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Infrared and visible image fusion
driven by multimodal large
language models

Ke Wang, Dengshu Hu, Yuan Cheng, Yukui Che*, Yuelin Li,
Zhiwei Jiang, Fengxian Chen and Wenjuan Li

Qujing Power Supply Bureau, Yunnan Power Grid Co., Ltd., Kunming, China

Introduction: Existing image fusion methods primarily focus on obtaining high-
quality features from source images to enhance the quality of the fused image,
often overlooking the impact of improved image quality on downstream task
performance.

Methods: To address this issue, this paper proposes a novel infrared and
visible image fusion approach driven by multimodal large language models,
aiming to improve the performance of pedestrian detection tasks. The proposed
method fully considers how enhancing image quality can benefit pedestrian
detection. By leveraging a multimodal large language model, we analyze the
fused images based on user-provided questions related to improving pedestrian
detection performance and generate suggestions for enhancing image quality.
To better incorporate these suggestions, we design a Text-Driven Feature
Harmonization (Text-DFH) module. Text-DFH refines the features produced by
the fusion network according to the recommendations from the multimodal
large language model, enabling the fused image to better meet the needs of
pedestrian detection tasks.

Results: Compared with existing methods, the key advantage of our approach
lies in utilizing the strong semantic understanding and scene analysis capabilities
of multimodal large language models to provide precise guidance for
improving fused image quality. As a result, our method enhances image
quality while maintaining strong performance in pedestrian detection. Extensive
qualitative and quantitative experiments on multiple public datasets validate the
effectiveness and superiority of the proposed method.

Discussion: In addition to its effectiveness in infrared and visible image fusion,
the method also demonstrates promising application potential in the field of
nuclear medical imaging.

KEYWORDS

infrared and visible image fusion, pedestrian detection, multimodal large language
models, text-guided, model fine-tuning

1 Introduction

Multimodal sensor technology has facilitated the application of multimodal images
across various fields. Among them, infrared and visible images have been widely used
in diverse tasks due to the complementary nature of the information they contain.
Specifically, infrared images provide thermal radiation information of objects and are
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FIGURE 1
Comparison of different joint training strategies for image fusion and downstream tasks.

not affected by lighting conditions, but they lack detailed textures.
In contrast, visible images capture rich texture details of the
scene but are highly sensitive to lighting variations. Therefore,
numerousmethods [1–7] have focused on fusing infrared and visible
images, aiming to integrate the complementary information from
both modalities into a single, more informative fused image. This
facilitates better decision-making and judgment in downstream
tasks such as object detection [8–10] and semantic segmentation
[11–14].

Current approaches that jointly train infrared-visible image
fusion with downstream tasks can be broadly categorized into
two types: independent optimization and joint optimization.
Independent optimization methods first train a fusion network
for infrared and visible images and then use the resulting fused
images to train a downstream task network, as shown in Figure 1a.
Consequently, most independent optimization methods focus on
improving fusion quality, for example, by designing new network
architectures [15–19] or introducing specific constraints [20–23].
However, such approaches neglect the potential guidance from
downstream tasks and fail to establish a deep connection between
fusion and task performance, often leading to suboptimal results.
Simply chaining the fusion and downstream networks makes it
difficult for the fused image to specifically cater to the downstream
task’s requirements. On the other hand, joint optimization methods
use the downstream task network as a constraint to train the image
fusion network, thereby forcing it to produce fused images that meet
task-specific needs [24–28], as illustrated in Figure 1b. Nevertheless,
the effectiveness of directly using high-level vision task supervision
to guide fusion remains limited.

Recently, Multimodal Large Language Models (MLLMs) have
gained popularity due to their strong capability in modeling data
across different modalities, such as images and text. For instance,

Text-IF [29] and TeRF [30] leverage large models to encode user
instructions and guide various types of fusion tasks. However, these
methods do not consider the possibility of using large language
models to feed back the specific needs of high-level vision tasks to
the image fusion process, which could further improve the quality
of fused images.

To address this challenge, we propose a novel infrared and
visible image fusionmethod driven by aMultimodal Large Language
Model, aiming to simultaneously enhance fusion quality and
pedestrian detection accuracy, as shown in Figure 1c. By leveraging
the deep semantic understanding and scene analysis capabilities of
MLLMs, we provide precise guidance for improving fused image
quality while ensuring better pedestrian detection performance.
Specifically, our method analyzes the fused images based on user-
provided questions related to pedestrian detection, then generates
optimization suggestions using feedback from the language model.
To fully utilize these suggestions, we design a Text-Driven Feature
Harmonization (Text-DFH) module, which refines the fusion
network’s output features under the guidance of theMLLM, allowing
the fused images to bettermeet the demands of pedestrian detection.

In summary, the main contributions of this paper are as follows:

(1) We are the first to leverageMultimodal Large LanguageModels
to provide feedback on the quality of fused images based on
the specific requirements of downstream tasks, thus further
improving infrared and visible image fusion.

(2) We propose an effective Text-Driven Feature Harmonization
(Text-DFH) module that enables text-based guidance to assist
in enhancing image quality.

(3) Our proposed method achieves excellent performance in
infrared and visible image fusion, nuclear medical imaging,
and pedestrian detection across multiple datasets.
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The remainder of this paper is organized as follows. Section 2
provides a brief overview of related work on multimodal large
language models, infrared and visible image fusion, and pedestrian
detection. Section 3 presents our proposed method in detail.
Section 4 discusses the experimental results and analysis. Section 5
concludes the paper.

2 Related work

In this section, we first briefly introduce multimodal large
languagemodels, and then review existing infrared and visible image
fusion methods.

2.1 Multimodal large language models

With the advent of the multimodal data fusion era, the
capability of unimodal systems is no longer sufficient to handle
complex real-world tasks. As a result, multimodal large language
models (MLLMs) have been proposed to integrate information
from multiple data sources, enabling more comprehensive
and accurate representations. These models have demonstrated
significant practical value across various domains, including natural
language processing, vision tasks, and audio tasks. In the visual
domain, MLLMs enhance the performance of tasks such as image
classification, object detection, and image captioning by combining
textual descriptions with visual instructions. For example, GPT-4V
[31] and Gemini [32] integrate image content with natural language
descriptions to producemore vivid and accurate annotations.NExT-
GPT [33] and Sora [34] are at the forefront of multimodal video
generation, producing rich and realistic content by learning from
multimodal data. Moreover, VideoChat [35] and Video-LLaVA [36]
demonstrate excellent capabilities in analyzing and understanding
video content in intelligent video understanding scenarios.

In the field of image fusion, Text-IF [29] and MGFusion [37]
uses CLIP [38] to encode user requirement texts, guiding the model
to fuse images. TeRF [30] utilizes LLaMA [39] to encode user
instruction texts and generate prompts for guiding image fusion
across different tasks. Although these methods employ MLLMs
to tackle some challenges in image fusion, they do not consider
the specific requirements of high-level downstream visual tasks for
image fusion quality, which limits the application of infrared and
visible image fusion in such tasks.

2.2 Infrared and visible image fusion

Conventional infrared and visible image fusion methods mainly
focus on designing sophisticated feature extraction networks and
fusion strategies to ensure the quality of the fused results. From
the perspective of network design, these methods can be broadly
categorized into CNN-based methods, CNN-Transformer hybrid
methods, and GAN-based methods. CNN-based methods [40–45]
typically apply convolution, activation, and pooling operations to
extract features from the input images, then fuse and reconstruct
the final result using the extracted features. However, since CNNs
can only perceive local features within a limited receptive field,

they struggle to capture long-range contextual information, limiting
their representational capacity. In contrast, Transformers [46]
are better at modeling long-range dependencies and are more
suited for capturing global features in images. ViT [47] was the
first to introduce Transformer architectures into computer vision,
achieving promising results. Subsequently, to combine the respective
strengths of CNNs and Transformers, hybrid methods have gained
increasing attention in the image fusion domain. For instance,
CGTF [48], SwinFusion [16], YDTR [17], and DATFuse [49] insert
Transformer layers after CNN layers to jointly leverage local and
global feature extraction. CDDFuse [50] and EMMA [51] adopt
dual-branch architectures combining CNNs and Transformers to
simultaneously extract features from the input images and integrate
them for fusion.

GAN-based methods enhance the model’s feature extraction
capabilities by introducing adversarial learning between generators
and discriminators. Depending on the number of discriminators
used, these methods can be classified into single-discriminator
and dual-discriminator approaches. Single-discriminator methods
[2, 52] tend to favor one modality over the other, potentially
leading to information loss and reduced visual quality of the fusion
results. To address this, dual-discriminator methods [53–56] are
proposed to preserve important features from both source images
simultaneously.

However, all of these methods primarily focus on designing
effective feature extraction networks to produce high-quality fusion
features and images. They overlook how fusion quality impacts
downstream task performance, and fail to consider the potential
feedback from downstream tasks that could help guide fusion more
effectively.

2.3 Pedestrian detection

Pedestrian detection is a fundamental problem in computer
vision with a wide range of applications. Cascade R-CNN [57]
extends R-CNN [58] into a multi-stage framework, improving the
ability to filter hard negative samples. Faster R-CNN [59] introduces
a Region Proposal Network (RPN) that shares convolutional
features with the detection network, making region proposals
nearly cost-free. YOLO [60] reformulates object detection as a
regression problem, allowing real-time inference directly on images
through a convolutional neural network. SSD [61] uses multi-
scale feature maps and predefined anchors for pedestrian detection,
addressing YOLO’s limitations in detecting small objects. DETR
[62] adopts a Transformer-based encoder-decoder architecture for
object detection. BAS Wu et al. [63] learns to represent the whole
foreground region by leveraging foreground guidance and domain
constraints. CREAM [64] proposes a clustering-based method
to enhance activation within target regions. Group R-CNN [65]
builds instance groups to perform pedestrian detection from point
annotations.

However, most pedestrian detection methods are designed
for unimodal images, which often leads to degraded detection
performance due to incomplete scene information. In this work, we
perform pedestrian detection on fused infrared and visible images,
and incorporate task-specific prompts generated by large language
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FIGURE 2
Overall framework of the proposed method. We use the IR-Encoder and VI-Encoder to extract features from the infrared and visible images,
respectively. To ensure that the fused output meets the requirements of the pedestrian detection task, we input both a question related to pedestrian
detection (e.g., To improve the accuracy of pedestrian detection, how can the quality of this image be enhanced?) and the unmodulated fused image
into a Multimodal Large Language Model. The model provides suggestions for improving the quality of the fused image. Based on these suggestions,
the Text-DFH module refines the output features of the fusion network, so that the final fusion result better aligns with the needs of the pedestrian
detection task.

models. This not only improves the quality of the fused images but
also enhances pedestrian detection performance.

3 Methods

3.1 Overview

As shown in Figure 2, the proposed method consists of two
training stages. The first stage is dedicated to training the Fusion
Network, enabling it to perform basic infrared and visible image
fusion. In the second stage, the parameters of the pretrained fusion
network are frozen, and a Text-Driven Feature Harmonization
(Text-DFH) module is trained to refine the fusion results to better
align with the requirements of pedestrian detection.The fusion
network is composed of three main components: an Infrared
Image Feature Encoder (IR-Encoder), a Visible Image Feature
Encoder (VI-Encoder), and a Fusion Feature Decoder (F-Decoder).
The IR/VI-Encoders are responsible for extracting features from
the input infrared and visible images, respectively, while the F-
Decoder reconstructs the fused image based on the combined
features.The Text-DFH module adjusts the features extracted by
the IR/VI-Encoders based on responses from a Multimodal Large
Language Model (MLLM), ensuring that the resulting fused
image better satisfies the needs of pedestrian detection. In this
work, we adopt LLaVA [66] as the MLLM. LLaVA analyzes the
unmodulated fused image and generates suggestions in response
to user queries related to pedestrian detection tasks (e.g., To
improve the accuracy of pedestrian detection, how can the quality
of this image be enhanced?). More text examples of LLaVA answers
are shown in Figure 3.

3.2 Feature extraction and fusion

In the first training stage, we train the fusion network to perform
the basic task of infrared and visible image fusion. The fusion
network primarily consists of three components: the IR-Encoder,
VI-Encoder, and F-Decoder. Each of the IR-Encoder, VI-Encoder,
and F-Decoder is composed of three feature extraction layers. Each
layer is constructed by stacking a convolutional layer (kernel size
= 3× 3, stride = 1), a Batch Normalization layer, and a LeakyReLU
activation function. It is worth noting that the LeakyReLU activation
function in the final feature extraction layer of the F-Decoder
is replaced with a Tanh activation function to facilitate image
reconstruction. We input the infrared image Ii and the visible image
Iv into the IR-Encoder and VI-Encoder, respectively, to extract
features F i and Fv. To reconstruct the fused image, we concatenate
F i and Fv along the channel dimension and feed the result into the
F-Decoder, which generates the final fused image I f .

To encourage the fused image to retain as much scene
information from the source images as possible, we introduce an
intensity loss ℓin and an edge loss ℓed, which together form the fusion
loss ℓ f :

ℓ f = ℓin + εℓed, (1)

Here, ε denotes a hyperparameter used to balance the contribution
of each sub-loss term. The intensity loss ℓin is defined as:

ℓin =
1

HW
(‖I f − I i‖1 + ‖I f − Iv‖1) , (2)

The edge loss ℓed is defined as:

ℓed =
1

HW
(‖∇I f −∇I i‖1 + ‖∇I f −∇Iv‖1) , (3)
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FIGURE 3
Visualized images of text examples of LLaVA answers.

FIGURE 4
Text-driven feature harmonization module.

Here, H and W denote the height and width of the fused image,
respectively; ‖⋅‖1 represents the l1-norm, and ∇ denotes the Sobel
edge extraction operator.

3.3 Text-driven feature harmonization

In the second training stage, we freeze the parameters of the
pretrained fusion network and focus on training the Text-DFH
module to ensure that the fusion results meet the requirements
of the pedestrian detection task. Text-DFH refines the features

output by the IR/VI-Encoders in the fusion network based on the
responses from the multimodal large language model, enabling
the fused image to better align with the needs of pedestrian
detection.As shown in Figure 4, Text-DFHmainly consists of a dual-
branch Cross Attention (CA) module and three feature extraction
layers.The dual-branch cross attention computes the cross-attention
between the features extracted by the IR/VI-Encoders and the
textual features, allowing the model to extract useful information
from the text that can help improve pedestrian detection accuracy.
Subsequently, the three feature extraction layers integrate this textual
information with the image scene features to generate refined
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FIGURE 5
Visual comparison with SOTA methods. The top two rows, middle two rows, and bottom two rows of images are from the LLVIP, M3FD, and MSRS
datasets, respectively. The first and second columns show the infrared and visible source images, while the third to ninth columns display the fusion
results produced by the compared methods.

features.The structure of theCAmodule is similar to theMulti-Scale
Attention (MSA) module used in DATFuse.

We input the infrared image I i and visible image Iv into
the pretrained fusion network with frozen parameters to obtain
the fused image I f . To obtain effective textual feedback that
helps ensure the fused image meets the requirements of the
pedestrian detection task, we input both I f and the text prompt
“To improve the accuracy of pedestrian detection, how can the
quality of this image be enhanced?” into LLaVA, resulting in the
textual feature T . We then input the outputs F i/v from the IR/VI-
Encoders and the textual feature T into Text-DFH to harmonize the
information in F i/v. To comprehensively extract the task-relevant
information from the textual features, we design a dual-branch
processing strategy. In the first branch, we take F i/v as the Query
(Q) and T as the Key (K) and Value (V) for cross-attention
computation:

F1
i/v = softmax(

Q1
i/v(K

1
i/v)

T

√d1

)V1
i/v, (4)

Here, F1
i/v represents the features injected with textual information

in the first branch, d1 denotes the dimensionality of Q1
i/v, Q

1
i/v =

WQ,1
i/v F i/v, K1

i/v =W
K,1
i/v T , V1

i/v =W
V,1
i/v T . In the second branch, we

use T as the Query (Q) and F i/v as the Key (K) and Value (V)
for cross-attention computation:

F2
i/v = softmax(

Q2
i/v(K

2
i/v)

T

√d2

)V2
i/v, (5)

Here, F2
i/v represents the features injected with textual information

in the second branch, d2 denotes the dimensionality of Q2
i/v, and

Q2
i/v =W

Q,2
i/v T ,K2

i/v =W
K,2
i/v F i/v,V

2
i/v =W

V,2
i/v F i/v. To comprehensively
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TABLE 1 Quantitative results on the LLVIP dataset. The best and
second-best values for each evaluation metric are highlighted in red and
blue, respectively.

Methods QAB/F↑ QCV↓ QSSIM↑ QAG↑ QSCD↑

AUIF 0.3869 610.74 1.2016 3.5256 1.3413

DATFuse 0.4548 453.42 1.3130 3.1243 1.3351

IVFWSR 0.2925 512.77 1.2348 2.5252 1.1235

LRRNet 0.4426 534.89 1.3022 2.4625 0.9999

MLFusion 0.3239 523.41 1.2624 2.1613 0.9966

TIMFusion 0.2325 845.75 1.1742 2.1761 0.5368

SwinFusion 0.4266 598.53 1.2743 2.6346 1.3527

TextIF 0.5235 356.35 1.3056 3.4856 1.4527

Ours 0.5845 287.43 1.3441 3.9867 1.5462

TABLE 2 Quantitative results on the M3FD dataset. The best and
second-best values for each evaluation metric are highlighted in red and
blue, respectively.

Methods QAB/F↑ QCV↓ QSSIM↑ QAG↑ QSCD↑

AUIF 0.5425 852.56 1.3003 6.6735 1.5353

DATFuse 0.4854 563.57 1.3067 4.8326 1.3461

IVFWSR 0.4532 722.22 1.2735 3.5628 1.2452

LRRNet 0.5164 579.55 1.3735 4.5624 1.3461

MLFusion 0.4253 689.44 1.2835 4.4527 1.2687

TIMFusion 0.5352 616.16 1.2872 4.3336 1.2004

SwinFusion 0.5537 588.24 1.3086 6.0463 1.3456

TextIF 0.5423 534.21 1.2986 6.4026 1.5035

Ours 0.5856 454.45 1.3095 6.4561 1.6187

aggregate the textual information, we concatenate F1
i/v and F2

i/v
along the channel dimension and feed the result into three feature
extraction layers to obtain the harmonized features F̂ i/v. We then
concatenate F̂ i and F̂v along the channel dimension and input the
result into the F-Decoder to reconstruct the refined fused image I′ f .

To ensure that the refined fused image I′ f meets the
requirements of the pedestrian detection task, we introduce a
pretrained pedestrian detection network with frozen parameters to
supervise the fused image. We input I′ f into the detection network
and obtain the pedestrian detection result ŷ. To make ŷ as close as
possible to its ground truth ygt, we constrain the Text-DFH module
using the loss function ℓpd, which is the same as the one used during
the training of YOLOv5.

TABLE 3 Quantitative results on the MSRS dataset. The best and
second-best values for each evaluation metric are highlighted in red and
blue, respectively.

Methods QAB/F↑ QCV↓ QSSIM↑ QAG↑ QSCD↑

AUIF 0.1736 799.97 0.9853 1.8844 1.1963

DATFuse 0.6326 416.67 1.2421 3.5481 1.5641

IVFWSR 0.3464 734.46 1.3462 2.1129 1.3581

LRRNet 0.4263 666.35 1.2952 2.5632 1.0854

MLFusion 0.2656 745.57 1.3457 2.6531 1.2053

TIMFusion 0.3346 1032.24 1.1003 2.6422 1.1783

SwinFusion 0.4527 439.46 1.3163 3.0042 1.4828

TextIF 0.6125 400.34 1.3357 3.6426 1.5457

Ours 0.6365 334.23 1.3537 3.5474 1.6854

4 Experiments

4.1 Datasets

Theproposedmethod consists of two training stages. In both the
first and second training stages, we train the fusion network and the
text-driven feature harmonization module on the publicly available
LLVIP dataset [67], respectively, in accordance with standard
practices in the field [68–70]. Specifically, we randomly select 2,000
pairs of infrared and visible images from the LLVIP dataset as
the training set. To enhance the diversity of training samples, we
apply random flipping, random rotation, and random cropping
as data augmentation techniques. For evaluation, we randomly
select 200 pairs of infrared and visible images from each of the
LLVIP, M3FD [71], and MSRS [3] datasets to form the test set,
in order to assess both the fusion performance and pedestrian
detection performance of the proposed method. Among them,
LLVIP, M3FD, and MSRS are used to evaluate fusion performance,
while LLVIP is specifically used to evaluate pedestrian detection
performance.

4.2 Implementation details

The proposed method involves two training stages. In the
first stage, the fusion network is trained. In the second stage,
the parameters of the fusion network are frozen, and the text-
driven feature harmonization module is trained. Both training
stages use the Adam optimizer to update the network parameters,
with a batch size of 16 and a learning rate of 1× 10−3. The
total number of training epochs is set to 100 for the first stage
and 200 for the second stage. In addition, the hyperparameter
ε is set to 0.2. The proposed method is implemented based
on the PyTorch framework and is trained on a single NVIDIA
RTX A6000 GPU.
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FIGURE 6
Qualitative comparison of pedestrian detection performance with “retraining methods.” The first and second columns show the infrared and visible
source images, while the third to ninth columns display the pedestrian detection results of the compared methods.

TABLE 4 Quantitative comparison of pedestrian detection performance
with “retraining methods.” The best and second-best values for each
evaluation metric are highlighted in red and blue, respectively.

Methods mAP50↑ mAP75↑ mAP50→95↑

AUIF 98.2 91.8 74.4

DATFuse 99.0 91.5 74.3

IVFWSR 97.2 89.6 72.9

LRRNet 98.0 90.8 73.8

MLFusion 97.8 89.9 73.6

TIMFusion 97.9 88.4 74.0

SwinFusion 98.5 90.4 74.3

TextIF 98.9 91.7 74.6

Ours 99.1 92.8 75.0

4.3 Evaluation metrics

We adopt five commonly used objective evaluation metrics
to quantitatively assess the fusion performance of the proposed
method. These metrics include Edge Preservation Index (QAB/F)
[72, 73], Chen-Varshney Index (QCV) [74], Structural Similarity
Index (QSSIM) [75], Average Gradient (QAG) [76], and Sum of
Correlations of Differences (QSCD) [77]. QAB/F measures how well
edge information from the source images is preserved in the fused
image. QAB/F higher value indicates less loss of texture details in
the fused image. QCV evaluates fusion quality from the perspective
of human visual perception; a lower value means the fused image
aligns better with human visual preferences. QSSIM quantifies the
similarity between the fused image and the source images in terms
of luminance, contrast, and structure. A higher value indicates
less information difference between the fused and source images.
QAG measures the richness of gradient information in the fused
image. A higher valuemeans the fused image containsmore detailed
gradient content. QSCD assesses information loss during the fusion
process by computing difference maps between the fused image
and source images. A higher value indicates less distortion in
the fused image. Among these, QAB/F, QSSIM, QAG and QSCD are

positive indicators, meaning a higher value indicates better fusion
performance. QCV is a negative indicator, meaning a lower value
represents better fusion performance. In addition, to objectively
evaluate the effectiveness of the fused images in the pedestrian
detection task, we adopt three widely used metrics in the pedestrian
detection domain for quantitative analysis: Mean Average Precision
(mAP) at IoU threshold of 0.5 (mAP50), mAP at IoU threshold of
0.75 (mAP75), and the averaged mAP at IoU threshold from 0.5 to
0.95 (mAP50→95).

4.4 Comparison with state-of-the-art
methods

In this study, we conduct a series of qualitative and quantitative
comparisons between the proposed method and eight state-of-
the-art (SOTA) methods to verify its superiority in both fusion
performance and pedestrian detection performance.Thesemethods
include AUIF [78], DATFuse [49], IVFWSR [79], LRRNet [80],
MLFusion [81], TIMFusion [82], SwinFusion [16], and TextIF [29].
The comparative experiments are divided into two distinct groups:
In the first group, we compare the fusion performance of our
method with that of the SOTA methods. In the second group, we
freeze the fusion networks of the compared methods and retrain
their pedestrian detection networks using the corresponding fused
results. The retrained detection networks are then used to perform
pedestrian detection on the fused images. This setup is designed
to demonstrate that our proposed method can achieve strong
pedestrian detection performance without requiring retraining of
the detection network.

4.4.1 Fusion performance comparison
We conduct both quantitative and qualitative comparisons of

the proposed method against AUIF, DATFuse, IVFWSR, LRRNet,
MLFusion, TIMFusion, SwinFusion, and TextIF on the LLVIP,
M3FD, and MSRS datasets to validate the superiority of our
method in terms of fusion performance. As shown in the enlarged
regions of Figure 5, our method effectively highlights the thermal
radiation information from the infrared image while preserving
fine texture details from the visible image. Compared to existing
SOTA methods, the fused images produced by our method exhibit
clearer local details as well as higher overall brightness and contrast
at the global level. This not only improves visual quality but
also facilitates better object recognition in downstream tasks. This
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FIGURE 7
Qualitative analysis results on the medical image fusion task.

TABLE 5 Quantitative Analysis Results on the Medical Image Fusion Task.
The best and second-best values for each evaluation metric are
highlighted in red and blue, respectively.

Methods QAB/F↑ QCV↓ QSSIM↑ QAG↑ QSCD↑

ALMFnet 0.4700 1330.59 1.3432 3.5826 1.2991

EMMA 0.4682 1288.99 1.3232 3.1826 1.2999

RMR-Fusion 0.4419 1344.12 1.2967 3.2621 1.3781

Ours 0.4792 1203.12 1.3631 3.7521 1.3629

advantage is also reflected in the quantitative evaluation results,
as shown in Tables 1–3. Specifically, our method achieves the
lowest values in metric QCV, and ranks first in both metrics QAB/F
and QAG, indicating that the fused images contain richer edge
information and are more consistent with human visual perception.
In summary, both qualitative and quantitative results demonstrate
that our proposed method offers significant improvements in fusion
performance over the compared methods.

4.4.2 Pedestrian detection performance
comparison

A common practice to improve the performance of fusion
networks in downstream tasks is to freeze the parameters of the
fusion network and retrain the downstream task network based
on the generated fused results. Such approaches are referred to as
“retraining methods.” To evaluate the effectiveness of our proposed
method in pedestrian detection, we perform both quantitative and
qualitative comparisons against these retrainingmethods. As shown
in Figure 6, the pedestrian detection results of other methods often
suffer from issues such as bounding boxes that fail to fully cover the
pedestrians’ bodies, or boxes that include large amounts of irrelevant
background, indicating insufficient detection accuracy. In contrast,
the detection results produced by our method show significantly
fewer irrelevant regions within the bounding boxes and more

accurate box placement.This advantage is also clearly reflected in the
quantitative results, as shown in Table 4. Our method achieves the
highest scores in metrics mAP50, mAP75, and mAP50→95, indicating
superior performance in the pedestrian detection task compared to
the other methods. In conclusion, our method demonstrates better
performance than approaches that require retraining the pedestrian
detection network, even without retraining. This highlights
the effectiveness and advantage of our method in pedestrian
detection tasks.

4.4.3 Analysis of application potential in medical
image fusion

Furthermore, to validate the effectiveness and application
potential of the proposed method in the field of nuclear medical
imaging, we further deployed it in a medical image fusion
task. Specifically, we conducted experiments on the BraTS2020
[83] dataset and performed both qualitative and quantitative
analyses of the fusion results. As shown in Figure 7, compared
with state-of-the-art methods such as ALMFnet [84, 85], and
RMR-Fusion [86], the proposed method preserves more texture
details and salient information in the fused medical images. As
reported in Table 5, our method ranks first or second across
most evaluation metrics. These results demonstrate the promising
potential of the proposed method for applications in nuclear
medical imaging.

4.5 Ablation study

The proposed method mainly consists of two core components:
the Multimodal Large Language Model (MLLM) and the Text-
Driven Feature Harmonization (Text-DFH) module. Within Text-
DFH, both the text-guided cross-attention and the image-guided
cross-attention play key roles. To validate the effectiveness of these
components, we conduct a series of ablation experiments on the
LLVIP dataset.
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FIGURE 8
Qualitative comparison of fusion performance across different ablation models. The first and second columns show the infrared and visible source
images, while the third to seventh columns display the fusion results obtained under different ablation settings.

TABLE 6 Quantitative comparison of fusion performance across
different ablation models. The best and second-best values for each
evaluation metric are highlighted in red and blue, respectively.

Methods QAB/F↑ QCV↓ QSSIM↑ QAG↑ QSCD↑

w/o MLLM 0.5472 298.75 1.3244 3.6433 1.5367

w/o Text-DFH 0.5763 299.46 1.3321 3.4131 1.4992

w/o CA1 0.5834 305.92 1.3234 3.6362 1.5213

w/o CA2 0.5798 301.68 1.3401 3.6524 1.5123

Ours 0.5845 287.43 1.3441 3.9867 1.5462

4.5.1 Effectiveness of the multimodal large
language model

We utilize theMLLM to analyze the fused images based on user-
provided questions related to pedestrian detection performance
and generate suggestions for improving image quality. To assess
the contribution of the MLLM, we remove it and replace its
feedback with a fixed text prompt: “Brighter brightness, higher
contrast, and clearer texture details.” As shown in Figure 8, the
fusion results from the ablation model without the MLLM are
noticeably inferior in visual quality compared to the full model. To
further validate this, we perform quantitative analysis as presented
in Table 6. The results show that the full model outperforms
the ablation model on all evaluation metrics. Additionally, we
analyze the performance of pedestrian detection, as shown in
Table 7 and Figure 9. Both the quantitative and qualitative results
indicate that the fused images produced by the ablation model

TABLE 7 Quantitative comparison of pedestrian detection performance
across different ablation models. The best and second-best values for
each evaluation metric are highlighted in red and blue, respectively.

Methods mAP50↑ mAP75↑ mAP50→95↑

w/o MLLM 98.5 91.6 73.9

w/o Text-DFH 98.8 92.1 74.0

w/o CA1 99.0 92.4 74.5

w/o CA2 98.9 91.8 74.4

Ours 99.1 92.8 75.0

without the MLLM lead to poorer detection performance. In
contrast, the full model achieves better pedestrian detection results.
In summary, both qualitative and quantitative analyses confirm
the effectiveness of the Multimodal Large Language Model in
our method.

4.5.2 Effectiveness of Text-DFH
Text-DFH refines the output features of the fusion network

based on suggestions from the multimodal large language model,
enabling the fused image to better meet the requirements of
the pedestrian detection task. To verify the effectiveness of
Text-DFH, we remove it from the architecture and instead
concatenate the text features with the image features to be
refined along the channel dimension. The combined features
are then processed by CNNs to obtain the refined output. We
conduct both quantitative and qualitative analyses of the fusion
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FIGURE 9
Qualitative comparison of pedestrian detection performance across different ablation models. The first and second columns show the infrared and
visible source images, while the third to seventh columns display the pedestrian detection results under different ablation settings.

performance of the model without Text-DFH, as shown in
Table 6 and Figure 8. As observed, the ablation model without
Text-DFH performs worse than the full model across multiple
evaluation metrics, and the visual quality of the fused images
is also inferior. In addition, we evaluate pedestrian detection
performance both quantitatively and qualitatively, as presented
in Table 7 and Figure 9. The full model achieves higher scores
compared to the ablation model without Text-DFH. In summary,
a series of experiments clearly demonstrate the effectiveness of the
Text-DFH module.

4.5.3 Effectiveness of dual-branch cross
attention

In the Text-DFH module, we refine image features using text
features through a dual-branch cross attention mechanism. To
verify its effectiveness, we remove the cross attention from each
branch individually, leaving only a single branch to refine the
image features. These variants are referred to as CA1 and CA2,
respectively. From the quantitative and qualitative results on fusion
performance, it is evident that removing either branch of the cross
attention leads to a significant drop in performance, as shown in
Table 6 and Figure 8. Furthermore, to assess the impact of dual-
branch cross attention on pedestrian detection performance, we
conduct both quantitative and qualitative analyses. The results
demonstrate that pedestrian detection performance is optimal only
when both branches of the cross attention are used to refine the
image features, as shown in Table 7 and Figure 9. In conclusion,
the above experiments confirm the effectiveness of the dual-branch
cross attention mechanism.

5 Conclusion

To address the limitation of existing methods that primarily
focus on improving fused image quality through network
design—while overlooking the potential benefits of enhanced image
quality for pedestrian detection—we propose a multimodal large
language model (MLLM)-driven infrared and visible image fusion
method. This method not only aims to improve the quality of the
fused images but also emphasizes enhancing their performance

in pedestrian detection tasks. By leveraging a multimodal large
language model, we analyze the fused images based on user-
provided questions related to improving pedestrian detection
performance and generate suggestions for enhancing image quality.
To fully utilize the guidance provided by the MLLM, we design a
Text-Driven Feature Harmonization (Text-DFH) module, which
refines the features output by the fusion network according to
the textual suggestions. This ensures improved fusion quality
while maintaining strong performance in pedestrian detection.
In addition, the proposed method also demonstrates significant
application potential in the field of nuclear medical imaging.
However, under extreme weather conditions such as rain, fog, and
snow, the fusion performance of the current method may degrade.
Moreover, when such methods are applied to other types of source
images [87–90], their performance may degrade. In future work, we
plan to extend this research to develop an infrared and visible image
fusion framework tailored for extreme weather scenarios, striving to
maintain robust downstream task performance even in challenging
environments.
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