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Target-aware unregistered
infrared and visible image fusion

Dengshu Hu, Ke Wang, Cuijin Zhang, Zheng Liu*, Yukui Che,
Shoubing Dong and Chuirui Kong

Qujing Power Supply Bureau, Yunnan Power Grid Co., Ltd., Qujing, China

Introduction: Infrared (IR) and visible (VI) image fusion can provide richer texture
details for subsequent object detection tasks. Conversely, object detection can
offer semantic information about targets, which in turn helps improve the quality
of the fused images. As a result, joint learning approaches that integrate infrared-
visible image fusion and object detection have attracted increasing attention.

Methods: However, existing methods typically assume that the input source
images are perfectly aligned spatially—an assumption that does not hold in
real-world applications. To address this issue, we propose a novel method that
enables mutual enhancement between infrared-visible image fusion and object
detection, specifically designed to handle misaligned source images. The core
idea is to use the object detection loss, propagated via backpropagation, to
guide the training of the fusion network, while a specially designed loss function
mitigates the modality gap between infrared and visible images.

Results: Comprehensive experiments on three public datasets demonstrate the
effectiveness of our approach.

Discussion: In addition, our approach can be used with other radiation
frequencies where different modalities require image fusion like, for example,
radio-frequency, x- and gamma rays used in medical imaging.

KEYWORDS

infrared and visible image fusion, object detection, feature alignment, target-aware,
unregistered

1 Introduction

Images captured by a single sensor often fail to provide a comprehensive description
of a scene. For example, infrared (IR) sensors can capture thermal radiation emitted by
objects and highlight salient targets, but they lack the ability to represent fine texture
details and are more susceptible to noise. On the other hand, visible-light (VI) sensors
capture visual information with clear texture details but are easily affected by lighting
conditions and occlusions. If the information from both infrared and visible images can
be integrated into a single, information-rich fused image, the scene representation can be
significantly enhanced. As a result, infrared and visible image fusion has beenwidely applied
as a low-level preprocessing task in various high-level vision applications, such as object
detection [1], tracking [2], person re-identification [3], and semantic segmentation [4]. An
example in Figure 1 visually illustrates the application of fused images in object detection.
It can be observed that detection results obtained from individual sensor images are less
accurate than those derived from fused images.

Due to its practical value, infrared and visible image fusion has garnered substantial
attention in the research community. Over the past decades, numerous image fusion
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FIGURE 1
Object detection results of the proposed method on the M3FD dataset.

techniques have been proposed, including both traditional and
deep learning-based methods. Traditional methods typically fall
into two categories: multi-scale transform-basedmethods [5–7] and
sparse representation-based methods [8–12]. Deep learning-based
approaches include methods based on autoencoders (AE) [9, 13,
14], convolutional neural networks (CNNs) [15–18], and generative
adversarial networks (GANs) [19, 20].

Although recent deep learning-based fusion algorithms can
generate visually pleasing results, several critical challenges remain
unsolved. On one hand, most existing fusion algorithms focus on
optimizing visual quality and evaluationmetrics, but rarely consider
whether the fused results benefit downstream task performance.
On the other hand, even recent methods that incorporate high-
level vision tasks into the fusion process—such as TarDAL [21],
which proposes a dual-level optimization model using a task-aware
dual adversarial learning network to simultaneously address fusion
and object detection; SeAFusion [22], which constrains the fusion
process with semantic loss to retain richer semantic information;
and DetFusion [23], which guides multimodal fusion using target-
related features learned by the object detection network—still
assume that the source images are perfectly aligned spatially. This
assumption does not hold in real-world applications.

In this study, we propose a framework named Target-Aware
Unregistered Infrared and Visible Image Fusion Network, designed
to achieve robust performance in both misaligned image fusion
and high-level vision tasks. Specifically, we introduce an object
detection network to predict detection results on the fused image
and construct a detection loss. This loss is then backpropagated to
guide the training of the fusion network, encouraging the fused
image to retain more information useful for object detection.
Additionally, to effectively align unregistered images, we design

a modality consistency loss to reduce the domain gap between
infrared and visible images.

In summary, our main contributions are as follows:

(1) We are the first to unify unregistered image fusion and
object detection within a single framework, breaking
the limitations of object detection in real-world
applications.

(2) We propose a modality consistency loss that
effectively eliminates the domain discrepancy between
infrared and visible images, improving image
registration accuracy.

(3) Our method demonstrates excellent performance in
image alignment, fusion, and object detection across
multiple datasets. And our method can be used with
other radiation frequencies where different modalities
require image fusion like, for example, radio-frequency,
x- and gamma rays used in medical imaging.

The rest of this paper is organized as follows. Section 2 briefly
reviews related work on high-level vision task-driven image fusion
and unregistered infrared-visible image fusion. Section 3 describes
the proposed method in detail. Section 4 presents and discusses the
experimental results. Section 5 concludes the paper.

2 Related work

In this section, we first provide a brief overview of high-level
vision task-driven infrared and visible image fusion methods, and
then review existing approaches for unregistered infrared and visible
image fusion.
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FIGURE 2
Overall framework of the proposed method. We use IR/VI-CFE and IR/VI-SFE to extract common and specific features from the infrared and visible
images, respectively. To obtain the deformation field for spatial correction, the infrared/visible common features are fed into the registration module to
predict the deformation field. This deformation field is then applied to the infrared common/specific features to correct spatial deformation. The
corrected infrared features are concatenated with the visible features and then fed into the image reconstruction head and the object detection head,
respectively, to generate the fused image and the object detection result.

FIGURE 3
Structure of the registration network. The registration network mainly consists of the Channel and Spatial Enhancement Block (CSEB) and the
Multi-Scale Registration Block (MSRB).
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FIGURE 4
Qualitative comparison of fusion results between the Registration + Fusion + Object Detection methods and the proposed method. The first two
columns show the unaligned source images as input. The grid in the first column illustrates the deformation present in the image. Columns 3 to 7
present the fusion results obtained by different methods.

TABLE 1 Quantitative comparison of fusion results between the Registration + Fusion + Object Detection methods and the proposed method.

Methods QCC↑ QAB/F↑ QCV↓ QSSIM↑

DATFuse 0.8303 0.3246 1425.2631 1.2189

TarDAL 0.8317 0.3313 1396.1484 1.2205

YDTR 0.8246 0.3179 1383.2556 1.2133

EMMA 0.8255 0.3341 1399.4075 1.2236

Ours 0.8325 0.3420 1375.5238 1.2271

Bolded values indicate the best performance.

2.1 High-level vision task-driven infrared
and visible image fusion

High-level vision task-driven fusion methods typically
incorporate a semantic segmentation [24–27] or object detection
network [23, 28] after the fusion network, using the loss functions
from these downstream tasks to constrain the fusion results and
improve the quality of the fused image. However, introducing high-
level vision tasks at the fused image level only provides indirect
guidance for the feature extraction network to learn features relevant
to the downstream tasks.

To provide direct task-level guidance at the feature level and
further enhance fusion performance, PSFusion [29] injects semantic
features extracted from a segmentation task directly into the fusion
network. SegMiF [25] feeds the fused result into a semantic
segmentation network to extract semantic features, which are then
interacted with the multimodal image features from the encoder to
enhance the fusion result. MRFS [26] interacts and fuses the source
image features before feeding them into a semantic segmentation
head to enforce semantic supervision, thereby improving the global
scene perception of the fusion network. MetaFusion [28] sends the
fused result into an object detection network to extract features,

which are then combined with the source image features and passed
into a meta-feature generator to guide feature extraction in the
fusion branch.

Although these methods improve fusion performance to some
extent by leveraging downstream high-level tasks, they all assume
that the input images are perfectly aligned in spatial position—a
condition rarely met in real-world applications. In practice, such
methods rely on additional image registration algorithms to achieve
accurate alignment before performing fusion. This not only makes
the fusion quality highly dependent on the registration accuracy
but also significantly increases the complexity of the overall
network design.

2.2 Unregistered infrared and visible image
fusion

To address the problem of unregistered infrared and visible
image fusion, most existing approaches combine registration and
fusion algorithms, i.e., first aligning the inputmisaligned image pairs
and then performing fusion. However, due to the large modality
gap between infrared and visible images, ignoring the adverse
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FIGURE 5
Qualitative comparison of fusion results between the Joint Registration and Fusion + Object Detection methods and the proposed method. The first
two columns show the unaligned source images as input. The grid in the first column illustrates the deformation in the image. Columns 3 to 7 display
the fusion results produced by different methods.

TABLE 2 Quantitative comparison of fusion results between the Joint Registration and Fusion + Object Detection methods and the proposed method.

Methods QCC↑ QAB/F↑ QCV↓ QSSIM↑

IMF 0.8221 0.3119 1477.6932 1.2058

IVFWSR 0.8269 0.3208 1586.8251 1.2115

MURF 0.8315 0.3254 1456.3259 1.2140

SuperFusion 0.8320 0.3396 1399.4521 1.2207

Ours 0.8325 0.3420 1375.5238 1.2271

Bolded values indicate the best performance.

FIGURE 6
Visualization of object detection results using different fusion methods on the M3FD dataset.
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TABLE 3 Quantitative object detection results of different fusion
methods on the M3FD dataset.

Methods mAP50→90↑

DATFuse 53.10

TarDAL 53.20

YDTR 53.80

EMMA 54.20

IMF 52.40

IVFWSR 52.60

MURF 52.20

SuperFusion 53.80

Ours 54.50

Bolded values indicate the best performance.

impact of modality discrepancy on registration can greatly degrade
fusion quality. For instance, ReCoNet [30] adopts this strategy but
produces suboptimal fusion results due to this issue. UMF-CMGR
[31] and IMF [32] consider the effect of modality differences on
registration results. They propose to convert visible images into
pseudo-infrared images via an image generation network and then
performmono-modal registration between the pseudo-infrared and
misaligned infrared images. However, the quality of the generated
image has a direct impact on the final performance of these
methods. Moreover, these methods treat registration and fusion
as two independent tasks, failing to establish a unified framework
where both tasks can benefit each other.

To address this, RFNet [33] and MURF [34] treat image fusion
as a downstream task of registration and improve registration
performance by enhancing the sparsity of the gradient in the
fused result. However, to tackle the modality discrepancy issue
during registration, both methods aim to transform the multimodal
registration into a mono-modal one. Specifically, RFNet uses an
image generation model to produce a pseudo-image with the
same modality as the misaligned one before performing mono-
modal registration, while MURF leverages contrastive learning
to extract modality-invariant features from the input image pair
for registration. Similarly, Super-Fusion [35] extracts modality-
invariant features using shared-parameter encoders and consistency
constraints on the fused result for registration.

Nevertheless, the information carried by modality-invariant
features in infrared-visible pairs is often far less rich than the
complementary information present in the image pair. As a result,
it is difficult to achieve satisfactory cross-modal registration using
only modality-invariant features. In addition, the above methods
all follow a two-stage approach (registration + fusion). This two-
stage strategy greatly limits deployment in practical applications due
to computational constraints. Although RFVIF [36], IVFWSR [37]
and MulFS-CAP [38] attempt to achieve registration and fusion
within a single-stage framework, the types of deformations they
can handle remain limited. Unlike the methods mentioned above,

our approach considers multiple challenges simultaneously: the
impact of modality discrepancy on cross-modal registration, the
deployment limitations of two-stage processing, and the feature
requirements of downstream high-level vision tasks for both
registration and fusion.

3 Methods

3.1 Overview

As shown in Figure 2, the proposed method consists of three
core components: feature extraction, feature alignment and fusion,
and dual-task reconstruction. The feature extraction component is
designed to obtain both modality-specific and modality-common
features from the source images. The feature alignment and fusion
component is used to predict a deformation field, which is then
used to spatially align the infrared-specific and common features.
These aligned features are then fused with the corresponding
visible image’s specific and common features. In the dual-task
reconstruction stage, the fused features are fed into the object
detection head and the image reconstruction head, respectively, to
generate both the object detection result map and the fused image.

3.2 Feature extraction

The main objective of feature extraction is to extract both the
common and specific features of infrared and visible images, in
order to facilitate subsequent cross-modal registration and feature
fusion.This process consists of fourmodules: the IR-Specific Feature
Extraction (IR-SFE) module, the VI-Specific Feature Extraction
(VI-SFE) module, the IR-Common Feature Extraction (IR-CFE)
module, and theVI-Common Feature Extraction (VI-CFE)module.
Among them, the IR/VI-SFE modules are used to extract modality-
specific features from the infrared/visible images, while the IR/VI-
CFE modules are used to extract their common features. Assume
that each sample in the training dataset contains three images: a
pixel-wise strictly aligned infrared image I i, a visible image Iv, and a
deformed infrared image Idi . We feed I i and Idi into the IR-CFE and
IR-SFE, respectively, to obtain the infrared common feature F i, the
deformed infrared common feature Fd

i , the infrared specific feature
F̂ i, and the deformed infrared specific feature F̂d

i . At the same time,
we feed Iv into theVI-CFE andVI-SFE to obtain the visible common
feature Fv and the visible specific feature F̂v.

In the cross-modal registration process, it is usually necessary
to rely on the common information between cross-modal images
to establish pixel-wise correspondences. To reduce the modality
gap between infrared and visible images and thus establish more
accurate pixel-wise correspondences, we introduce a modality
consistency loss ℓc:

ℓc =
1

HWC
‖F i − Fv‖1, (1)

Here, H, W, and C denote the height, width, and number of
channels of the feature maps, respectively, and ‖⋅‖1 represents the
l1-norm. In addition, considering that the goal of image fusion
is to integrate as much complementary information as possible
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FIGURE 7
Ablation study of the core designs.

TABLE 4 Quantitative results of the ablation study on the core designs.

Methods QCC↑ QAB/F↑ QCV↓ QSSIM↑

w/o ℓc 0.8304 0.3469 1339.9062 1.2204

w/o ℓs 0.8313 0.3439 1336.8814 1.2256

w/o Concat Fri and Fv 0.8274 0.3451 1369.4537 1.2114

Ours 0.8325 0.3420 1375.5238 1.2271

Bolded values indicate the best performance.

from cross-modal source images into a single image, we introduce
the modality complementary information loss ℓs to further enrich
the complementary information from the source images in the
fused image:

ℓs = −
1

HWC
‖F̂ i − F̂v‖1. (2)

3.3 Feature alignment and fusion

Feature alignment corrects the deformation in infrared features
by predicting a deformation field, thereby achieving spatial
alignment between infrared and visible features. This process is
mainly implemented by the registration network. Subsequently, the

aligned infrared features are fused with the visible features to obtain
the fused features. As shown in Figure 3, the registration network
is composed of a Channel and Spatial Enhancement Block (CSEB)
and a Multi-Scale Registration Block (MSRB). The CSEB is mainly
used to enhance the information beneficial to registration at both
the channel and spatial levels, thereby improving the accuracy of
the predicted deformation field. The CSEB consists of six feature
extraction layers and a Global Average Pooling (GAP) layer. Each
feature extraction layer is composed of a convolutional layer with
a kernel size of 3× 3, stride 1, followed by Batch Normalization
(BatchNorm) and a LeakyReLU activation function. The MSRB
is used to predict the deformation field to correct the deformed
infrared features and ensure spatial alignment between the infrared
and visible features. The MSRB adopts a U-Net-like architecture.
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TABLE 5 Quantitative analysis results of the hyperparameter study.

γ λ1 λ2 λ3 QCC↑ QAB/F↑ QCV↓ QSSIM↑

2 10 5 1 0.8235 0.3352 1450.3498 1.2222

2 10 5 10 0.8198 0.3389 1683.8772 1.2195

2 10 1 5 0.8123 0.3321 1502.6641 1.2088

2 10 10 5 0.8260 0.3334 1465.2293 1.2247

2 1 5 5 0.8011 0.3195 1450.3288 1.1954

2 20 5 5 0.8059 0.3248 1529.1245 1.1996

1 10 5 5 0.8144 0.3340 1499.3888 1.2111

5 10 5 5 0.8080 0.3302 1775.1124 1.2020

2 10 5 5 0.8325 0.3420 1375.5238 1.2271

Bolded values indicate the best performance.

TABLE 6 Computational efficiency comparison of four SOTA Joint Registration and Fusion methods, the value is tested on GPU.

Methods FLOPs(G) Size(M) Time(s)

IMF 1724.08 13.30 0.82

IVFWSR 859.43 14.09 0.33

MURF 120.72 1.76 1.18

SuperFusion 65.43 0.14 0.27

Ours 60.12 0.97 0.40

Bolded values indicate the best performance.

We input the deformed infrared common feature Fd
i and

the visible common feature Fv into two CSEBs with unshared
parameters, obtaining the enhanced features F̃d

i and F̃v, respectively.
Taking the enhancement process of Fv as an example, Fv is fed into
three feature extraction layers to generate the spatial enhancement
weights W s

v. To enhance registration-relevant information at the
spatial level, we perform element-wise multiplication between W s

v
and Fv:

Fs
v =W s

v ⊙ Fv, (3)

Here, Fs
v denotes the feature enhanced at the spatial level, and ⊙

represents the element-wise multiplication operation. We feed Fs
v

into three feature extraction layers and a global average pooling
(GAP) layer to obtain feature W c

v for channel-level enhancement.
Then, W c

v is element-wise multiplied with Fs
v to produce the

enhanced feature F̃v, which has been refined at both the spatial and
channel levels:

F̃v =Wc
v ⊙ Fsv, (4)

Similarly, we obtain the deformed infrared common feature F̃d
i

enhanced at both the spatial and channel levels. We concatenate
F̃d
i and F̃v along the channel dimension and feed the resulting

feature into the MSRB to predict the deformation field ϕ. To ensure
the accuracy of the predicted deformation field, we introduce a
registration loss ℓreg:

ℓreg =
1

2HW
‖ϕ−ϕgt‖1, (5)

Here, ϕgt is the label of ϕ.
We use ϕ to correct Fd

i and F̂d
i respectively, resulting in the

corrected infrared common feature Fr
i and infrared-specific feature

F̂r
i :

Fr
i = ϕ ◦ F

d
i ,

F̂r
i = ϕ ◦ F̂

d
i ,

(6)

Here, ◦ denotes the Warp operation, which resamples the deformed
feature maps based on ϕ to correct the deformations within them.
During the fusion process, to minimize information loss, we
concatenate Fr

i , F̂
r
i , Fv, and F̂v along the channel dimension to obtain

the fused feature F f :

F f = [F
r
i , F̂

r
i ,Fv, F̂v] , (7)

Here, [⋅] represents the operation of concatenation along the channel
dimension.
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FIGURE 8
Fusion results of our method on different scenarios.

FIGURE 9
Failure cases of our method on the real-world dataset CVC-14.
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FIGURE 10
Visual comparison on the BraTS2020 dataset.

TABLE 7 Quantitative analysis results on the BraTS2020 dataset.

Methods QCC↑ QAB/F↑ QCV↓ QSSIM↑

MATR 0.7889 0.2901 1345.4510 1.2299

ALMFnet 0.7749 0.2888 1606.5911 1.2155

EMMA 0.7906 0.2853 1568.7139 1.2220

BSAFus 0.7812 0.3001 1436.1287 1.2318

RMRFus 0.7784 0.2992 1409.9831 1.2007

Ours 0.7934 0.3063 1399.5234 1.2454

Bolded values indicate the best performance.
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3.4 Dual-task reconstruction

In the dual-task reconstruction, the fused feature is fed into
both the object detection head and the image reconstruction head
to respectively generate the object detection result map and the
fused image. The dual-task reconstruction primarily consists of
the object detection head and the image reconstruction head.
We adopt YOLOv5 [39] as the object detection head. The image
reconstruction head is composed of three feature extraction layers,
where the LeakyReLU activation function in the final layer is
replaced with a Tanh activation function. The fused feature F f
is input into both the object detection head and the image
reconstruction head to obtain the object detection result map ŷ
and the fused image I f , respectively. To ensure high-quality object
detection results, we introduce the object detection loss ℓob to
constrain the network:

ℓob = cyolov5 (y,ygt) , (8)

Here, cyolov5(⋅) refers to the loss function used during the training
of YOLOv5. In addition, to encourage the fused image to retain as
much shared and complementary information from both infrared
and visible images as possible, we introduce luminance loss ℓb and
gradient loss ℓg, and construct the fusion loss ℓ f accordingly:

ℓ f = ℓb + γℓg, (9)

Here, γ denotes the balancing hyperparameter. The gradient loss ℓg
is defined as:

ℓg =
1

HW
‖∇I f −max(∇I i,∇Iv)‖1, (10)

Here, ∇ denotes the Sobel operator. The luminance loss ℓb
is defined as:

ℓb =
1

HW
‖I f −max(I i, Iv)‖1. (11)

Finally, we define the total loss ℓt as follows:

ℓt = ℓc + ℓs + λ1ℓreg + λ2ℓ f + λ3ℓob, (12)

Here, λn(n = 1,2,3) denotes the balancing hyperparameter.

4 Experiments

4.1 Experimental setup

4.1.1 Datasets and implementation details
4.1.1.1 Datasets

Following standard experimental practices in the image fusion
field [40–43], we trained our model on 152 pairs of infrared and
visible images with a resolution of 512× 512 from the RoadScene Xu
et al. [44, 45] dataset. For testing, we used 18 pairs of images from
RoadScene and 17 pairs from M3FD [21]. The misaligned infrared
images were generated by randomly applying a combination of rigid
and non-rigid deformations to the originally well-aligned infrared
images. This type of mixed deformation is applied randomly to the
original aligned images in each epoch to augment the training data.

4.1.1.2 Implementation details
The proposed method was implemented using the PyTorch

framework and trained on a single NVIDIA GeForce RTX 3090
GPU. The model was trained for 150 epochs with a batch size of 8,
a learning rate of 1e-3, and the Adam optimizer was used to update
themodel parameters.The four hyperparameters in the loss function
were set to γ = 2, λ1 = 10, λ2 = 5,and λ3 = 5.

4.1.2 Evaluation metrics
We selected four commonly used image quality evaluation

metrics to objectively assess the quality of the fusion results,
including correlation coefficient (QCC) [46], gradient-based fusion
performance (QAB/F) [47], Chen-Varshney metric (QCV) [48],
and structural similarity (QSSIM) [49]. Metric QCC evaluates the
linear correlation between the fused image and the source images,
reflecting their similarity. Metric QAB/F assesses the amount of edge
information transferred from the source images to the fused image.
Metric QCV takes into account both edge information and human
visual perception. Metric QSSIM quantifies information loss and
distortion in the fused image by comparing it with the source images.
Among thesemetrics, a lower value of indicates better fusion quality,
while higher values of the othermetrics indicate better performance.
In addition, we adopted metric mAP50→90 [50] as the evaluation
metric for the object detection task, where a higher mAP50→90 value
indicates better detection performance.

4.2 Comparison with state-of-the-art
methods

In our experiments, we first compare the proposed method
with two categories of fusion approaches for unaligned infrared
and visible images based on their fusion results. We then compare
the subsequent object detection results obtained using these two
categories of methods. The first category involves registering the
images to be fused, followed by image fusion and then object
detection. We refer to this category as Registration + Fusion +
Object Detection. The second category performs joint training of
registration and fusion to directly handle unaligned images, followed
by object detection. We refer to this as Joint Registration and Fusion
+ Object Detection.

4.2.1 Comparison with registration + fusion +
object detection methods

For the Registration + Fusion + Object Detection methods, we
follow the standard processing pipeline used in prior work. We first
adopt the high-performing registration method CrossRAFT [51] to
align the images to be fused. Then, we apply four advanced infrared
and visible image fusion methods to the aligned results, including
DATFuse [52], TarDAL [21], YDTR [53], and EMMA [54]. Figure 4
shows the visual results of different methods. As seen from the
fusion results, our proposedmethod not only demonstrates stronger
capability in preserving structures and textures but also effectively
avoids distortions and artifacts caused by feature misalignment. In
addition, we performed objective evaluations of the results from
different methods. As shown in Table 1, our method achieves the
best performance across all four evaluation metrics.
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4.2.2 Comparison with joint registration and
fusion + object detection methods

In recent years, joint registration and fusion methods have
attracted significant attention. To demonstrate the superiority of our
approach over these methods, we compared its performance with
four joint registration and fusion methods: IMF, IVFWSR, MURF,
and SuperFusion. Figure 5 presents a qualitative comparison of the
fusion results produced by different methods. It can be observed
that our method exhibits clear advantages in terms of feature
alignment, contrast preservation, and detail retention. In addition,
we conducted quantitative experiments to visually compare the
performance differences. As shown in Table 2, our method achieves
the best performance across all four evaluation metrics.

4.2.3 Performance evaluation on infrared and
visible image object detection

We evaluated the object detection performance of the two
aforementioned categories of methods, as well as the proposed
method, on the M3FD dataset. Figure 6 shows the visualized results
of object detection. In comparison, our proposed method achieves
superior performance. Table 3 presents the quantitative results.
The fused outputs generated by our method help the detection
network achieve the highest object detection accuracy. This further
demonstrates the superior fusion capability of our approach for
object detection tasks.

4.3 Ablation study

The core of the proposed method lies in the losses designed
to eliminate modality differences, namely, losses ℓc and ℓs. In this
section, we conduct ablation studies on these key components to
verify their effectiveness. All experiments are conducted on the
M3FD dataset. From the ablation results, it can be observed that
removing losses ℓc and ℓs leads to a decline in the model’s ability
to correct local deformations, as shown in Figure 7. In addition,
when the shared information is excluded during fusion and only
complementary information is used for concatenation, the visual
quality of the fused image does not deteriorate significantly, but the
objective evaluation results in Table 4 show a noticeable drop in
performance.

4.4 Analysis of hyperparameters

In our proposed method, four main hyperparameters are
defined: λ1, λ2, λ3, which balances different losses, i.e., ℓreg, ℓ f , and ℓob,
and γ, which balances luminance loss ℓb and gradient loss ℓg. During
model training, λ1, λ2, λ3, γ are set to 10, 5, 5, two respectively.

Next, we analyze the impact of variations in these
hyperparameters on model performance. To analyze the impact
of λ1, λ2, λ3 on fusion performance, we perform a search over λ1, λ2,
λ3 values in the ranges of 1–20, 1 to 10, and 1 to 10.The quantitative
evaluation results for both fusion and downstream object detection
are presented in Table 5. As shown in Table 5, the model achieves
optimal performance on fusion when λ1 = 10, λ2 = 5, and λ3 = 5.

To verify the effectiveness of the hyperparameter γ, we fix λ1, λ2
and λ3 to 10, 5, 5 and analyze the model performance as γ varies

from 1 to 5. As shown in Table 5, the model achieves the best fusion
performancewhen γ is set to 2.Therefore, we set the hyperparameter
γ to 2.

4.5 Analysis of computational complexity

As shown in Table 6, a complexity evaluation is introduced to
evaluate the efficiency of ourmethod from three aspects, i.e., FLOPs,
training parameters and runtime. Wherein, for FLOPs calculation,
the size of the input images is standardized to 512× 512 pixels. The
inference time is calculated as the average time taken to process
18 scene images from RoadScene’s test dataset. From Table 6, our
model performs the best in FLOPs, implying that our method
has fast calculation speed and is application-friendly. The average
inference time for our model to fuse two source images is 0.40 s,
only a bit longer than the SOTA method, demonstrating that our
model’s inference speed is relatively fast and acceptable. Besides,
the parameter size of our model is only 0.97M, which can be easily
deployed in practical applications.This indicates the efficiency of our
method, which can serve practical vision tasks well with better visual
performance.

4.6 Analysis of generalization ability

To validate the generalization ability of our method, we
conduct experiments under other scenarios. Fusion results
are shown in Figure 8. From the qualitative results we can see that
our proposed model performs perfectly under other scenarios.

4.7 Analysis of limitation

The proposed method enables mutual enhancement between
infrared-visible image fusion and object detection, specifically
designed to handle misaligned source images, achieving better
experimental results compared to other methods. However, our
approach still has certain limitations. Specifically, since our model is
trained on the generated unaligned dataset, where the deformations
in real-world images cannot be fully included, failure cases appear
under real-world scenarios. As shown in Figure 9, our method fails
to handle deformations under real-world scenarios. Improving the
robustness of our method is vital for future research.

4.8 Further discussion

To validate the effectiveness of the proposed method in the
field of medical imaging, we conduct a comparative study on the
publicly available BraTS2020 Menze et al. [55] dataset. Specifically,
we first employ the state-of-the-art medical image registration
method CorrMLP Meng et al. [56] to align the deformed MRI-
T2 images to the reference MRI-T1 images, and subsequently
apply several advanced fusion methods (including MATR Tang
et al. [57], ALMFnet Mu et al. [58], EMMA Zhao et al. [54],
BSAFus Li et al. [47], and RMRFus Zhang et al. [59]) for image
fusion. As shown in Figure 10, the fusion images generated by the
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proposed method exhibit superior image quality and effectively
correct artifacts and spatial deformations. In contrast, existing
”registration + fusion” methods often introduce noticeable
artifacts when handling unregistered medical images, significantly
degrading the visual quality of the fused images. Furthermore,
as reported in Table 7, the quantitative analysis results further
demonstrate the significant advantages of the proposed method
in terms of fusion performance.

5 Conclusion

This paper proposes a mutual promotion algorithm for infrared
and visible image fusion and object detection, tailored for unaligned
image scenarios. Considering the significant modality differences
between infrared and visible images, we design specific loss
functions to reduce such differences, thereby easing the difficulty
of cross-modality image registration and improving its accuracy.
In addition, we adopt a mutually beneficial learning strategy that
enables the fusion task and the downstream object detection task
to enhance each other, leading to improved quality in both the fused
images and detection results. Extensive qualitative and quantitative
experiments demonstrate the superiority of our method over
existing state-of-the-art approaches. In addition, our approach can
be used with other radiation frequencies where different modalities
require image fusion like, for example, radio-frequency, x- and
gamma rays used in medical imaging.
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