (λ+2μ)nEw
ρ1ρ2

, B = [ λ+2μ
ρ1
+ nEw

ρ2
+ (1−n)

2Ew
nρ1
] −

ib
ωρ1ρ2
(λ+ 2μ+ Ew

n
), C = 1− ib

ω
( 1
ρ1
+ 1

ρ2
), and D = ibμ

ωρ1ρ2
− μ

ρ1
.

Equations 8a and 8b constitute a general solution of Equation 3.
In an unbounded two-phase medium, the phase velocities and
attenuation coefficients can be easily extracted from Equations 8a,
8b [51, 52].

3 The reflection and transmission of
interface induced by P-wave

As shown in Figure 1, to illustrate in detail the two-dimensional
reflection-refraction problem, we set up a Cartesian coordinate
system (x, z), with the x-axis as the horizontal direction, and the z-
axis as the vertical direction. For convenience, the interface is chosen
horizontally, i.e., the plane z = 0, and the direction of z is positive
into the fluid-saturated porous medium. As a result, the upper half-
space (z < 0) is an elastic solid, and the lower half-space (z > 0) is
a two-phase medium. Let a plane harmonic P-wave with an angular
frequency ω originate in the elastic solid and be incident obliquely
at the interface at an angle θIP. For this situation, there will be two
refracted compressive (P1- and P2-waves) waves and one refracted
SV-wave in the semi-infinite porousmedium, togetherwith reflected
P- and SV-waves in the semi-infinite elastic medium. All the waves
generated at the interface travel with the frequency of the incident
P-wave. And the angles of refraction for P1-, P2-, and SV-waves are
θT1, θT2, and θTS, the reflection angles are θRP and θRS for reflected
P- and SV-waves.

According to Snell’s law, the relations between the angles of
incidence, reflection, and refraction can be expressed by

CP

sin θIP
=

CP

sin θRP
=

CS

sin θRS
=

VP1

sin θT1
=

VP2

sin θT2
=

VS

sin θTS
(9)

where CP and CS are the velocities of P- and SV-waves in the elastic
solid. VP1, VP2, and VS are the velocities of P1-, P2-, and SV-waves
in the two-phase medium. From Equation 9, the angle of reflection
(θRP) equals the angle of incidence (θIP) for the P-wave. In addition,
if the wave velocities and the angle of incidence (θIP) are given, the
angles of reflection and refraction (i.e., θRS, θT1, θT2, and θTS) can be
calculated.

3.1 Wave potentials in the elastic solid

For the elastic solid in the region z < 0, the reflected P- and SV-
waves are generated when the P-wave propagates from an elastic
solid to a saturated porous medium. The wave potentials of P- and
SV-waves in the elastic solid,ϕ′ andψ′, are given byEquation 10.The
plane wave solutions of wave potentials (ϕ′ and ψ′) can be expressed
by Equations 11a–11c.

{
{
{

ϕ′ = ϕI +ϕR

ψ′ = ψR
(10)

ϕI = AI exp[i(ωt− kIxx− kIzz)] (11a)

ϕR = AR exp[i(ωt− kIxx+ kIzz)] (11b)

ψR = BR exp[i(ωt− kRx x+ kRz z)] (11c)

where ϕI is the potential of the incident P-wave, which travels in the
+x and +z directions, and AI corresponds to the amplitude. ϕR and
ψR are the potentials of the reflected P- and SV-waves, which travel in
the +x and -z directions, andAR and BR are the amplitudes. kIx and k

I
z

represent the components of the wave number along the x-direction
and z-direction, respectively, for the incident P-wave. kRx and kRz are
the components of the wave number in the x and z directions for the
reflected SV-wave.

3.2 Wave potentials in the fluid-saturated
porous medium

For the fluid-saturated porous medium in the domain z > 0,
part of the incident P-wave is converted into three transmitted P1-
, P2-, and SV-waves. The potentials in the solid phase (ϕs and ψs),
and the potentials in the liquid phase (ϕw and ψw) are given by
the expression (Equation 12).The plane wave solutions of potentials
for each transmitted wave in the solid and liquid phases are
written by

{{{{{{{
{{{{{{{
{

ϕs = ϕ
T
s1 +ϕ

T
s2

ϕw = ϕ
T
w1 +ϕ

T
w2

ψs = ψ
T
s

ψw = ψ
T
w

(12)

{
{
{

ϕTs1 = A
T
s1 exp[i(ωt− k

T
1xx− k

T
1zz)]

ϕTw1 = A
T
w1 exp[i(ωt− k

T
1xx− k

T
1zz)]

(13a)

{
{
{

ϕTs2 = A
T
s2 exp[i(ωt− k

T
2xx− k

T
2zz)]

ϕTw2 = A
T
w2 exp[i(ωt− k

T
2xx− k

T
2zz)]

(13b)

{
{
{

ψT
s = B

T
s exp[i(ωt− kTsxx− kTszz)]

ψT
w = B

T
w exp[i(ωt− kTsxx− kTszz)]

(13c)

where ϕTs1, ϕ
T
s2, and ψT

s are the refracted P1-, P2-, and SV-waves
potentials in the solid phase, and ϕTw1, ϕ

T
w2, and ψT

w are those in the
liquid phase. AT

s1, A
T
s2, and BT

s are the amplitudes corresponding to
the transmitted P1-, P2-, and SV-waves in the solid phase, and AT

w1,
AT
w2, and BT

w those in the liquid phase. kT1x, k
T
1z, k

T
2x, k

T
2z, k

T
sx, and

kTsz are the components of wave numbers in the x and z directions,
in which the indices 1, 2, and s denote P1, P2, and SV waves, and
the superscript T represents refraction. In terms of the negative
sign before each wave number, all transmitted waves propagate
along the +x and +z directions.

Given the geometric relationship of wave vectors, the wave
vectors and their components for various waves fulfill Equation 14.
In addition, the apparent velocity along the interface (i.e., z = 0) is
the same. Hence, the horizontal components of the wave vector for
all mode waves are the same as shown in Equation 15.

{{{{{{{{{{
{{{{{{{{{{
{

(kIx)
2 + (kIz)

2 = (kI)2

(kRx )
2 + (kRz )

2 = (kR)2

(kT1x)
2 + (kT1z)

2 = (kT1 )
2

(kT2x)
2 + (kT2z)

2 = (kT2 )
2

(kTsx)
2 + (kTsz)

2 = (kTs )
2

(14)
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FIGURE 1
Reflection and transmission of an incident P-wave at the interface between the monophasic and two-phase media.

kIx = kRx = kT1x = k
T
2x = k

T
sx (15)

For the liquid-saturated medium, it can be seen from
Equations 8a, 8b that the amplitude ratios of potentials in
Equations 13a–c can be determined as

δ1 =
AT
w1

AT
s1

=
(λ+ 2μ+ 1−n

n
Ew)(kT1 )

2 − ρ1ω
2

ρ2ω
2 −Ew(kT1 )

2 (16a)

δ2 =
AT
w2

AT
s2

=
(λ+ 2μ+ 1−n

n
Ew)(kT2 )

2 − ρ1ω
2

ρ2ω
2 −Ew(kT2 )

2 (16b)

δs =
BT
w

BT
s
=
μ(kTs )

2 − ρ1ω
2

ρ2ω
2 (16c)

3.3 Boundary conditions and solutions

3.3.1 Boundary conditions
When the P-wave travels from the single-phase medium to the

two-phasemedium, the reflection and transmission will occur at the
interface (say, z = 0). For this situation, the boundary conditions
will make a difference to the propagation characteristics of waves,
namely the unknown amplitudes AR, BR, AT

s1, A
T
s2, and BT

s . On the
assumption of the existence of welded contact between two semi-
infinite media, we consider two boundary conditions: (a) Open-
pore boundary (see expressions (28) to (32) in Philippacopoulos
[59]) and (b) Sealed-pore boundary (expressions (19) in Hajra
and Mukhopadhyay [18] and Deresiewicz and Skalak [60]). More
specifically, the boundary conditions are the continuity of stress and

displacement components along the interface. Besides, in case (a),
the pore fluid can flow freely into the permeable elastic solid, but
in case (b), the flow of fluid (i.e., the relative fluid displacement)
is restricted. Consequently, the two different boundary conditions
are shown as

{{{{
{{{{
{

σij|z=0+ = σ
′
ij|z=0−

ui|z=0+ = u
′
i|z=0−

p f|z=0+ = 0

(17a)

{{{{
{{{{
{

σij|z=0+ = σ
′
ij|z=0−

ui|z=0+ = u
′
i|z=0−

uz|z=0+ −Uz|z=0+ = 0

(17b)

where the subscripts i and j (=x and z) denote the components
in the x and z directions. σij|z=0+ and σ′ij|z=0− are the total
stresses (e.g., normal and shearing stresses) of the fluid-saturated
porous medium and elastic solid, respectively. ui|z=0+ is the
displacement component of the soil skeleton in a two-phase
medium at the interface, and u′i|z=0− that of a single-phase
medium at the interface. p f|z=0+ represents the pore pressure at
the interface.

3.3.2 Reflection and transmission coefficients
Without loss of generality, set the amplitude of the incident P-

wave (AI) equal to unity. After the introduction of Equations 2a,
2b, 6a–6c, together with Equations 14, 15, 16a–16c, through
Equations 17a, 17b, we can get the set of equations for the
determination of the amplitude ratios (i.e., AR/AI, BR/AI, AT

s1/A
I,
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AT
s2/A

I, and BT
s /AI) under permeable and impermeable boundaries

in the matrix form as

[SP−SV]{A
R,BR,AT

s1,A
T
s2,B

T
s }

T = {λ′(kI)2 + 2μ′(kIz)
2,2μ′kIxk

I
z,k

I
x,k

I
z,0}

T

(18a)

[SP−SV]{A
R,BR,AT

s1,A
T
s2,B

T
s }

T = {λ′(kI)2 + 2μ′(kIz)
2,2μ′kIxk

I
z,k

I
x,k

I
z,0}

T

(18b)

where [SP−SV] and [SP−SV] are the 5 × 5 matrices, which represent
permeable and impermeable boundaries respectively, and the
elements of the matrices are given in the Appendix. The unknown
quantities AR, BR, AT

s1, A
T
s2, and BT

s can be solved as the amplitude
reflection and transmission coefficients at the plane interface.

4 Degenerate validation of solutions

4.1 Validation of degenerate formulas

Set the mass density of liquid ρw = 0 and the bulk modulus of
liquid Ew = 0. The analytical formulas in this paper can revert to
the classical problem of P-wave incident at the interface between
two diverse elastic solids. For this situation, the amplitude ratios of
liquid- and solid-phase δ1 = 0, δ2 = 0, and δs = 0.The wave vectors of
the refracted P1- and P2-waves are equal, namely, kT1 = kT2 and kT1z =
kT2z. The velocities of refracted P- and SV-waves VP = √(λ+ 2μ)/ρs,

VS = √μ/ρs, when the two-phase medium degenerates to a single-
phase medium. The potential amplitude of the refracted P-wave is
equivalent to the sumof the amplitudes of P1- and P2-waves, namely,
AT
s = AT

s1 + AT
s2. The formula (Equation 18a) or (Equation 18b)

may reduce to

{{{{{{{{{{{{{{
{{{{{{{{{{{{{{
{

μ(
V2
P

V2
S
(kT1 )

2 − 2(kT1x)
2)AT

s + 2μkTsxkTszBTs = μ′(
C2
P

C2
S
(kI)2 − 2(kIx)

2)

×(AI +AR) − 2μ′kRx k
R
z B

R

2μkT1xk
T
1zA

T
s + μ((kTsx)

2 − (kTsz)
2)BTs = 2μ′kIxkIz(AI −AR)

+μ′((kRx )
2 − (kRz )

2)BR

kT1xA
T
s − k

T
szB

T
s = k

I
x(A

I +AR) + kRz B
R

kT1zA
T
s + kTsxBTs = kIz(AI −AR) + kRxBR

(19)

After some simplification, Equation 19 can degenerate into a
classical problem in that the P-wave travels from an elastic solid
to another one (see expressions (3-45) and (3-46) in [1]). It is
interesting to unravel that the reflection and transmission between
different elastic solids is a special case in this paper.

4.2 Validation of numerical analysis

To explain the correctness of the formulas graphically, the
computed results of Equation 19 are compared with those of Pujol
[57]. The parameters of the incident and transmitted media are as
follows: λ′ = 44.006, μ′ = 43.729, ρ′ = 3.16, λ = 13.32, μ = 13.34 and
ρs = 2.5 (see in ref. [57]). Figure 2 depicts the variation of reflection
and refraction coefficients with the incident angle when the P-wave
propagates from one elastic solid to another.

From Figure 2, the calculated results of Equation 19 coincide
with those shown by Pujol [57]. In a word, the case of P-wave
traveling from an elastic solid to another one is a special case of ours,
and it is sufficient to demonstrate the rationality and correctness of
the formulas derived in this article.

5 Numerical results and discussion

In this section, we consider a model consisting of a fluid-
saturated medium in welded contact with the elastic solid. The
plane harmonic P-wave propagates through the elastic solid and
becomes incident at the interface. The Gauss elimination method
is used to calculate Equations 18a, 18b, then we obtain the
amplitude ratios. Numerical examples are carried out to investigate
the effects of boundary conditions, incident wave frequency, and
properties of the saturated two-phase medium (i.e., the dynamic
permeability coefficient k, the porosity n, and the Poisson’s ratio
υ) on the reflection and transmission coefficients. The physical
parameters of the two-phase medium are taken from Refs. [1, 22]
and listed in Table 1, together with the single-phase medium.

Figures 3–7 depict the variation of reflection and transmission
coefficients in the form of amplitude computed as described in
Equations 18a, 18b with incident angle under diverse conditions,
i.e., boundary drainage, wave frequency, permeability coefficient,
porosity, and Poisson’s ratio. It is found that the amplitudes of the
reflected and refracted waves depend significantly on the angle
of incidence, and the nature of dependence is quite different.
When the incident P-wave strikes the interface perpendicularly, no
reflected or transmitted SV-wave is generated, i.e., the reflection
and transmission coefficients of the SV-wave are zero. At the same
time, the amplitudes of transmitted P1- and P2-waves arrive at the
largest values in this case. When the incident P-wave is at grazing
incidence (i.e., the incident angle approaches 90°), there is only
a reflected compressional P-wave whose reflection coefficient is
1.0. In addition, for transmitted P1- and P2-waves, the amplitudes
decrease gradually when the angle of incidence (θIP) increases from
0° to 90°. The amplitudes of reflected and transmitted SV-waves
increase with an increase in the incident angle before reaching
their maximum values and thereafter, decrease and approach their
minimum values. However, the effect of the incident angle on the
amplitude of the reflected P-wave is quite complex, which will be
explained in specified sections.

5.1 The influence of boundary drainage

When the P-wave propagates from the elastic solid to the two-
phase medium, the boundary conditions for the interface will play a
key role in the reflection and transmission of seismic waves. To study
in greater detail the dependence of the reflection and transmission
coefficients on the boundary drainage, we select two different
boundary conditions (i.e., permeable or impermeable interface). In
our calculations, the soil parameters are taken from Table 1, and the
wave frequency of the incident wave f = 100 Hz. Figure 3 describes
the reflection and transmission coefficients as a function of incident
angle at permeable and impermeable interfaces.
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FIGURE 2
Variation of the amplitude reflection and transmission coefficients with the incident angle for two diverse elastic solids. (a) Reflection coefficients; (b)
Transmission coefficients.

TABLE 1 Material properties of single- and two-phase media.

λ′ (Pa) μ′ (Pa) ρ′ (kg m−3) λ (Pa) μ (Pa) ρs (kg m
−3) ρw (kg m−3) n Ew (Pa) ν K (m3 s/kg)

2.51 × 109 2.32 × 109 1,900 2.61 × 107 2.61 × 107 2,650 1,000 0.27 2.0 × 109 0.25 1.0 × 10−7

It is shown in Figure 3 that whether the interface is drained
or not, the reflection and transmission coefficients are affected
significantly by the incident angle. The variation of reflection and
transmission coefficients of other waves exhibits the same trend
with the incident angle under diverse interfaces, except for the
reflected P-wave. However, the actual values of reflection and
transmission coefficients differ appreciably for the two types of
interfaces considered. For the reflected SV-wave, the reflection
coefficient in the permeable interface is much larger than that
in the impermeable interface. For the transmitted SV-wave, the
amplitude in the permeable interface is larger than that in the
impermeable interface before reaching 79°; thereafter, the amplitude
in the permeable interface is less than that in the impermeable
interface. What’s more, the transmission coefficient of P2-wave
under undrained conditions ismuch smaller than the corresponding
one under drained conditions, while the P1-wave has the reverse
regularity. The relative fluid displacement with respect to the soil
skeleton is taken to be zero, which causes the difficulty of generating
of P2-wave. It is enough to show thatwhen the interface is permeable,
we must pay attention to the P2-wave, which cannot be ignored
because of its slow velocity and fast attenuation, otherwise it may
lead to the problem of instability in numerical calculations.

5.2 The influence of wave frequency

The results in Section 5.1 are obtained at a special frequency
of 100 Hz. To investigate the effect of frequency on the reflection
and transmission coefficients, three typical frequencies (i.e., f =
1, 10, and 1,000 Hz) are added to the numerical calculations,
and the properties of the medium are taken from Table 1. The
characteristic frequency of the saturated medium fc = n/2πkρ f =

430 Hz, which is defined by Biot [4, 5]. According to the results
of Yang [23], the reflection and transmission coefficients for the
permeable interface exhibit a large dispersion in the low-frequency
range (i.e., f/ fc ≤0.1). All wave frequencies in this study are below
1,000 Hz, which covers the common frequencies used in seismic and
acoustic fields [33]. Given that mentioned above, the boundary is
assumed to be permeable. The variation of the computed reflection
and transmission coefficients with the incident angle of the P-wave
is shown in Figure 4.

For all the cases of wave frequency under consideration, the
reflection and transmission coefficients of all waves are affected
significantly by it.The transmission coefficient of P1-wave (P2-wave)
decreases (increases) with the increasing frequency. For the reflected
SV wave, the amplitude increases with an increase in frequency.
For the transmitted SV-wave, the amplitude increases with a rise
in frequency if the incident angle θIP < 76°, while the impact of
frequency becomes less significant if the incident angle θIP > 76°.
However, for the reflected P-wave, when the frequency f = 1, 10,
and 100 Hz, the reflected P-wave extinguishes at a specific angle of
incidence. Under the case that f = 1 Hz (10 Hz), the two special
angles are 23° and 83° (43° and 77°). If the frequency f = 100 Hz,
the corresponding angles are 61° and 67°.

5.3 The influence of dynamic permeability
coefficient

Since the fluid flows in the two-phase medium, it is instructive
to investigate the effect of the dynamic permeability coefficient
on the reflection and transmission coefficients. In calculations, the
properties of the media are taken from Table 1, except for the
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FIGURE 3
Variation of reflection and transmission coefficients with the incident angle under different drainage conditions. (a) Reflected P-wave; (b) Reflected
SV-wave; (c) Transmitted P1-wave; (d) Transmitted P2-wave; (e) Transmitted SV-wave.

dynamic permeability coefficient. The frequency of the incident P-
wave is 100 Hz, and the interface is assumed to be permeable. The
reflection and transmission coefficients as a function of incident
angle for four cases of dynamic permeability coefficient (i.e., k
= 1.0 × 10−9, 1.0 × 10−8, 1.0 × 10−7, and 1.0 × 10−6 m3 s/kg)
are shown in Figure 5.

As shown in Figure 5, the reflection and transmission
coefficients of all waves vary with the dynamic permeability
coefficient. For the reflected SV-wave and transmitted P2-wave,
the higher the dynamic permeability coefficient is, the larger the
amplitude is. Whereas for the transmitted P1-wave, the higher the
dynamic permeability coefficient is, the smaller the amplitude is. In
addition, the transmission coefficient of the SV-wave increases with
a rise in the dynamic permeability coefficient before the incident
angle reaches 76°. Thereafter, the dynamic permeability coefficient

has little effect on the transmission coefficient of SV-wave. For the
reflected P-wave, when the dynamic permeability coefficient k =
1.0 × 10−9, 1.0 × 10−8, and 1.0 × 10−7 m3 s/kg, there are special
angles that make the reflected SV-wave exist, and the reflected P-
wave disappear. Also, different permeability coefficients correspond
to different angles of incidence. If k = 1.0 × 10−9 m3 s/kg (1.0 ×
10−8 m3 s/kg), the two special angles are 23° and 83° (43° and 77°).
If k = 1.0 × 10−7 m3 s/kg, the corresponding angles are 61° and 67°.

By comparing Figure 5 with Figure 4, it is obvious that the
reflection and transmission coefficient curves are the same when the
product of the permeability coefficient k and frequency ω is equal.
The reason is that when kω takes the same value, the velocities of the
two-phase medium do not change [51]. If the wave velocities of the
two-phasemedium remain constant, the reflection and transmission
coefficients are also fixed values.
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FIGURE 4
Variation of reflection and transmission coefficients with the incident angle at different frequencies. (a) Reflected P-wave; (b) Reflected SV-wave; (c)
Transmitted P1-wave; (d) Transmitted P2-wave; (e) Transmitted SV-wave.

To explain the influence of the dynamic permeability coefficient
and frequency on the reflection and transmission coefficients, we
introduce a non-dimensional frequency ratio f /fc (=ρwkω/n). In
calculations, the incident angle of the P-wave is taken to be 30°, and
the boundary is assumed to be permeable. The physical parameters
of media are taken from Table 1. Figure 6 shows the variation of
reflection and transmission coefficients with the non-dimensional
frequency ratio.

From Figure 6, it can be observed that the reflection and
transmission coefficients are dispersive, namely, frequency-
dependent. And all coefficients are affected by frequency, even
in a very low frequency range. Moreover, the reflection and
transmission coefficients depend on the function of frequency-
permeability product.

5.4 The influence of porosity

The porosity is an important property in the fluid-saturated
porous medium, which concerns the soil structure. To analyze the
effect of porosity, the porosity n is taken to be 0.2, 0.3, 0.4, and
0.5, respectively. The other physical parameters of media remain
constant as listed in Table 1. The wave frequency f = 100 Hz, and
the interface is permeable. Figure 7 depicts the angle-dependent
reflection and transmission coefficients for the above four values
of porosity.

As observed in Figure 7, it is worth noting that the porosity has
a slight influence on the reflection and transmission coefficients.
The variation of transmission coefficients for P1- and P2-waves with
porosity is gentle.The reflection and transmission coefficients of the
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FIGURE 5
Variation of reflection and transmission coefficients with the incident angle for different values of dynamic permeability coefficient. (a) Reflected
P-wave; (b) Reflected SV-wave; (c) Transmitted P1-wave; (d) Transmitted P2-wave; (e) Transmitted SV-wave.

FIGURE 6
Variation of reflection and transmission coefficients with the non-dimensional frequency ratio.
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FIGURE 7
Variation of reflection and transmission coefficients with the incident angle under different porosities. (a) Reflected P-wave; (b) Reflected SV-wave; (c)
Transmitted P1-wave; (d) Transmitted P2-wave; (e) Transmitted SV-wave.

SV-wave increase with a rise in porosity. For the reflected P-wave,
there are two zero values, i.e., the incident angles θIP = 58° and 72°,
when the porosity n = 0.2.

5.5 The influence of Poisson’s ratio

The Poisson’s ratio, one of the characteristic parameters in the
two-phase medium, reflects the deformation characteristics of the
soil. To investigate the effects of Poission’s ratio on the reflection
and transmission coefficients, the parameters of the soil remain
invariable as listed in Table 1, except for Poission’s ratio. The wave
frequency f = 100 Hz, and the interface is permeable. The variation

of reflection and transmission coefficients with the incident angle of
the P-wave is depicted in Figure 8.

As described in Figure 8, the effects of the Poisson’s ratio on
the reflection and transmission coefficients of each wave are more
obvious than those of the porosity in the previous Section 5.4.
The transmission coefficients of P1- and P2-waves increase as the
Poisson’s ratio increases at the same angle of incidence. While the
transmission coefficients of SV-wave decrease with the increase in
Poisson’s ratio if θIP < 68°, thereafter the Poisson’s ratio has little
impact on it. The reflection coefficient of the SV-wave decreases
with increasing Poisson’s ratio. For the reflected P-wave, when the
Poisson’s ratio υ = 0.3 and 0.4, there are special angles that make the
reflected SV-wave exist, and the reflected P-wave disappears. Also,
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FIGURE 8
Variation of reflection and transmission coefficients with the incident angle under different Poisson’s ratios. (a) Reflected P-wave; (b) Reflected
SV-wave; (c) Transmitted P1-wave; (d) Transmitted P2-wave; (e) Transmitted SV-wave.

different Poisson’s ratios correspond to different angles of incidence.
When the Poisson’s ratio υ = 0.3 (0.4), the two special angles are 58°
and 68° (52° and 73°).

6 Conclusion

Based on the model of soil mechanics proposed by Men [12],
the reflection and transmission of a plane harmonic P-wave
traveling from an elastic solid to the fluid-saturated porous media
are investigated. The analytical expressions for the reflection and
transmission coefficients have been derived for permeable and
impermeable boundaries. Numerical calculations are performed to
analyze the dependence of reflection and transmission coefficients

on the incident angle, boundary drainage, wave frequency, and
material properties (dynamic permeability coefficient, porosity,
and Poisson’s ratio). Some useful results are obtained as follows:
(1) The incident angle has a great influence on the reflection
and transmission coefficient of each wave. When the angle
of incidence θIP = 0°, the reflected and transmitted SV-waves
disappear, and the transmission coefficients of P1- and P2-waves
reach the largest values. Moreover, when the angle of incidence
θIP = 90°, there is only a reflected P-wave, with which the
reflection coefficient is 1.0. (2) The interface flow condition has
a great impact on the reflection and transmission coefficients.
(3) The reflection and transmission coefficients are dispersive
and depend on the product of frequency and permeability. (4)
The physical parameters of the two-phase medium (dynamic
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permeability coefficient, porosity, and Poisson’s ratio) have different
influences on the reflection and transmission coefficients of waves.

Hence, it is interesting to study the propagation characteristics
of elastic waves at the interface between the elastic solid and the
two-phase medium. It is hoped that this paper may be useful in
the theoretical and observational studies of wave propagation in
the liquid-saturated porous medium. At last, it can be extended
to study the reflection and transmission of elastic waves at
other various boundaries, e.g., the porous medium/the porous
medium [61, 62], the water/porous medium [63, 64], and ocean
sediment [65, 66], etc.
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Appendix

In the 5 × 5 matrices, the elementsmij (i = 1 to 5, j = 1 to 5) and
mij (i = 5, j = 1 to 5) are given below:

[SP‐SV] =

[[[[[[[[[[

[

m11 m12 m13 m14 m15

m21 m22 m23 m24 m25

m31 m32 m33 m34 m35

m41 m42 m43 m44 m45

m51 m52 m53 m54 m55

]]]]]]]]]]

]

;

[SP‐SV] =

[[[[[[[[[[

[

m11 m12 m13 m14 m15

m21 m22 m23 m24 m25

m31 m32 m33 m34 m35

m41 m42 m43 m44 m45

m51 m52 m53 m54 m55

]]]]]]]]]]

]

where,m11 = −(λ′(kI)
2 + 2μ′(kIz)

2),m12 = 2μ′kRx kRz ,

m13 = (λ+
1‐n
n
Ew + δ1 Ew) (k

T
1 )

2 + 2μ(kT1z)
2,

m14 = (λ+
1‐n
n
Ew + δ2 Ew) (kT2 )

2 + 2μ(kT2z)
2,

m15 = 2μkTsx kTsz,m21 = 2μ′ kIx kIz,

m22 = ‐μ′  ((kRx )
2‐(kRz )

2) ,m23 = 2μkT1x k
T
1z,

m24 = 2μkT2x k
T
2z,m25 = μ ((kTsx)

2‐(kTsz)
2),m31 = ‐kIx,

m32 = ‐kRz ,m33 = kT1x,m34 = kT2x,m35 = ‐kTsz,m41 = kIz,

m42 = ‐kRx ,m43 = kT1z,m44 = kT2z,m45 = kTsx,

m51 = 0,m52 = 0,m53 = (
1‐n
n
+ δ1) Ew (k

T
1 )

2,

m54 = (
1‐n
n
+ δ2) Ew (kT2 )

2,

m55 = 0,m51 = 0,m52 = 0,m53 = (1‐δ1) kT1z,

m54 = (1‐δ2) kT2z,

m55 = (1‐δs)kTsx.
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