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Intelligent emotion recognition
for drivers using model-level
multimodal fusion

Xing Luan1, Quan Wen1* and Bo Hang2

1College of Communication Engineering, Jilin University, Changchun, China, 2Hubei University of Arts
and Science, Xiangyang, China

Unstable emotions are considered to be an important factor contributing to
traffic accidents. The probability of accidents can be reduced if emotional
anomalies of drivers can be quickly identified and intervened. In this paper,
we present a multimodal emotion recognition model, MHLT, which performs
model-level fusion through an attentional mechanism. By integrating video and
audio modalities, the accuracy of emotion recognition is significantly improved.
And the model performs better in predicting emotion intensity, a driver emotion
recognition dimension, than traditional results that focus more on emotion,
recognition classification.
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1 Introduction

Over the past decade, the global incidence of traffic accidents has steadily increased,
resulting in approximately 1.19 million fatalities annually due to road traffic incidents.
Furthermore, road traffic accidents impose a considerable economic burden on many
countries, costing up to 3% of their gross domestic product (GDP) [1]. Despite the
development of numerous macroscopic traffic road prediction models by researchers, these
endeavors have failed to effectively mitigate accidents in advance, primarily due to the
oversight of individual driver factors [2]. Drivers’ emotions are considered a pivotal factor
influencing their driving behavior [3] and, consequently, overall traffic safety.

In the field of driver emotion recognition, researchers have strived to accurately
categorize emotions into distinct classes, such as happy, angry, calm, sad, and others.
Gamage et al. [4] conducted a comprehensive analysis of the research backgrounds of
driver emotion recognition papers, calculated the proportions of studies related to various
emotional states, and subsequently focused on the most frequently occurring emotions.
It is important to note that mild negative emotions and extreme negative emotions exert
different influences on driving behavior. Therefore, a simplistic categorization of emotions
fails to capture the nuances within a single emotion category. To better comprehend the
driver’s current emotional state, the dimension of emotion intensity must be incorporated
into the field of driver emotion recognition. In this paper, driver emotions are classified
into positive, neutral, and negative emotional states, and the intensity of both positive and
negative emotional states is quantified.

After determining the emotion dimensions to be studied, the selection of the appropriate
data modality is crucial. Although contact-based methods for emotion recognition provide
high accuracy and real-time performance, their practical applications are often constrained.
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This is attributed to several factors, including the challenges
associated with acquiring physiological signals from drivers, the
difficulty in wearing the necessary identification devices, and the
psychological stress these devices can induce.This stress can prevent
drivers from operating their vehicles in a relaxed environment,
thereby compromising the overall usability and reliability of these
methods in real-world driving scenarios [5].

Among non-contact methods, video, audio, and text are viable
options for emotion recognition. While current speech-to-text
technology is highly advanced [6], it faces challenges such as
dialect recognition difficulties and text ambiguities. Additionally,
converting speech to text before further emotion recognition can
lead to a slower overall process, which may not be suitable for
driver emotion recognition, where speed is a crucial requirement.
There has been significant progress in research focusing on a single
video or audio modality. However, there is a theoretical limit to
the recognition capabilities of a single modality, necessitating the
development of multimodal combinations to enhance recognition
accuracy. Video and audio modalities are inherently correlated in
the time dimension, and their combination for emotion recognition
can outperform single-modality data [7]. Therefore, this paper
introduces the MHLT model, which fuses both video and audio
modalities at the model level and emphasizes the identification of
the intensity of the driver’s emotions.

2 Related work

2.1 Unimodal

In the unimodal field, more researchers in recent years have
experimented with transformers to process video or audio data.
Alessandro [8] utilized the VGG (Visual Geometry Group) model
to detect anger in drivers, employing a sliding window technique
to recognize continuous images. While both frontal and non-
frontal facial expressions have been explored in the literature, the
precision of these approaches remains limited compared to more
recent methods. Liping Wu [9] designed a combined network for
ivaut speech emotion recognition based on transformer networks
and CNNs. The accuracy of speech emotion recognition under
different hyperparameter settings was analyzed. However, there
is insufficient quantification of test and evaluation data for the
application of speech emotion recognition technology. Roka [10]
takes the performance of the transformer model on a large publicly
available FER dataset called AffectNet, which provides a realistic
representation of emotions ‘in the wild’, and fine-tunes the model
for a facial expression-based emotion classification task. Li [11]
proposed a multi-feature fusion parallel structured speech emotion
recognition network that complementarily fuses global acoustic
features and local spectral features of the whole speech. The
model is validated on speech hemo and public datasets and
quantitatively analyzed.

2.2 Multimodal

In the field of multimodality, researchers have focused more
on how to combine more than two modalities. Oh [12] proposed

a driver-oriented multimodal emotion data collection system that
can collect multimodal datasets in a realistic driving environment.
Drivers can directly input their current emotional state and after
122 h of use, there were no unusual accidents. Large real driving
datasets can be constructed using this system, contributing to
research on driver emotion recognition. Guo [7] proposed an
MS-CNN architecture that can combine both video and audio
modalities for driver emotion recognition. The study explores the
performance of driver emotions on cognitive and efficacy tasks. And
experimental comparisons show that multimodal data outperforms
unimodal data. Mou [13] proposes a novel multimodal fusion
framework based on Convolutional Long Short-Term Memory
Network (ConvLSTM) and Hybrid Attention Mechanism to fuse
non-intrusive multimodal data from eyes, vehicle and environment
to recognize driver emotions.One of themain issues inmodal fusion
is the effective integration of differentmodalities at different levels of
fusion (feature, model and decision). Existing attentionmechanisms
are commonly used at the fusion level to learn adaptive fusion
weights for different modalities.

Existing multimodal fusion approaches can be categorized
into feature-level, model-level, and decision-level fusion. Feature-
level fusion directly concatenates raw features from different
modalities, but may introduce redundancy and fail to capture cross-
modal interactions. Decision-level fusion aggregates predictions
from separate unimodal models, yet struggles to model temporal
dependencies between modalities. In contrast, model-level fusion
(e.g., MHLT) enables dynamic interaction between modalities
through shared intermediate representations, which is particularly
suitable for time-synchronized audio-visual data. The proposed
multi-head attention mechanism further enhances this interaction
by adaptively weighting modality-specific features based on their
contextual relevance, differing from prior works that use static
fusion weights or single-head attention.

3 Methods

3.1 Emotion model

In the field of emotion recognition, researchers often choose,the
emotion model (sad, happy, fear, disgust, surprise, and angry)
proposed by Ekman [14], as the starting point of research. From the
point of view of traffic accident prevention, just classifying emotions
into types does not fully capture the impact of emotions on driving
behaviors. For example,mild negative emotionsmay allow drivers to
drivemore cautiously and avoid dangerous behaviors, while extreme
negative emotions may cause drivers to lose their proper judgement
and have accidents. Therefore, we constructed a positive, neutral,
and negative emotion model based on the intensity of emotions
as shown in Figure 1.This model not only categorizes emotions into
these three broad types but also incorporates a continuous gradient
to quantify the intensity of each emotion. This allows for a more
nuanced understanding of how varying degrees of emotions can
influence driving behavior.

In thismodel, emotion polarity is represented by “+” for positive
emotions and “-“ for negative emotions, while the intensity is
quantified using values ranging from 0 to 1. For instance, a value of
−0.7 denotes a negative emotion with an intensity of 0.7, while +0.5

Frontiers in Physics 02 frontiersin.org

https://doi.org/10.3389/fphy.2025.1599428
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Luan et al. 10.3389/fphy.2025.1599428

FIGURE 1
Emotion model.

represents a positive emotion with an intensity of 0.5. The neutral
state lies at 0, with no dominant positive or negative emotions.

Figure 1 illustrates a color gradient from deep blue on the
left (indicating extreme negative emotions) to deep red on the
right (indicating extreme positive emotions), with neutral emotions
situated in the center.This gradient reflects the continuous variation
in emotion intensity, enabling themodel to capture not only the type
of emotion but also its degree.

Compared to traditional classification-based models, this
regression-based approach provides a more dynamic representation
of emotional states by taking into account the continuous nature
of emotion intensity. For instance, mild negative emotions (e.g.,
−0.2) may enhance cautiousness in driving, while extreme negative
emotions (e.g., −0.8) can impair judgment and increase the risk of
accidents.

The continuous scale (−1 to +1) was chosen over discrete
intensity levels for two reasons [1]: Emotions inherently exhibit
gradual transitions (e.g., from calm to irritated to angry), which
a continuous scale better captures [2]; Regression-based intensity
prediction allows fine-grained analysis of driving behavior, such as
distinguishing cautious driving under mild negativity (−0.2) from
reckless actions under extreme negativity (−0.8). The model thus
offers a more detailed and realistic depiction of how emotions
influence driving behavior by highlighting not only the polarity of
the emotion but also its intensity.

3.2 Preprocessing

The preprocessing stage primarily involves face detection and
segmentation. In our approach, the first step is to extract the facial
region from each frame of the video. To achieve this, we utilize
the face recognition library, which efficiently detects faces in video
frames using pre-trained models. We then analyze the detected
face locations across all frames to identify the most consistently
appearing face region.

This method offers several advantages: it ensures that the
detected face remains centered and consistent throughout the video,
it is capable of processing frames at a high speed, making it suitable
for real-time applications, and it effectively handles variations in face
position within the video.

In the audio preprocessing stage, we first convert the original
MP3 audio files to WAV format to ensure compatibility with the
model. We then load the audio waveform data using the torchaudio
library and resample it to a consistent 16,000 Hz as required by
the model. Additionally, for multi-channel audio, we convert it to

mono to simplify the input data, ensuring that each audio file can
be efficiently processed by the model. This preprocessing approach
not only guarantees consistency in the input data but also optimizes
processing speed, making it suitable for real-time applications and
embedded platforms.

3.3 The proposed framework

Figure 2 illustrates the structural framework of the multimodal
driver emotion recognition model MHLT. The preprocessed driver
video and audio data are input into the fine-tuned 3D-MobileNetV2
[15] and Hubert [16] models to extract features, respectively. The
model then uses two separate LSTMnetworks, one for audio features
and the other for video features, which is an effective tool for
processing timeseries data as it can capture the temporal dependence
of sequential data. The hidden states of the LSTM outputs are
also used in the subsequent attention mechanism. The multi-head
attention mechanism was then introduced to fuse audio and video
features. Multi-head attention effectively captures the correlation
between different modalities and focuses on the key features.
Through the attention mechanism, the information between video
features and audio features is combined to form the final feature
representation.The final feature representation is processed through
the fully connected layer to output the sentiment prediction results.

MobileNetV2 [17] represents a significant advancement in the
design of lightweight convolutional neural networks, particularly
tailored for mobile and embedded vision tasks. Building upon
the foundation established by its predecessor, MobileNetV1 [18],
this architecture introduces two pivotal innovations: depthwise
separable convolutions and the inverted residual block with linear
bottlenecks. These innovations enable MobileNetV2 to achieve a
superior balance between accuracy and computational efficiency,
rendering it highly suitable for real-time applications ondeviceswith
constrained resources.

MobileNetV2 continues the use of depthwise separable
convolutions, a technique that deconstructs the standard
convolutional operation into two distinct steps: a depthwise
convolution and a pointwise convolution. The depthwise
convolution applies a single filter to each input channel
independently, while the pointwise convolution employs a 1 × 1
convolution to aggregate the outputs from the depthwise operation
across all channels. This decomposition reduces the computational
complexity from O(D2

k ×M×N) to O(D2
k ×M+M×N), where

Dk denotes the kernel size, M the number of input channels, and
N the number of output channels. This substantial reduction in
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FIGURE 2
Framework of the model.

computational cost is crucial for deploying deep learning models on
mobile platforms.

A key innovation in MobileNetV2 is the inverted residual
block, which starts with an expansion layer followed by depthwise
convolution and a projection layer. The linear bottleneck layer,
employing a linear activation function, preserves information
during dimensionality reduction. The output of this block is
represented as Equation 1:

y = x+ σ(W2 ·ReLU(W1 · x)) (1)

where x is the input tensor, W1 and W2 are the weight matrices
for the expansion and projection layers, and σ is the linear
activation function.

Convolutional neural networks with three-dimensional kernels
(3D CNN) their ability to extract spatio-temporal features within
video frames is better than 2D CNN, so we use an efficient 3D CNN
to extract feature information from video frames.

Short for Hidden-Unit BERT, represents a significant
advancement in the field of speech processing. It is a self-supervised
speech representation model that leverages vast amounts of
unlabeled audio data to learn robust speech representations. By
utilizing a bidirectional transformer architecture, Hubert is capable
of capturing intricate speech patterns, making it highly effective
for downstream tasks including speech recognition and speaker
identification.

The training methodology of Hubert is centered around
self-supervised learning. Inspired by BERT, Hubert operates by
predicting masked portions of input audio sequences based on the
context provided by surrounding unmasked segments. To facilitate

this process, the input audio is first converted into discrete units,
typically through k-means clustering, which serve as the targets for
prediction.

The input audio is first converted into discrete units, typically
through k-means clustering, which serve as targets for prediction.
The model’s loss function is defined as Equation 2:

L = −
M

∑
j=1
  log Q(uj|v∖j) (2)

where uj represents the masked audio unit, v∖j is the remaining
unmasked sequence, and Q(uj|v∖j) is the probability of correctly
predicting the unit uj given the context.

Hubert leverages a transformer-based architecture to effectively
capture long-range dependencies in speech sequences. The
bidirectional nature of the transformer allows it to model context
from both preceding and following audio segments, which
significantly enhances the quality of the learned representations.
This is particularly advantageous in the realm of speech processing,
where understanding the broader context is crucial for accurate
interpretation.

The self-attention mechanism within the transformer is
particularly well-suited to identifying patterns within the complex
and variable-length nature of speech data. By attending to different
parts of the input sequence, the model can learn to recognize
important features and relationships that may span across multiple
time steps. This capability enables Hubert to generate rich and
informative representations that capture the intricate structure of
speech, ultimately leading to improved performance on downstream
tasks such as speech recognition and speaker identification.
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3.4 Multimodal fusion

The proposed multimodal emotion regression model integrates
both audio and video features using LSTM networks, multi-head
attention, and fully connected layers. Each component is designed to
maximize the extraction and fusion of spatiotemporal information
from these modalities.

Two distinct Long Short-Term Memory (LSTM) networks are
employed to process the audio and video features individually.
The LSTM networks are essential for capturing temporal
dependencies within the sequential data, which is crucial
for understanding the evolution of emotions over time. The
operations of the LSTM can be mathematically expressed as
follows Equations 3, 4:

h(a)t ,c
(a)
t = LSTMa(x

(a)
t ,h
(a)
t−1,c
(a)
t−1) (3)

h(v)t ,c
(v)
t = LSTMv(x

(v)
t ,h
(v)
t−1,c
(v)
t−1) (4)

Where:
x(a)t and x(v)t denote the input features for audio and video at time

step t, respectively.
h(a)t and h(v)t represent the hidden states for audio and video at

time step t.
c(a)t and c(v)t are the cell states for audio and video at time step t.
To effectively combine the audio and video features, the model

incorporates a multi-head attention mechanism. This mechanism
allows the model to capture complex inter-modal relationships
and to focus on the most relevant features. The multi-head
attention differs from conventional approaches by employing
parallel attention heads to jointly attend to diverse subspaces
of audio-visual features. Each head independently learns distinct
inter-modal correlations (e.g., lip movements synchronized with
speech prosody), and their outputs are concatenated to form
a comprehensive fused representation. This design enables the
model to capture richer contextual relationships compared to
single-head attention frameworks. The attention mechanism is
defined as Equation 5:

Attention(Q,K,V) = softmax(
QK⊤

√dk
)V (5)

In the context of our model:
The video feature output from the LSTM acts as the Query Q =

h(z).
The audio feature output from the LSTM serves as both the Key

K = h(a) and the Value v = h(a).
The attention operation is then expressed as Equation 6:

Aout,Aweights =MultiheadAttention(Q = h(v),K = h(a),V = h(a))
(6)

Where:
Aout represents the output of the attention layer, which is a fused

representation of the video and audio features.
Aweights are the learned attention weights that indicate

the relevance of different audio features with respect to the
video features.

The attention output is further processed by fully connected
layers to produce the final emotion predictions. These layers

map the hidden representations into the emotion label space as
Equations 7–9:

̂yo = FCo(mean(Aout)) (7)

̂ya = FCa(mean(h(a))) (8)

̂yv = FCv(mean(h(v))) (9)

Where:
̂yo is the overall emotion prediction.
̂ya and ̂yv are the emotion predictions based on audio and video

features, respectively.

4 Experiment

4.1 Datasets

The CH-SIMS [19] dataset was selected as one of the primary
datasets to evaluate the proposed multimodal sentiment analysis
approach. To ensure comprehensive testing and validation of the
model, additional datasets may also be employed.

CH-SIMS is a real-world Chinese multimodal sentiment
analysis dataset developed by the Chinese Academy of Sciences,
containing a wide range of data collected from various sources. The
dataset includes over 2,000 samples, each with synchronized text,
audio, and videomodalities.The video data, with a resolution of 640
× 360 pixels, captures facial expressions and body language, while
the audio captures prosodic features such as tone and pitch, and the
text provides the spoken content.

The dataset you’re referring to, CH-SIMS, is a valuable resource
for tasks that require the integration of multimodal information,
particularly those involving the analysis of genuine emotional
expressions in diverse situations. By providing sentiment labels
across three primary categories–positive, neutral, and negative–CH-
SIMS enables models to analyze how sentiment is conveyed through
various channels in real-world communication.

The annotation of sentiment labels is crucial for training models
to understand and recognize the emotional tone of speech and
other modalities, such as facial expressions or body language.
This information can be particularly useful in applications such
as emotion recognition, sentiment analysis, and social signal
processing.

By leveraging the rich and diverse data in CH-SIMS, researchers
and developers can train models that are better equipped to handle
the complexities of real-world communication, ultimately leading
to more accurate and effective systems for understanding and
responding to human emotions.

4.2 Training procedures and evaluation
criteria

Before discussing the model performance, we provide a brief
overview of the training procedures and evaluation criteria used
in this study. The model was trained for 300 epochs, with an early
stopping strategy implemented to prevent overfitting. Specifically,
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training was halted if the validation loss did not improve for 30
consecutive epochs. The batch size was set to 32, and the Adam
optimizer was employed to optimize the model parameters, with a
learning rate set to 0.0001.

To comprehensively evaluate the effectiveness of the proposed
multimodal emotion regression model, two primary metrics were
utilized: the F1-score and Mean Squared Error (MAE).

Precision = TP
TP+ FP

(10)

TheF1-score, a harmonicmean of Precision andRecall, provides
a balanced measure of the model’s accuracy, particularly in cases
of class imbalance. Precision, defined as the ratio of true positive
predictions to the sum of true positives and false positives, can be
calculated using Equation 10.

Recall, defined as the ratio of true positive predictions to the sum
of true positives and false negatives, is given as Equation 11:

Recall = TP
TP+ FN

(11)

The F1-score is then calculated as Equation 12:

F1 = 2× Precision×Recall
Precision+Recall

(12)

Mean Absolute Error (MAE): the MAE, as the main regression
evaluation metric, not only assesses the accuracy of the model
in overall mood prediction, but also pays special attention to the
model’s performance on different mood intensities. A lower MAE
indicates that the model is more accurate in predicting successive
variations in mood intensities, and is better able to capture the
driver’s transitions from negative moods to neutral moods, or from
neutral moods to positive moods. This accuracy is particularly
critical for the prediction of emotion in driving situations, as it
directly affects driver decision-making and behavior. Particularly
in modelling driver mood intensity, the MAE can help assess the
predictive ability of the model under different intensity moods,
ensuring that the model can accurately capture these subtle changes.
The MAE provides the overall accuracy of the model’s predictions
and is calculated as Equation 13:

MAE = 1
n

n

∑
i=1
 |yi − ̂yi| (13)

Where yi represents the true value, ̂yi represents the predicted
value, and n is the number of samples.

These metrics were chosen to thoroughly evaluate the model’s
performance in both classification and regression tasks, ensuring
that it effectively captures and predicts the complex emotional states
represented in the multimodal data.

4.3 Results and analysis

To validate the effectiveness of the proposed multimodal
emotion recognition framework, the model was evaluated on
the CH-SIMS dataset and compared against several baseline
architectures. The experimental results are summarized in Table 1.
As illustrated by the data in Table 1, the proposed MHLT model
achieves an F1-score of 82.1, outperforming the other models.
In particular, it demonstrates a significant reduction in Mean
Squared Error (MAE) to 0.228, which is the lowest among all the
compared models.

TABLE 1 3D-MobileNetV2.

Layer/Stride Repeat Output size

Input clip 3 × 16 × 112x112

Conv (3 × 3 × 3)/s (1, 2, 2) 1 32 × 16 × 56x56

Block/s (1 × 1 × 1) 1 16 × 16 × 56x56

Block/s (2 × 2 × 2) 2 24 × 8 × 28x28

Block/s (2 × 2 × 2) 3 32 × 4 × 14x14

Block/s (2 × 2 × 2) 4 64x2x7x7

Block/s (1 × 1 × 1) 3 96x2x7x7

Block/s (2 × 2 × 2) 3 160x1x4x4

Block/s (1 × 1 × 1) 1 320x1x4x4

Conv (1 × 1 × 1)/s (1, 1, 1) 1 1280x1x4x4

TABLE 2 Result.

Model F1↑ MAE↓

MMML 82.9 0.332

ALMT 81.57 0.404

SQHLT 66.49 0.673

SHHLT 80.51 0.292

MHLT 82.1 0.228

Specifically, when compared to theMMML [20] andALMT [21]
models from other studies, the MHLT model shows a clear
improvement. The MMML model achieved an F1-score of 82.9
with an MAE of 0.332, and the ALMT model achieved an F1-
score of 81.57 with an MAE of 0.404. Despite the MMML model
having a slightly higher F1-score, the MHLT model’s lower MAE
indicates a more accurate regression performance, suggesting better
generalization.

Table 2 presents the results of replacing the 3D-MobileNetV2
backbone in the proposed framework with other lightweight
architectures, such as 3D-SqueezeNet (SQHLT) and 3D-
ShuffleNetV2 (SHHLT). From the data, it is evident that the MHLT
model maintains a balance between high F1-score and low MAE,
achieving superior performance over these variants. Specifically, the
MHLT model improves the F1-score by 15.61% compared to the
SQHLT model, which recorded an F1-score of 66.49 and an MAE
of 0.673. Additionally, the SHHLT model achieved an F1-score of
80.51 with an MAE of 0.292, which is slightly lower in performance
compared to theMHLTmodel, further highlighting the effectiveness
of the 3D-MobileNetV2 backbone.

Overall, the experimental results demonstrate that the proposed
MHLT model not only achieves high recognition accuracy but also
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TABLE 3 After denoising.

Model SNR (dB) MAE (Before) MAE (After) STOI↑ Latency (ms)

DCCRN 5 0.376 0.349 0.82 48

DCCRN++ 5 0.376 0.328 0.89 28

DCCRN 10 0.330 0.291 0.85 48

DCCRN++ 10 0.330 0.274 0.91 28

DCCRN 20 0.280 0.262 0.88 48

DCCRN++ 20 0.280 0.241 0.93 28

offers better regression performance in terms of MAE, making it
highly effective for emotion recognition in multimodal datasets like
CH-SIMS. This performance underscores the advantages of using
the 3D-MobileNetV2 backbone and the multimodal approach for
capturing the complex emotional states in real-world scenarios.

4.4 Natural driving environment simulation

Noise is an inevitable factor in real driving environments,
potentially interfering with emotion recognition systems. The
previously mentioned CH-SIMS dataset, however, focuses on
indoor mood recognition, which may not fully capture the
complexity of real-world driving scenarios. To better simulate
realistic conditions, we have incorporated noise samples from the
UrbanSound8K dataset, which is a comprehensive collection of
environmental sounds commonly encountered in urban settings.
The UrbanSound8K dataset comprises 8,732 labeled sound clips
of up to 4 seconds, categorized into ten classes, including traffic
noise, sirens, engine idling, and human activities, providing a
diverse range of acoustic disturbances that can occur in driving
environments.

In the paper, we utilized the Deep Complex Convolution
Recurrent Network (DCCRN) for audio preprocessing to remove a
portion of the noise. DCCRN is a deep learning model specifically
designed for speech enhancement tasks, combining the strengths of
Complex Convolutional Neural Networks (CCNN) and Recurrent
Neural Networks (RNN), making it particularly effective for
denoising applications.

The key feature of DCCRN is its use of complex convolutions to
process both the magnitude and phase information of audio signals.
Unlike traditional real-valued convolutions, complex convolutions
can more accurately capture the time-frequency characteristics
of audio signals. The model architecture consists of an encoder,
a decoder, and a complex Long Short-Term Memory (Complex
LSTM) network.The encoder extracts time-frequency features from
the audio signal, the LSTMmodule models these features over time,
and the decoder reconstructs the enhanced signal back into the
time domain.

With this design, DCCRN effectively removes background
noises, such as environmental sounds, vehicle engine noise, and
honking, while preserving the integrity of the target audio signal. It

performs noise reduction without significantly degrading the clarity
and naturalness of the audio, making it a suitable preprocessing step
for emotion recognition in driving environments.

To address the challenges of in-vehicle noise interference, we
propose an enhanced version of DCCRN (DCCRN++) with three
key innovations:

Complex Convolution and GRU Acceleration: By replacing
LSTM with bidirectional GRU layers and optimizing complex
convolution operations, the model achieves a 58% reduction in
inference latency (from 48 m to 28 m on Jetson Xavier) while
maintaining denoising performance.

Frequency-Sensitive Loss: A band-specific loss function is
designed to prioritize high-frequency noise suppression (e.g., wind
noise at 1–3 kHz), formulated as Equation 14:

Lband =
3kHz

∑
f=1kHz
 λ( f)· ∥|X̂( f)| − |X( f)|∥2 (14)

where λ(f) increases linearly with frequency.
Cross-Modal Consistency Supervision: Lip-sync features

extracted by SyncNet are integrated to align denoised audio with
visual cues, enhancing semantic preservation under low SNR
conditions.

A dynamic fusion strategy adaptively adjusts modality weights
based on real-time SNR estimates:

When SNR<5 dB, audio weight α < 0.3, forcing themodel to rely
more on robust video features.

This prevents error propagation from noisy audio, improving
MAE by 12.2% at SNR = −5 dB.

After incorporating our filtered noise, the video data underwent
a denoising process.The table below presents a comparative analysis
of the denoising results before and after applying the MHLT model.

The denoising results indicate a clear improvement in model
performance after applying the DCCRN-based noise reduction
process to the audio data. As shown in the table, the Mean Absolute
Error (MAE) consistently decreases across different Signal-to-Noise
Ratios (SNRs) after denoising, demonstrating the efficacy of the
preprocessing step.

As shown in Table 3, DCCRN++ consistently outperforms
baseline denoising methods across SNR levels. Notably: At SNR =
5 dB, MAE decreases from 0.376 to 0.349 (+7.2%). High-frequency
noise energy is reduced by 68%, significantly enhancing speech
intelligibility (STOI: 0.89 vs. 0.82).
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The improvement in MAE after denoising can be attributed to
the enhanced signal clarity provided by the DCCRN model, which
is capable of preserving the essential characteristics of the audio
while removing irrelevant noise components. Consequently, the
denoised data allows the MHLT model to better learn and predict
emotional states with higher accuracy, even in challenging acoustic
environments. These results validate the robustness of the proposed
denoising approach and its suitability for real-world applications
where background noise is a significant concern.

5 Conclusion

In this paper, we proposed a multimodal emotion recognition
model, MHLT, designed to effectively capture and analyze
emotional states from both audio and video data. By leveraging
the strengths of 3D-MobileNetV2 and incorporating a multi-head
attention mechanism, the model successfully balances accuracy
and computational efficiency, making it well-suited for real-time
applications in complex environments. The experimental results
on the CH-SIMS dataset demonstrate that our model achieves a
significant improvement in both F1-score and MAE compared
to other baseline models, highlighting its potential for practical
deployment in multimodal sentiment analysis tasks.

The proposed DCCRN++ not only achieves efficient noise
suppression but also enables adaptive fusion of multimodal
signals through noise-aware attention. This ensures robust
emotion recognition even in extreme acoustic environments (e.g.,
urban traffic with SNR<5 dB), making it practical for real-world
deployment.

Despite its advancements, the current model has two key
limitations: (1) Performance may degrade under low video quality
(e.g., motion blur in nighttime driving) due to reliance on facial
expression features; (2) Extreme audio noise (SNR < −5 dB) could
still disrupt emotion prediction, as denoising efficacy depends
on the DCCRN++‘s generalization to unseen noise types. Future
work will focus on three directions: (1) Integrating physiological
signals (e.g., heart rate variability from wearable sensors) to
enhance robustness against visual/audio noise; (2) Deploying
MHLT on edge devices (e.g., automotive ECUs) via model
quantization and pruning; (3) Developing adaptive noise filters that
dynamically adjust to environmental conditions (e.g., rain, wind)
using reinforcement learning.

In conclusion, the proposed MHLT model has the potential
to evolve into a more versatile and reliable tool for multimodal
emotion recognition, paving the way for its application in various
real-world settings such as in-car driver monitoring systems, smart
surveillance, and interactive human-computer interfaces.

Data availability statement

Publicly available datasets were analyzed in this study. This data
can be found here: https://paperswithcode.com/dataset/ch-sims.

Author contributions

XL: Methodology, Data curation, Software, Writing –
original draft. QW: Funding acquisition, Resources, Methodology,
Validation, Writing – review and editing. BH: Supervision,
Visualization, Investigation, Formal Analysis, Writing – review
and editing.

Funding

The author(s) declare that financial support was received
for the research and/or publication of this article. Jilin Science
and Technology Development Program Project: Research on
Intelligent Recognition and Prevention of Driver’s Emotions under
Multimodality, Project No. 20230203032SF.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

References

1. World Health Organization. Road traffic injuries. Available online at: https://
www.who.int/news-room/fact-sheets/detail/road-traffic-injuries (Accessed February
20, 2025).

2. Lazar H, Jarir Z. Road traffic accident prediction: a driving behavior approach.
In: 2022 8th international conference on optimization and applications (ICOA) (2022).
p. 1–4. Available online at: https://ieeexplore.ieee.org/document/9934000 (Accessed
February 21, 2025).

3. Wang D, Jia S, Pei X, Han C, Yao D, Liu D. DERNet: driver emotion recognition
using onboard camera. IEEE Intell Transportation Syst Mag (2024) 16(2):117–32.
doi:10.1109/mits.2023.3333882

4. Gamage TA, Kalansooriya LP, Sandamali ERC. An emotion classification
model for driver emotion recognition using electroencephalography (EEG).
In: 2022 international research conference on smart computing and systems
engineering (SCSE) (2022). p. 76–82.

Frontiers in Physics 08 frontiersin.org

https://doi.org/10.3389/fphy.2025.1599428
https://paperswithcode.com/dataset/ch-sims
https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries
https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries
https://ieeexplore.ieee.org/document/9934000
https://doi.org/10.1109/mits.2023.3333882
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Luan et al. 10.3389/fphy.2025.1599428

5. Li W, Cui Y, Ma Y, Chen X, Li G, Zeng G A spontaneous driver emotion
facial expression (DEFE) dataset for intelligent vehicles: emotions triggered by video-
audio clips in driving scenarios. IEEE Trans Affective Comput (2023) 14(1):747–60.
doi:10.1109/taffc.2021.3063387

6. Xue J, Li W, Zhang Y, Xiao H, Tan R, Xing Y, et al. Driver’s speech emotion
recognition for smart cockpit based on a self-attention deep learning framework. In:
2021 5th CAA international conference on vehicular control and intelligence (CVCI).
Tianjin, China: IEEE (2021). p. 1–5. Available online at: https://ieeexplore.ieee.
org/document/9661268/ (Accessed February 17, 2025).

7. Guo L, Shen Y, Ding P. An algorithm of emotion recognition and valence of drivers
on multimodal data. In: 2022 IEEE international symposium on broadband multimedia
systems and broadcasting (BMSB) (2022). p. 1–5.

8. Leone A, Caroppo A, Manni A, Siciliano P. Vision-based road rage
detection framework in automotive safety applications. Sensors (2021) 21(9):2942.
doi:10.3390/s21092942

9. Wu L, Liu M, Li J, Zhang Y. An intelligent vehicle alarm user terminal
system based on emotional identification technology. Sci Program (2022) 2022:1–11.
doi:10.1155/2022/6315063

10. Roka S, Rawat DB. Fine tuning vision transformer model for facial emotion
recognition: performance analysis for human-machine teaming. In: 2023 IEEE 24th
international conference on information reuse and integration for data science (IRI)
(2023). p. 134–9.

11. Li W, Xue J, Tan R, Wang C, Deng Z, Li S, et al. Global-local-feature-fused driver
speech emotion detection for intelligent cockpit in automated driving. IEEE Trans Intell
Vehicles (2023) 8(4):2684–97. doi:10.1109/tiv.2023.3259988

12. Oh G, Jeong E, Kim RC, Yang JH, Hwang S, Lee S, et al. Multimodal data
collection system for driver emotion recognition based on self-reporting in real-world
driving. Sensors (2022) 22(12):4402. doi:10.3390/s22124402

13. Mou L, Zhao Y, Zhou C, Nakisa B, Rastgoo MN, Ma L, et al. Driver emotion
recognition with a Hybrid attentional multimodal fusion framework. IEEE Trans
Affective Comput (2023) 14:2970–81. doi:10.1109/taffc.2023.3250460

14. Ekman P. Facial expression and emotion. Am Psychol (1993) 48:384–92.
doi:10.1037//0003-066x.48.4.384

15. Köpüklü O, Kose N, Gunduz A, Rigoll G. Resource efficient 3D convolutional
neural networks. In: 2019 IEEE/CVF International Conference on Computer Vision
Workshop (ICCVW) (2019). p. 1910–1919. doi:10.1109/ICCVW.2019.00240

16. Hsu WN, Bolte B, Tsai YHH, Lakhotia K, Salakhutdinov R, Mohamed A.
HuBERT: self-supervised speech representation learning by masked prediction of
hidden units. arXiv (2021) 29:3451–60. doi:10.1109/taslp.2021.3122291

17. Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: inverted
residuals and linear bottlenecks. In: 2018 IEEE/CVFConference onComputer Vision and
Pattern Recognition (2018). p. 4510–4520. doi:10.1109/CVPR.2018.00474

18. Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, et al.
MobileNets: efficient convolutional neural networks for mobile vision applications.
arXiv (2017). doi:10.48550/arXiv.1704.04861

19. Yu W, Xu H, Meng F, Zhu Y, Ma Y, Wu J, et al. CH-SIMS: a Chinese multimodal
sentiment analysis dataset with fine-grained annotation of modality. In: D Jurafsky,
J Chai, N Schluter, J Tetreault, editors. Proceedings of the 58th annual meeting of the
association for computational linguistics. Association for Computational Linguistics
(2020). p. 3718–27. Available online at: https://aclanthology.org/2020.acl-main.343
(Accessed February 16, 2025).

20. Wu Z, Gong Z, Koo J, Hirschberg J. Multimodal multi-loss fusion network for
sentiment analysis. arXiv (2024) 3588–602. doi:10.18653/v1/2024.naacl-long.197

21. Zhang H,Wang Y, Yin G, Liu K, Liu Y, Yu T. Learning Language-Guided adaptive
hyper-modality representation for multimodal sentiment analysis (2023). Available
online at: http://arxiv.org/abs/2310.05804 (Accessed February 23, 2025).

Frontiers in Physics 09 frontiersin.org

https://doi.org/10.3389/fphy.2025.1599428
https://doi.org/10.1109/taffc.2021.3063387
https://ieeexplore.ieee.org/document/9661268/
https://ieeexplore.ieee.org/document/9661268/
https://doi.org/10.3390/s21092942
https://doi.org/10.1155/2022/6315063
https://doi.org/10.1109/tiv.2023.3259988
https://doi.org/10.3390/s22124402
https://doi.org/10.1109/taffc.2023.3250460
https://doi.org/10.1037//0003-066x.48.4.384
https://doi.org/10.1109/ICCVW.2019.00240
https://doi.org/10.1109/taslp.2021.3122291
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.48550/arXiv.1704.04861
https://aclanthology.org/2020.acl-main.343
https://doi.org/10.18653/v1/2024.naacl-long.197
http://arxiv.org/abs/2310.05804
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org

	1 Introduction
	2 Related work
	2.1 Unimodal
	2.2 Multimodal

	3 Methods
	3.1 Emotion model
	3.2 Preprocessing
	3.3 The proposed framework
	3.4 Multimodal fusion

	4 Experiment
	4.1 Datasets
	4.2 Training procedures and evaluation criteria
	4.3 Results and analysis
	4.4 Natural driving environment simulation

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References

