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Universe 2.0: Black holes? No.
Black stars!

Johannes Böhm-Mäder*

Retired, Bubikon, Switzerland

Strong analytical evidence reveals that every solution of the Schwarzschild-Kerr
metric, when continuously solving the metric across the event horizon, violates
the conditions of the symmetry group, inevitably, which renders the long-term
vision of black holes untenable. General relativity does not support a passable
horizon hosting an infinitely concentrated mass in vacuum. The hitherto notion
of black holes breaks down altogether. A new Schwarzschild solution, integrated
within a massive shell, and a revaluation of the gravitational collapse yield a new
vision of black stars of fluid, formed by a continuous progression of stacked
horizons from the center to the surface. Thus, the current theory fundamentally
differs from attempts to avoid horizons, such as mimickers, gravastars, boson
stars, or gravitational metamaterials. The exterior view of Schwarzschild-Kerr
black holes is not affected at all, but the inner view is obsolete. The information
paradox and the conflict with the Pauli exclusion principle are solved and the
Newtonian shell theorem is fully applicable in the relativistic context.
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1 Introduction

Only a few months after Einstein had released his equations of general relativity,
Schwarzschild [1] published his spherically symmetric solution, which is irregular at the
event horizon. About 5 years thereafter Painlevé [2] presented the first globally regular
coordinates. In the same year Jebsen [3] provided the proof of the Birkhoff theorem. All this
was more than a century ago. Various globally regular solutions followed until Kruskal [4]
and Szekeres [5] independently found the maximal extension of the spherically symmetric
metric. Hereupon, the scientific community agreed that the patches of an irregularmanifold
may be connected by singular transformations. For decades the globally regular solutions
governed our notion of black holes as singularities that infinitely concentrate all structured
energy passing the event horizon.

In more recent studies a number of authors, in view of the inconsistencies of the long-
term notion, provided regular metrics of black holes by avoiding horizons. Lemos and
Zaslavskii [6] proposed black hole mimickers that “would look almost like black holes but
have ho horizon”. Mimickers compared to black holes are stars in a critical state just before
the gravitational breakdown. According to Casadio et al. [7], anisotropic pressures within
the stellar structure might yield anti-gravitational effects and thus prevent the collapse. Yet,
many questions regarding stability remain open. The mimickers might eventually collapse
to black holes and thus lose their material integrity.

Mazur and Mottola [8] by a thin phase boundary separate an exterior Schwarzschild
metric from an interior de Sitter region of p = − ρ gravitational vacuum condensate. The
phase boundary replaces the horizon. Even though it has no horizon, the exterior view
of these gravastars exactly resembles Schwarzschild black holes. The interior de Sitter

Frontiers in Physics 01 frontiersin.org

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2025.1599363
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2025.1599363&domain=pdf&date_stamp=2025-06-12
mailto:j.boehm@universe20.ch
mailto:j.boehm@universe20.ch
https://doi.org/10.3389/fphy.2025.1599363
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fphy.2025.1599363/full
https://www.frontiersin.org/articles/10.3389/fphy.2025.1599363/full
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Böhm-Mäder 10.3389/fphy.2025.1599363

metric requires a negative pressure stabilizing the boundary, a
notion similar to the hypothetical concept of dark energy, meant to
explain the accelerated expansion of the universe.The gravastars also
depend on a quantum gravitational vacuum phase transition before
the classical event horizon can form.

Boson stars, first proposed by Tkachev [9], build on scalar
fields and require postulating a stable type of massive bosons
with self-repulsive interaction. The concept of boson stars received
a boost by the discovery of the Higgs boson, but the latter is
highly instable and no other massive bosons have been discovered
yet. A wide variety of possible types of boson stars have been
theoretically discussed (Liebling and Palenzuela, [18]), but to date,
no unequivocal observational evidence has been found. A compact
boson star by its gravitation would bend light and create an empty
space-time region resembling the shadow of a black hole’s event
horizon.Thus, boson stars might resemble black holes, even though
they do not have a horizon.

In a most resent preprint, Luongo [10] avoids the singularity
by speculating on the space-time behaving like a gravitational
metamaterial, relying on the hypothetical metamaterials proposed
by Yang et al. [11]. In Luongo’s concept a black hole’s gravitational
field is modeled as an exotic medium with a negative refractive
index. The metamaterials may also exhibit a particle-like behavior
that might contribute to dark matter.

The present study follows a completely different ansatz
compared to mimickers, gravastars, boson stars, or metamaterials.
It bases on the Schwarzschild or Kerr metric alone and requires no
additional conditions or assumptions. We accept the gravitational
singularities and implement them consistently. The analytical
evidence presented in what follows naturally excludes black holes in
the sense of an infinitely concentrated mass in a bubble of vacuum.
A new conception results by evaluating the Schwarzschild solution
within a concentric shell of mass instead of vacuum to infinity
and by reanalyzing the gravitational collapse. The result can be
extended to the Kerr metric. We end up in a vision of a black star,
that is, of a continuous progression of stacked horizons from the
center to the surface, forming a stratified body of fluid. The exterior
view is not affected at all, but the long-term inner view as black
holes is obsolete. The black stars are not an alternate view, but the
unavoidable replacement of Schwarzschild-Kerr black holes.

2 Methods

In Section 3.1 we evaluate the conditions of the symmetry group.
A scarcely considered reservation reveals an inherent discontinuity
of the spherically symmetric metric, at the event horizon, where the
Birkhoff theorem does not apply. The globally regular solutions are
continuous, but at the cost of violating the symmetry conditions on
the inner orbits. In Section 3.2, an inspection of the proper time of a
freely falling observer descriptively confirms that in a physical space-
time the event horizon cannot be passed.

A different vision of black holes arises in Section 4 by evaluating
the Schwarzschild solution within a concentric spherical shell of
mass instead of the boundary condition at infinity.The result is equal
to the original Schwarzschild solution but extends the validity of
the relativistic Newtonian shell theorem. The findings of Sections 3
and 4 allow reconsidering the gravitational collapse in Section 5.The

discussion in Section 6 extends the new vision of black stars to the
Kerr solution.

3 Revision of the spherically
symmetric solutions

In the current section we revise the spherically symmetric
vacuum solutions of general relativity. Section 3.1 follows up a
reservation of the metric, which was only rarely considered in
the literature. Section 3.2 complements the results by inspecting
a freely falling observer. The concluding summary in Section 3.3
consolidates the arguments that challenge the hitherto notion of
Schwarzschild-Kerr black holes.

3.1 Conditions of the symmetry group

According to the Birkhoff theorem, all the spherically symmetric
vacuum solutions of general relativity form a class of solutions of
one and the same Schwarzschild metric. Its prove proceeds from
a spherically symmetric ansatz with a general, time dependent line
element, for instance,

ds2 = −A (t, r)dt2 + 2B (t, r)dt dr+C (t, r)dr2 +D (t, r)dΩ2 , (1)

where

r2dΩ2 = r2 (dϑ2 + sin2ϑ dφ2) (2)

denotes the surface area element of a concentric 2-sphere with a
radius r. The metric Equation 1 is invariant upon a transformation

(t, r) → ( ̃t (t, r) , ̃r (t, r)) . (3)

If we translate the coordinate t by a function ψ(t, r) such that

dψ (t, r)
dr
= −

B (t, r)
A (t, r)

(4)

and choose the transformed D̃ = r2, Equation 1 takes the form

ds2 = −Ã (t, r)dt2 + C̃ (t, r)dr2 + r2dΩ2. (5)

The translation by ψ(t, r) preserves A(t, r), that is, Ã = A. Equation 5
represents the standard form of the spherically symmetric metric,
which serves to prove the Birkhoff theorem. For the translation by
ψ(t, r)we tentatively should consider the ancillary conditionA(t, r) ≠
0, where Equation 4 is singular or undefined. In the resulting
Schwarzschild metric, Ã = 1− 2m/r with the central point mass m
(in units with the light speed c = 1 and the gravitational constantG =
1). Thus, A(t, r) ≠ 0 corresponds to r ≠ 2m.

Regarding a transformation as in Equation 3, Plebański and
Krasiński, [12] (P&K, pp. 168–171) discuss a reservation. In the
spherically symmetric manifold, the coordinates ϑ and φ from
Equation 2 define a point on a 2-sphere with constant values of the
arbitrary coordinates t and r. The function D(t, r) in Equation 1 is a
scalar on the orbits of the symmetry group. In the resulting metric
(Equation 5) the gradient of the radius of the 2-sphere is space-like,
gμν∂μr∂νr > 0. BecauseD(t, r) transforms as a scalar, this statement is
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FIGURE 1
Schematic visualization of the inherent discontinuity of the spherically symmetric metric, due to the scalar D̃(r > 2m) = r2 (yellow, P&K case I)
necessarily differing from D̃(r < 2m) = t2 (blue, P&K case II). The discontinuity at r = 2m (P&K case III) is marked in red.

invariant upon a transformation like Equation 3. Thus, the gradient
must have been space-like in the original metric (Equation 1),
gμν∂μD(t, r)∂νD(t, r) > 0.

P&K distinguish four cases, three of which are relevant for the
present study. Case I relates to the exterior of the Schwarzschild
metric, r > 2m (Ã > 0), where the gradient of D(t, r) is a space-like
vector, which allows for D̃ = r2, as in Equation 5. The interior, r <
2m, indicates case II, for which P&K show the gradient of D(t, r)
being a time-like vector, gμν∂μD(t, r)∂νD(t, r) < 0. This corresponds
to t and r interchanging their roles in the metric and excludes D̃ =
r2, but instead indicates D̃ = t2.

In the transition from case I to case II, the time t and the radius r
interchange their nature, on a path, which in the angular directions
is measured by a scalar immediately switching from D̃ = r2 to D̃ =
t2. The interchange may be accepted as a reinterpretation of the
coordinates or a change in the space-time topology. The switch of
the scalar D̃, however, represents a discontinuity between adjacent
orbits of the symmetry group. Figure 1 schematically visualizes the
behavior of D̃.

For Ã(t, r) = 0, that is, for r = 2m, the gradient of D(t, r) is a
nontrivialnull vector,gμν∂μD(t, r)∂νD(t, r) = 0.This impliesP&K’scase
III,whichallowsforD̃ = r2butexcludes ̃B = 0,becausethedeterminant
ÃD̃− ̃B2 would vanish. Consequently, the metric in Equation 1 at r =
2m cannot be transformed to the diagonal metric in Equation 5. This
confirms the consideration regarding Equation 4. The standard form
of the spherically symmetricmetric and thus the Birkhoff theorem are
restricted to r ≠ 2m.

As an example of the relation between the solutions of the
Schwarzschildmetric,we considerP&K’s sequenceof transformations
in their section 14.9, leading to the Kruskal-Szekeres coordinates.
Similar to the Eddington-Finkelstein solution a translation of the time
by r
∗
= r+ 2m ln |r/2m− 1| is involved,which removes the singularity

of grr = (1− 2m/r)
−1. Figure 2 depicts the function ln |r/2m− 1|.

All the transformations leading to globally regular coordinates of
the Schwarzschild metric use a similar, singular function, Painlevé-
Gullstrand, for example, ln |√r/2m− 1|. Considerable effort is spent
on arguments that the transformations are globally single-valued and
invertible. However, a coordinate transformation involving a function
as depicted by Figure 2 should be considered nonisomorphic, locally
at r = 2m, where it is singular and thus discontinuous.

FIGURE 2
Graph of the transformation function ln |r/2m− 1| (orange line), with
the singularity at the radius r = 2m.

Thereafter, P&K (p. 192) introduce an arbitrary constant a
to be assigned later. Their equation 14.100 in their transformed
coordinates p(t, r) and q(t, r) reads

ds2 = −(1− 2m
r
)a2e−2r/a( r

2m
− 1)
−4m/a

dp dq+ r2dΩ2. (6)

Then, they choose a = 4m, such that the factor causing the
singularity cancels out. At r = 2m, this results in a division 0/0.
The resulting metric may be defined at r = 2m, the transformation,
however, is not. The gradient of the scalar D(t, r) in the general
metric in Equation 1 changes from space-like to time-like. In the
transition to r < 2m, Equation 6 and eventually theKruskal-Szekeres
coordinates would have to switch the angular components from
r(p,q)2dΩ2 to t(p,q)2dΩ2.

We conclude that we should divide the Birkhoff class of solutions
in two subclasses, the first one derived from theNewtonian limit, the
other related to it by transformations involving a singular function,
as depicted by Figure 2. They all are valid solutions of Einstein’s
field equations, at least for r > 2m. Yet, locally at r = 2m the two
subclasses are related by nonisomorphic transformations and thus
do not represent the same manifold. Assuming the region r < 2m
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as well-defined, all the globally regular coordinates would have to
switch the angular components of the line element from r2dΩ2 to
t2dΩ2. Nobody ever appears to do so. Otherwise, the metric would
reveal its inherent discontinuity. The inner solutions would even
conflict with Einstein’s vacuum equations.

3.2 Vertical free fall in the Schwarzschild
metric

The original Schwarzschild solution is the only member of the
Birkhoff class approaching the Newtonian limit. Thus, it is the
suitable choice for imbedding a black hole into its surroundings.
The proper time of a stationary observer at great distance in the
surrounding universe corresponds to the metric’s coordinate time.

We consider in the Schwarzschild metric the proper time τ of an
observer in vertical free fall (dϑ/dτ = dφ/dτ = 0). The proper time
span required to cross r = 2m and to reach r = 0 is integrable and
finite. While the falling observer approaches r = 2m, the coordinate
time t diverges. Even though the integrated τ is finite, the falling
observer from the viewpoint of a stationary observer at r≫ 2m
appears never to reach r = 2m.

The irregularity of the Schwarzschild solution is rated spurious,
the singularity a mere coordinate singularity. Thus, it was generally
concluded that there must be something wrong with the diverging
coordinate time t. However, the proper time of a stationary observer
at great distance in the free space-time is a good measure of the
overall evolution of the universe. Whether we assume the latter
closed, flat, or open, in the eternity the black hole would no longer
exist and no distant observer would be left to witness the event.

Reconsidering the determination of the proper timespan for
the falling observer’s path, we find τ integrated over the coordinate
radius r. The proper radius of the falling observer diverges at r =
2m, but the time component gtt of the Schwarzschild coordinates
vanishes inversely proportional to grr. Thus τ may asymptotically
reach the corresponding limit τS.

In the region r < 2m, however, the proper time of any distant
stationary observer in the universe with respect to the falling
observer is undefined. The issue in integrating τ beyond r = 2m lies
in t and r interchanging their roles in the metric. In P&K’s case II
discussed in Section 3.1 above, the gradient of the 2-sphere’s radius
is a time-like vector. Thus, the proper time at r < 2m would have to
be defined with respect to the time-like coordinate r and integrated
over the space-like coordinate t.

We conclude that the common integration of the finite proper
time of a falling observer to reach r = 0 is invalid. Moreover, the
analysis above provides an indication that at r < 2m time and radius
do not interchange their roles. The stationary time measure in the
surrounding universe with respect to a falling observer is undefined,
in descriptive terms, beyond infinity.There is no continuous path to
r < 2m.

3.3 Summary of the revision

The findings regarding the Schwarzschild metric consolidate to
the following statements.

1. The standard form of the spherically symmetric metric
(Equation 5) due to the conditions of the symmetry group is
subject to the ancillary constraint r ≠ 2m.

2. The Birkhoff theorem, depending on the standard form, is
subject to the same constraint r ≠ 2m.

3. The irregular Schwarzschild coordinates exclusively approach
theNewtonian limit.Thus, they describe a physical space-time,
at least for r > 2m.

4. The globally regular coordinates are valid solutions of
Einstein’s field equations but are related to the Schwarzschild
solution by transformations that are discontinuous and thus
nonisomorphic at r = 2m.

5. Because of the statements 2 and 4, the globally regular
solutions may be considered a separate subclass of the Birkhoff
theorem, at r = 2m belonging to a differentmanifold thatmight
not represent a physical space-time.

6. For the proper times t of a stationary observer at r≫ 2m and
τ of a freely falling observer, the 2-sphere r = 2m represents
the asymptotical boundary (t,τ) → (∞,τS), whereas τ > τS is
undefined (imaginary).

7. Geodesics extending beyond the event horizon interpolate
over the discontinuity of the physical space-time that
represents the eternity beyond the end of the universe, at r <
2m violating the conditions of the symmetry group.

By very similar arguments it could be shown that the Kerr [13]
metric for rotating black holes should be subject to the ancillary
constraint r2 − 2mr− a2 ≠ 0, where a denotes the Kerr parameter
related to the angular momentum.

These findings challenge the current notion of Schwarzschild-
Kerr black holes. If the event horizon is impassable from the outside,
a black hole cannot be a gravitational annihilator engulfing in its
central singularity all the energy approaching the point of no return.

It is hard to figure why nobody noted the inherent discontinuity
of the symmetry group or its conditions being violated, not even
P&K, who revealed the details. We can only argue as follows.
The community needed a concept beyond the event horizon and
Schwarzschild’s original solution did not permit an extension to
r < 2m. His inner solution [14] with the diverging pressure was
available from the very beginning. The material collapse into the
central singularity appeared as the most natural behavior. With
no alternative at hand, there was no incentive to challenge the
notion that was solidly established for decades. Only lately, as
reported in the Introduction above, several authors searched for
alternate metrics of black holes, avoiding the singularity. Yet,
based on the irregular Schwarzschild solution, there would be a
loophole allowing for a different view of the Schwarzschild metric,
as elaborated in Section 4.

4 Exterior Schwarzschild solution with
a new boundary

In the current section, we confront the finding from the
preceding Section 3 that the interior of a black hole is inaccessible
from the outside. We trace the Schwarzschild solution, replacing the
boundary condition.

Schwarzschild [1] solved Einstein’s equations for the boundary
condition at r→∞ in vacuum. Very similar conditions apply
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within a homogenous spherical shell of mass with a radius r1 > 2m,
concentric with the central point massm. The mass of the shell shall
be m1, its inner boundary r1 and its thickness Δr1. The presence
of a massive shell at r > r1 modifies the energy momentum tensor
Tμν, introducing an additional step function at r = r1. Yet, Tμν still
vanishes for 0 < r < r1.

We apply the new boundary condition by reevaluating
Schwarzschild’s original analysis. His differential equations for the
line element

ds2 = − f0dx
2
0 + f1dx

2
1 + f2

dx22
1− x22
+ f3 (1− x

2
2)dx

2
3 (7)

in his transformed coordinates

x0 = ct , x1 =
r3

3
, x2 = −cos ϑ , x3 = φ (8)

remain valid for 0 < r < r1, where f0, f1, and f2 = f3 are arbitrary
functions of x1. For the examination of Equations 7, 8 we need the
boundary condition at x1,1 = r

3
1/3,

f2 (x1,1) = f3 (x1,1) = r
2
1 = (3x1,1)

2/3, (9)

which replaces the original boundary condition f2 = f3 = r
2 for r→

∞. Schwarzschild formulated the field equations as.

∂1(
∂1 f1
f1
) = 1

2
(
∂1 f1
f1
)
2
+ (

∂1 f2
f2
)
2
+ 1
2
(
∂1 f0
f0
)
2

(10)

∂1(
∂1 f2
f1
) = 2+
(∂1 f2)

2

f1 f2
(11)

∂1(
∂1 f0
f1
) =
(∂1 f0)

2

f0 f1
(12)

f0 f1 f
2
2 = 1 or

∂1 f0
f0
+
∂1 f1
f1
+ 2

∂1 f2
f2
= 0 . (13)

Equation 12, representing the time and energy related gravitational
component μ = ν = 0, would include a term T00(x1) for x1 > x1,1.
However, the additional non-vanishing values only contribute
beyond the boundary x1,1 and need not be included in the
integration, similar to the mass point T00(x1 = 0). The functions fμ
are continuous andTμν vanishes in the entire integration interval 0 <
x1 < x1,1.

By factoring out f0/ f1 from the left-hand differential of
Equation 12 transforms to

∂1(
∂1 f0
f0
) =

∂1 f0 ∂1 f1
f0 f1
. (14)

Dividing Equation 14 by ∂1 f0/ f0 enables its integration to

∂1 f0
f0
= α f1 (15)

with the integration constant α, as in Schwarzschild’s analysis.
Adding Equation 10 and Equation 14 while considering
Equation 13 results in

−2 ∂1(
∂1 f2
f2
) = 3 (

∂1 f2
f2
)
2
, (16)

which can be integrated to

∂1 f2
f2
= 2
3x1 + ρ

⇒ f2 = λ(3x1 + ρ)
2/3 (17)

with the integration constants λ and ρ. The boundary condition
in Equation 9 indicates λ = 1. Unlike Schwarzschild’s original
boundary condition at infinity, it in addition requires ρ = 0, that is,

f2 = (3x1)
2/3. (18)

From Equations 13, 15, 18 we find

∂1 f0 = α f
−2
2 = α(3x1)

−4/3. (19)

Integrating Equation 19 leads to

f0 = −α(3x1)
−1/3 + μ (20)

with the integration constant μ. In contrast to the original boundary
condition at r→∞, μ cannot be determined by Equation 9.
Equations 13, 18 and 20 combine to

f1 =
1
f0 f

2
2
=
(3x1)−4/3

μ− α(3x1)
−1/3
. (21)

In Schwarzschild’s original analysis, Equation 11 was immediately
satisfied. Here we use it to determine the integration constant μ:

6μ− 4α(3x1)−1/3 = 2+ 4μ− 4α(3x1)−1/3 ⇒ μ = 1 . (22)

Equations 18, 20, 21 result in Schwarzschild’s original solution

f0 = 1−
α
r
, f1 =

1
r4 f0
, f2 = f3 = r

2 , (23)

which for α = 2m in the usual polar coordinates leads to the
Schwarzschild coordinates

ds2 = −(1− 2m
r
)dt2 +(1− 2m

r
)
−1
dr2 + r2dΩ2, r < r1. (24)

Equation 24 for the point mass m within the massive shell
m1 is identical to Schwarzschild’s original solution, regardless
of the surrounding shell. According to the Birkhoff theorem,
any spherically symmetric mass distribution in vacuum may be
represented by a point mass at r = 0. Thus, the energy momentum
configuration including the shell m1 may in the region r ≥
r1 +Δr1 be regarded as a point mass at the origin. The same
solution of Equation 24 results, however, for the total mass m→
m+m1. The outer solution converges to the inner one for Δr1→
0 (m1→ 0). An observer located at 2m < r < r1 experiences a
gravitational field that does not change if the massive shell is
removed. Only the inner mass m contributes to the gravitational
field. The shell’s own gravitational field thus vanishes at r < r1.

This finding extends the validity of the relativistic Newtonian
shell theorem to the full scope of its classical equivalent. Formerly, it
was valid due to Birkhoff ’s theorem, yet, only for shells with pure
vacuum inside. According to the findings above the gravitational
field of a spherically symmetric shell vanishes inside, regardless of
the radial mass distribution inside or across the shell.

5 Black hole formation

In the section on hand, we apply the results above to a
contracting star experiencing a material collapse.
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The Tolman-Oppenheimer-Volkoff equation for the pressure
p(r) within a spherically symmetric, perfect fluid in hydrostatic
equilibrium describes the formation of black holes. Its only closed
solution is the one for a constant energy density ρe(r) = c

2ρ0, where
ρ0 is the mass density of the fluid,

p (r) = c2ρ0
f (r) − f (r0)
3 f (r0) − f (r)

, f (r) = √1−
rS0r

2

r30
(25)

with the radius of the star r0 and its Schwarzschild radius rS0 =
2Gm0/c2, where m0 denotes the total mass of the star, G the
gravitational constant and c the speed of light. The hydrostatic
pressure p(r) has itsmaximum in the center, r = 0, and turns singular
for 3 f(r0) → 1. Thus, for hydrostatic equilibrium, r0 must meet
the constraint f(r0) > 1/3, which corresponds to r0 > 9rS0/8. The
diverging pressure leads to a collapse of the material structure when
the star contracts to a radius r0 ≈ 9rS0/8. The collapse starts in the
center, within an infinitesimal radius dr = εr0 (ε≪ 1).The collapsing
mass may be expressed as

dm = ρ0
4π
3
dr3 = ε3m0 . (26)

The corresponding Schwarzschild radius drS ∝ dm of the
collapsing region is

drS = ε
3rS0 ≈

8ε2

9
dr≪ dr . (27)

According to the hitherto notion, all the stellar fluid falls into the
singularity. The findings summarized in Section 3.3 indicate that
instead, the fluid of the adjacent infinitesimal spherical shell falls
onto the event horizon at drS ≪ dr from Equation 27. The results
from the preceding Section 4 allow for a black holewithin a spherical
shell of mass, that is, for a black hole within a black hole. Each of the
subsequently falling shells 4πr2dr increases rS(r) such that

rS (r) = rS0
r3

r30
≈ 8r

3

9r20
. (28)

Themonotonous increase in r of Equation 28 ensures rS(r) < r for 0 <
r ≤ r0. Finally, the star has immediately contracted from its previous
radius r0 to the new radius rS0 ≈ 8r0/9 and results in a mass density
distribution

ρ (r) = 1
4πr2

dm(rS)
drS
= c2

8πGr2
. (29)

The density distribution (Equation 29) increases with decreasing
radius, as depicted in Figure 3. Each concentric shell 4πr2dr by
the locally diverging curvature of space-time is caught within itself.
Energy flow is freely possible in the angular directions but, as
seen from a distant viewpoint, asymptotically retains in the radial
direction. The density distribution ρ(r) is independent of the star’s
mass m0, but integrating it from the center to the star’s new radius
rS0 results in m0, as expected. The mass density ρ(r) diverges for
r→ 0, which agrees with the collapse of the central region. A natural
measure for the size of the collapsed region is the Planck density ρP =
c5/(ℏG2). The radius of the collapsed sphere by Equation 29 may be
estimated as rk = c/√8πGρP = ℓP/√8π, about a factor five below the
Planck length ℓP = √ℏG/c3, the limit where the established physical

FIGURE 3
Graph of the density distribution ρ(r) (orange line), diverging for r→ 0,
in relation to the original constant density ρ0 (green line). The
green-orange arrows schematically illustrate how the stellar fluid
drops from the state ρ0 to ρ(r).

concepts become invalid. We may conclude that all the stellar fluid
is preserved.

These findings lead to a notion of black holes as stratified
bodies of fluid with a well-defined density distribution and material
structure, except for a collapsed central region with a size below the
limits of the approved concepts of physics. During the accretion of
additional mass, each new infinitesimal layer is caught in the locally
diverging curvature of the space-time and for the next layer increases
the Schwarzschild radius of the black hole.

6 Discussion and conclusion

The notion of Schwarzschild-Kerr black holes as engulfing
abysses remained unchallenged for decades. In the past few years,
however, several teams noted the weaknesses of this concept and
proposed alternate models, trying to avoid or circumvent the
singularity at the event horizon. Mimickers, gravastars, boson
stars, or gravitational metamaterials are examples. The study on
hand bases on the Schwarzschild metric alone, with no additional
assumptions whatsoever.

We fathomed the conditions of the symmetry group of
the spherically symmetric metric and identified an inherent
discontinuity at the event horizon, the Birkhoff theorem being
locally inapplicable. The spherically symmetric solutions form two
subclasses, locally at the event horizon belonging to separate
manifolds. The irregular Schwarzschild solution on the one hand
represents a physical space-time. The globally regular solutions
on the other, if they continuously extend the metric beyond the
event horizon, violate the conditions of the symmetry group. As a
consequence, the event horizon is impassable from the outside.

A revaluation of the Schwarzschild solution, integrated within a
concentric shell of mass as a boundary, resulted in exactly the same
coordinates as in vacuum to infinity. The Newtonian shell theorem
was found fully valid in the context of the Schwarzschild metric. In
combinationwiththe impassableeventhorizonthenewSchwarzschild
solution allowed reconsidering the formation of black holes. We are
thus facing anewnotionof blackholes as a stratificationof stellar fluid,
formed by a continuous progression of event horizons. Black holes in
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FIGURE 4
Artwork of matter falling into a rotating Kerr black hole (left, obsolete vision) and viewed as a black star according to the present analysis (right). Matter
falling into the gravitational field is sketched in blue, the black star’s fluid and the rotation in orange.

fact are black stars. The central singularity remains but the material
structure is preserved all the way down to the Planck length, where
the approved physical concepts become invalid.

Chou [15] presented a method to construct from the
Schwarzschild coordinates the Kerr metric for rotating masses. He
transforms the coordinates to the new symmetry and then adds the
rotational energy. We conclude that equivalent restrictions apply to
the Kerr metric, as to the Schwarzschild metric. Figure 4 depicts an
artwork of a Kerr black hole according to the former and the current
vision.The concept discussed above only limits the radial motion of
stellar fluid, while angular motion is freely possible.Thus, the notion
of black stars is applicable to rotating gravitational objects as well.
The current vision is more plausible than the hitherto conception
of Kerr black holes, because the angular momentum is naturally
contained in the rotating mass and does not need to be attributed to
a rotating vacuum.

The concept of black stars completely and unavoidably replaces
the one of black holes. Yet, these findings affect the interior of
black stars only. Outside the event horizon, all former studies
remain valid as before. Time still dynamically interacts with space
and the problem of time in quantum gravity as summarized by
Anderson [16] remains. Yet, even upon gravitational singularities
the timeline always remains time. This indicates a conceptual shift
closer towards quantum theories, confirming, for example, the
general suitability of the standard approach to canonical quantum
gravity, that is, decomposing the space-time into a foliation of
spacelike hypersurfaces as described, for instance, by Kiefer [17].

The material structure within a black star is preserved. As seen
by a distant observer, each infinitesimal concentric layer is caught
within itself, allowing for angularmovementsonly.Each layerkeepson
falling freely, even though it stallswith respect to the coordinate radius.
The radial component of its proper line element diverges, while the
angular components asymptotically approach the well-defined limit
of the local event horizon. A falling observer thus experiences an ever-
increasing volume.There is no limitation regarding the energy density
as observed from a distant stationary viewpoint. The information
paradoxand thepotential conflictwith thePauli exclusionprincipleno

longerneedbediscussed.Theysimplybecome irrelevant.These results
might, for instance, significantly affect black hole thermodynamics.
The consequences may be far-reaching, even regarding cosmology
and the evolution of the universe.
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