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The dielectric constant is one of the most important physical properties of
dielectrics. The pursuit ofmaterials with high dielectric constants has long been a
central focus in both fundamental research and practical applications. Traditional
theoretical predictions or first-principles calculations of dielectric constants are
often challenging and require significant time and computational resources.
Machine learning techniques can establish models that link composition and
properties, facilitating the study of dielectric properties in condensedmatter and
enhancing the efficiency of discovering new dielectrics. Strontium-containing
dielectrics constitute a diverse class of materials, some of which exhibit
exceptionally high dielectric constants, thereby showing great potential for
practical applications. In this work, machine learning models were successfully
developed to capture the relationship between composition and dielectric
properties of strontium-containing dielectrics using different algorithms, with
hyperparameter optimization performed via grid search. The optimal model
achieved a correlation coefficient of 0.868 and demonstrated a certain degree of
generalizationability on the test set. Thismodel serves as a valuable referenceand
guide, improving the efficiency of dielectric material selection and the discovery
of novel high-performance dielectrics.
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1 Introduction

Dielectrics and their associated phenomena have long been a key focus in condensed
matter physics research [1–4].The application of dielectrics in various fields, such as electrical
transport [5], electric energy storage [6], electrorheological materials [7–9], microfluidics [10,
11], and artificial muscles [12, 13], has also attracted significant interest in applied sciences.
The electronic structure of dielectrics consists of both positive and negative charges. In some
dielectrics, the centers of positive and negative charges coincide, classifying them as non-polar
dielectrics, whereas in others, the charge centers donot overlap,making thempolar dielectrics.
Atthemicroscopic level,polardielectricspossesselectricdipolemoments,andmacroscopically,
they can be regarded as an ensemble of dipoles. However, their random orientations result
in a net dipole moment of zero, rendering the material electrically neutral. When an external
electric field is applied, the dipoles experience a torque that aligns themwith thefield direction.
The alignment of a large number of dipoles leads to the appearance of polarization charges on
the dielectric’s surfaces perpendicular to the external field (Figure 1A), a phenomenon known
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FIGURE 1
Schematic illustration of dielectric polarization mechanisms: (A) Orientation polarization; (B) Displacement polarization.

as orientational polarization. In contrast, non-polar dielectrics do not
exhibit orientational polarization. However, under an applied electric
field, the centers of positive and negative charges undergo relative
displacement due to electrostatic forces, forming dipoles (Figure 1B).
This results in polarization charges appearing on the dielectric’s
surfaces, a process referred to as displacement polarization or ionic
polarization. Orientational polarization typically occurs in polar
molecules such as H2O and CO(NH2)2, whereas displacement
polarizationismostcommonlyobservedinioniccrystals.Additionally,
at the atomic scale, the negatively charged electron cloud and the
positively charged atomic nucleus can also undergo polarization,
a phenomenon known as electronic polarization. This effect is
particularly pronounced in noble gases such as helium and neon.

Strontium titanate (SrTiO3) is a condensed matter with excellent
dielectric properties [14, 15]. Other strontium-containing dielectric
materials have also attracted research interest due to their distinctive
behavior under electric fields [16–18]. In the study of these
materials, theoretical investigations and first-principles calculations
based on density functional theory (DFT) have yielded valuable
insights [17, 18]. However, these methods are often time-consuming
and computationally expensive. With advancements in artificial
intelligence and materials databases, data-driven materials discovery
has emerged as a promising approach for identifying and selecting
dielectrics.This studyutilizes dataon strontium-containingdielectrics
to develop, train, and optimize machine learning models that
establish the relationship between the dielectric constant and atomic
composition using different machine learning algorithms. The
trained models exhibit good predictive reliability and satisfactory
generalization performance on the test set.

2 Methods

When a dielectric is placed in an electromagnetic field, its
behavior can be described by Maxwell’s equations:

∇ ·D = ρ f
∇ ·B = 0

∇×E = −∂B
∂t

∇×H = J f +
∂D
∂t

(1)

whereD is the electric displacement, ρf is the free charge density,B is
the magnetic flux density, E is the electric field intensity, t is time,H

is the magnetic field intensity, and Jf is the free current density. The
electric displacementD can be expressed in terms of the polarization
P as:

D = ε0E +P (2)

where ε0 is the permittivity of free space. When a dielectric
is subjected to an electric field, it undergoes polarization. The
polarization P quantifies the degree of polarization in the dielectric
and is given by:

P =
∑p
ΔV

(3)

where p is the molecular electric dipole moment, and ΔV is the
volume element.The polarizationP can also be expressed in terms of
the electric susceptibility χe and the permittivity of free space ε0 as:

P = χeε0E (4)

where χe can be related to the relative permittivity (dielectric
constant) εr by:

χe = εr − 1 (5)

The dielectric constant (also known as the relative permittivity)
is a fundamental physical property of dielectric materials
(Equations 1–5). Its value is determined by factors such as atomic
composition and crystal structure. Due to its strong correlation with
atomic composition, a machine learning model can be established
to capture this relationship. In this study, the atomic numbers
of the constituent elements in the dielectric material, along with
their respective counts in the chemical formula, were selected
as features. The atomic numbers were arranged in descending
order and assigned to five fields: AN1, AN2, AN3, AN4, AN5.
Correspondingly, the atomic counts were placed in AC1, AC2,
AC3, AC4, AC5. This resulted in a total of 10 features. If a material
contained fewer than five distinct elements, the remaining fields
were set to zero.The dielectric constant was chosen as the sole target
variable, forming the dataset for model training.

Dielectric material data was obtained from theMaterials Project
database [19]. Three machine learning algorithms—Random Forest
(RF), Gradient Boosting Regression (GBR), and Support Vector
Regression (SVR)—were used to construct predictive models [20].
To improve model training effectiveness, K-fold cross-validation
was employed. Additionally, grid search was used to optimize
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the hyperparameters of each model. The performance of the
trained machine learning models was evaluated and compared
using the coefficient of determination (R2) and the Pearson
correlation coefficient (P). The R2 value is calculated using the
following formula:

R2 = 1−
∑n

1
(yi − ̂yi)

2

∑n
1
(yi − yi)

2
(6)

where yi represents the actual values, ̂yi represents the predicted
values, and yi is the mean of the actual values. The closer R2 is
to 1, the better the model’s performance. P is computed using the
following formula:

P =
∑n

i=1
(Xi −X)(Yi −Y)

√∑n
i=1
(Xi −X)

2√∑n
i=1
(Yi −Y)

2
(7)

where Xi represents the values of the first variable, X is the mean of
Xi, Yi represents the values of the second variable, and Y is the mean
ofYi. Pmeasures the strength and direction of the linear relationship
between two variables. A P value close to 1 indicates a strong positive
correlation, while a P value close to 0 suggests little to no correlation.

3 Results and discussion

The dielectric property data of strontium-containing condensed
matter materials is preprocessed and subjected to feature
engineering. The chemical formula information is encoded into
atomic numbers and atomic stoichiometry, forming a dataset with
10 features (AN1, AN2, AN3, AN4, AN5, AC1, AC2, AC3, AC4,
AC5) and one target variable (dielectric constant). Missing values
are filled with 0 to maintain consistency in the dataset.

The Pearson correlation coefficient is used to analyze the
relationships between features (Figure 2). Most feature pairs exhibit
low correlation, indicating independence. However, a relatively high
correlation is observed between AN5 and AC5, which can be
attributed to the fact that only a small number of materials in the
dataset contained a fifth atomic species.This leads to a large number
of zeros in both fields, artificially increasing their correlation. A
similar pattern is observed for AN4 and AC4. From both the
correlation analysis and theoretical considerations, the 10 selected
features are mutually independent, making them a suitable choice
for constructing the machine learning models.

The dataset, consisting of 110 samples, is split into a training
set and a test set in a 93:7 ratio. This results in 102 samples in the
training set and 8 samples in the test set. The advantage of selecting
102 training samples is that 102 is divisible by both 2 and 3, making
it convenient for 2-fold or 3-fold cross-validation during model
training. For the test set, 8 samples are selected from a relatively
concentrated range of dielectric constant values, specifically between
20 and 40 where there aremore data, ensuring a balanced evaluation
of model performance within this range.

Three machine learning models are trained using Random
Forest (RF), Gradient Boosting Regression (GBR), and Support
Vector Regression (SVR), named Model R, Model G, and
Model S, respectively. Grid search is employed to optimize the
hyperparameters for each model.

For the RF model, the hyperparameter search ranges are:
Number of trees: [100, 150, 200, 250, 300]; Maximum depth of

each tree: [None, 3, 5, 10, 15, 20]; Minimum number of samples
required to split an internal node: [2, 3, 5, 10].

For the GBR model, the hyperparameter search ranges are:
Number of trees: [100, 150, 200, 250, 300]; Learning rate: [0.01,

0.1, 0.15, 0.2]; Maximum depth of each tree: [3, 5, 10, 20].
For the SVR model, the hyperparameter search ranges are:
Regularization parameter C: [0.1, 1, 10, 100]; Kernel coefficient

gamma: [“scale”, “auto”, 0.01, 0.1, 1].
Based on the performance during training, 3-fold cross-

validation is applied to RF and SVR models, while 2-fold cross-
validation is used for the GBR model, further enhancing model
robustness and generalization.

Through grid search, the optimal hyperparameters for the
three models are determined, and their performance is evaluated
and compared using R2 (Equation 6) and P (Equation 7) on the
training set (Figures 3A,B). Model R exhibits the lowest R2 and
P values among the three algorithms, indicating unsatisfactory
performance. In contrast, Model G and Model S achieves
comparable R2 values, both exceeding 0.6. However, when
comparing P values, Model G demonstrates a stronger correlation
with a value of 0.868, whereas Model S has a lower P value of
only 0.798. While both Model G and Model S exhibits promising
training performance, Model G proved to be superior. The optimal
hyperparameters for this model are as follows: the number of
trees is set to 100, the learning rate is 0.01, and the maximum
depth is 5. The superior performance of Model G over Model
S can be attributed to the fact that GBR model is a tree-based
model that effectively captures nonlinear relationships in high-
dimensional data. Although RFmodel is also a tree-based model, its
performance on high-dimensional sparse data is inferior to that of
GBR, as the latter demonstrates a stronger ability to capture complex
relationships within the dataset. This advantage stems from GBR’s
iterative optimization process, where each tree attempts tominimize
the residuals of the previous tree. This stepwise refinement enables
themodel to better capture intricate patterns in the data, giving GBR
a distinct advantage over RF and SVR.

Feature importance analysis is conducted on the optimal model,
Model G. As shown in Figure 3C, AN3 and AN2 exhibits the highest
feature importance, indicating that atoms with intermediate atomic
numbers have a more significant impact on the dielectric constant.
From a microscopic perspective, atoms with intermediate atomic
numbers tend to have atomic radii comparable to that of strontium
(atomic number 38). When an atom with a similar atomic radius
replaces a strontium atom at a lattice site, the structural changes in
the crystal lattice may be minimal, whereas the electronic structure
of the crystal could undergo substantial alterations. Conversely,
AN5, AC5, AC4, and AN4 demonstrates relatively low feature
importance, likely due to the fact that many materials in the dataset
do not contain a fourth or fifth type of atom, resulting in a limited
amount of nonzero valid data for these features.

The three optimal models, Model R, Model G, and Model S, are
evaluated using the test set. A scatter plot is generatedwith the actual
values from the test set on the x-axis and the predicted values on the
y-axis, and the results were compared against the y = x reference line
(Figure 4). The actual dielectric constants in the test set ranges from
20 to 40, whereas some entries in the training set have significantly
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FIGURE 2
Feature correlation analysis.

FIGURE 3
(A) Coefficients of determination for the three machine learning models; (B) Pearson correlation coefficients for the three machine learning models;
(C) Feature importance analysis of Model G (GBR model).

higher dielectric constants (>100). Due to this characteristic of
the dataset, the models tend to slightly overestimate the dielectric
constant. Among the three models, Model G demonstrates the
highest reliability, with its predictions closely aligning with the

actual values.The correlation coefficients between the predicted and
actual values are calculated for each model, with Model G achieving
the highest correlation coefficient of 0.78. The detailed comparison
between the predicted values and the actual values for Model G is
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FIGURE 4
Comparison of predicted and actual values for the models: (A) Model R; (B) Model G; (C) Model S.

TABLE 1 Comparison between the predicted and actual values
of Model G.

Materials Dielectric constant Predicted values

SrGaSnH 39.01 50.00

SrBiO3 33.58 39.14

SrZrN2 32.89 45.32

SrCaGe 32.39 38.94

SrCaSi 32.06 48.62

SrTiN2 30.2 36.72

SrLaCrO4 30.06 38.87

Sr3LiNbO6 28.2 32.57

presented in Table 1. The test results indicate that Model G exhibits
a certain level of generalization capability, making it a valuable tool
for guiding the discovery and selection of strontium-containing
dielectric materials.

4 Conclusion

This study successfully established a machine learning model
to explore the relationship between the atomic composition and
dielectric constant of Sr-containing dielectric materials.Through K-
fold cross-validation and hyperparameter tuning via grid search,
the optimal machine learning model, Model G, based on gradient
boosting regression, was obtained. Evaluation results on both the
training and test sets indicate that Model G demonstrates high
reliability and good generalization performance. This model can
serve as a useful reference for discovering new strontium-containing
dielectrics and the screening of existing materials. The study
provides a promising new approach for investigating strontium-
containing dielectric condensed matter. Future work could focus on
expanding the size and quality of relevant databases and developing
more sophisticated and accuratemachine learningmodels to further
advance this field.
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