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Spillover effects in stock index
returns within Chinese oil
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With the global energy market becoming increasingly tight and the rapid
development of Chinese oil industry, the transmission of information andmutual
influence among sectors have become increasingly prominent. In light of this,
this paper focuses on the three major sectors within Chinese oil industry chain
from 2014 to 2024: oil extraction, oil processing, and oil trading. By employing
the TVP-VAR-DY and BK models, we analyze the return spillover effects and
dynamic correlations among the upstream,midstream, and downstream sectors
of the oil industry chain. The results indicate that there are significant return
spillover effects among these three sectors, with their price fluctuations not
existing independently but rather influencing and being influenced by each
other. Specifically, the oil trading sector predominantly acts as a spillover
recipient, while the oil processing sector consistently serves as a net spillover
transmitter across the three markets. Furthermore, as the frequency of spillovers
increases, the spillover index among the three markets gradually decreases.
Notably, when confronted with extreme event shocks, the overall total spillover
level of the oil industry system significantly amplifies.

KEYWORDS

oil industry chain, spillover effect, TVP-VAR-DYmodel, BKmodel JEL classification: C22,
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1 Introduction

Oil, hailed as the “lifeblood of modern industry,” is a vital lifeline for a country’s
economic development and industrial production, with its market dynamics and the
interactions among various segments of the industrial chain increasingly becoming the
focus of attention in academia and industry (see, e.g., [1–6]). Within this chain, industries
such as oil extraction, processing, and trade are intricately interconnected and mutually
influential. Oil extraction, as the upstream segment, directly impacts the production costs
and market supply of downstream oil processing enterprises through its output and costs.
Oil processing, in turn, produces a variety of petrochemical products by refining crude oil to
meet market demands. Meanwhile, oil trade, bridging domestic and international markets,
is an indispensable link in the oil industry chain.

With the changes in the global economic situation and the adjustment of energy
structure, the spillover effects within the oil industry chain have become increasingly
pronounced. Since the outbreak of the 2008 financial crisis, the crude oil market has been
in a persistent state of vulnerability (see, e.g., [7]). Notably, in recent years, the convergence
of major unexpected events like the 2019 pandemic and the Russia-Ukraine conflict has
significantly reduced global oil demand, undoubtedly exacerbating the instability and
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unpredictability of crude oil market prices (see, e.g., [8]). In this
context, the spillover effects and dynamic correlations between
various industries within the oil industry chain are more significant.
On the one hand, price fluctuations in domestic and international
oil markets exert direct or indirect impacts on all segments of the oil
industry chain. On the other hand, internal price fluctuations within
the oil industry chain can also be transmitted to other financial
markets through trade, investment, and other channels, triggering
broadermarket volatility.This spillover effect not only escalates risks
within the oil industry chain but also poses greater challenges to
related enterprises and investors. Therefore, analyzing the spillover
effects within Chinese oil industry chain not only uncovers the
interactive mechanisms of price fluctuations among various sectors
within the industry chain but also provides policymakers with
a scientific basis for risk management and market regulation.
Furthermore, it aids investors in optimizing their investment
portfolios, reducing market risks in the face of extreme events, and
fostering the stable development of the oil industry chain.

The aims of this study are to comprehensively analyzes the
price spillover effects and their time-varying characteristics among
the oil extraction, processing, and trade sectors within Chinese oil
industry chain. To achieve these aims, the paper primarily addresses
the following two questions: Firstly, how to accurately depict
and quantify the return spillover relationships and net spillover
effects among these three sectors? Secondly, how to uncover the
transmission mechanisms and dynamic changes of these spillover
effects across different frequency domains (short-term, medium-
term, and long-term)? To address these questions, this study
employs stock index data from the oil extraction, oil processing,
and oil trade sectors within the Shenwan Tertiary Industry Index.
By employing a combined method of the TVP-VAR-DY model
and the BK model, we aim to capture and deeply uncover the
dynamic variation characteristics of the return spillover effects
among different sectors within the petroleum industry chain, as well
as the evolution of these effects over time.

The contributions of this article lie in the following three aspects:
firstly, it integrates the oil extraction, oil processing, and oil trade
industries in Chinese oil industry chain into a unified research
framework, and comprehensively analyzes the return spillover
relationship and net spillover relationship among the three through
the TVP-VAR-DY model. Secondly, the BK model was introduced
to measure the dynamic spillover effects among the three major
industries in the oil industry chain from a combined perspective
of time and frequency domains. We analyze the transmission
mechanisms of price signals across different frequency domains in
depth, revealing the mutual influence of price fluctuations in the
three industries in the short, medium, and long term. Finally, we
analyze in detail the net directional and bidirectional spillover effects
of oil extraction, oil processing, and oil trade industries in different
frequency domains, and drew spillover network diagrams to visually
display the different roles of the three industries in spillover
propagation, and tracked the dynamic changes of these roles.

The remainder of this paper is structured as follows: Section 2
presents a literature review, summarizing previous research on
spillover effects within crude oil markets. Section 3 introduces the
research methodology, including the application of the TVP-VAR-
DY model and the BK model. Section 4 conducts an empirical
analysis, presenting the detailed research findings. Finally, Section 5

concludes the paper, offering recommendations and future research
directions.

2 Literature review

Current scholarship has extensively investigated spillover
effects in crude oil markets. Researchers have utilized various
econometric approaches to examine inter-market relationships
within international crude oil markets. According to the market
linkage theory, prices across different markets exhibit characteristics
of mutual influence and coordinated fluctuations due to factors such
as economic interconnections and trade activities. Chen et al. [9],
Elder et al. [10], Liao et al. [11], Caporin et al. [12] empirically reveal
that there is a significant correlation and co-integration between
WTI and Brent crude oil market, and Hammoudeh et al. [13]
further demonstrate significant spillover effects between crude oil
and refined product markets, including various petroleum products
such as heating oil and gasoline, Additionally, Ji and Fan [14]
find a lead-lag relationship among major international crude oil
markets (WTI, Brent, Dubai, Tapis, and Nigeria), providing a new
perspective for understanding the dynamics of the global crude
oil market. Leong [15] focuses on the causal relationship between
BRENT crude oil futures returns and crude oil related industry stock
indices, as well as the dynamic correlation and risk spillover effects
between international oil prices and domestic oil related industry
stock markets, further confirming the heterogeneous impact of oil
price fluctuations on industry markets.

The interaction between futures and spot markets remains a
central topic in energy finance research. Studies by Huang et al.
[16], Lei and Yong [17], Lee and Zeng [18], Wang and Wu [19],
Mehrara and Hamldar [20], Chen et al. [21], Chang and Lee
[22], Klein [23] substantially confirm the substantial correlation
and spillover effects between futures and spot markets for WTI
and Brent crude oil. Furthermore, Magkonis and Tsouknidis
[24] extend this understanding by revealing similar spillover
effects between futures and spot prices of crude oil commodities
across various markets, thereby deepening our comprehension of
crude oil market integration. With the advancement of research,
scholars have increasingly focused on the price transmission
mechanisms within the petroleum industry chain. Complex
Systems Theory and Sociophysics posit that financial markets
constitute dynamic networks formed throughnonlinear interactions
among a multitude of heterogeneous agents (e.g., investors,
institutions, and information nodes), emphasizing that market
fluctuations stem from the superposition of multiple micro-
level behavioral feedback loops rather than being driven by
singular factors. The petroleum industry chain represents a
quintessential complex network system, where price fluctuations
are not transmitted through simple linear relationships but are
instead influenced by multiple factors, such as market structure,
policy interventions, and investor behaviors. For instance, Guo
et al. [25] select 10 oil products from three crucial links—oil
production, consumption, and market transactions—within the
oil industry chains across global markets. Employing network
motif analysis, they explored the price lead-lag relationships among
these products. Their findings reveal the presence of price lead-
lag relationships both horizontally across regions and vertically
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within the industry chain. Qi et al. [26] comprehensively analyzed
the price spillover relationships between major commodities
within the Chinese petroleum industry chain by constructing a
multidimensional spillover network, revealing the transmission
path and mediating role of crude oil price fluctuations within the
industry chain.

With the rapid development of Chinese economy and the
continuous growth of energy consumption, the Chinese crude oil
market has become increasingly important in the international
crude oil market. Scholars have conducted extensive research
on the correlation between the Chinese crude oil market and
the international crude oil market. These studies all show that
there is a significant correlation and spillover effect between
Chinese crude oil prices and international crude oil prices (see,
e.g., [3, 27–31]).

Compared with existing studies, this paper contributes to
the literature in three key aspects. Firstly, while most existing
research concentrates on price dynamics in the overall market
or specific markets, this study provides a more targeted and in-
depth analysis by focusing on price transmission mechanisms
across different segments of Chinese petroleum industry chain.
Second, methodologically, we introduce an enhanced time-
varying parameter vector autoregression (TVP-VAR) model,
which allows for more precise identification of nonlinear
transmission effects. Third, in terms of theoretical contribution,
our findings not only confirm the vertical transmission of
price information along the industry chain but also reveal the
critical mediating role of petroleum processing—a novel insight
that enriches the understanding of price signal propagation in
capital markets. By quantifying the micro-level price transmission
mechanisms within Chinese petroleum industry, this study offers
policymakers and corporate decision-makers more actionable
insights, underscoring the novelty and significance of our
research.

3 Methodology

3.1 TVP-VAR-DY spillover index model

To further explore the spillover effects and time-varying
characteristics of the three key links in the oil industry chain, namely,
extraction, processing, and trade, this article employs the TVP-VAR-
DY model proposed by Antonakakis et al. [32], which combines the
time-varying parameter vector autoregressive (TVP-VAR) model
with the spillover index method (DY) based on generalized variance
decomposition proposed by Diebold and Yilmaz [33], Diebold
and Yılmaz [34], It provides an effective tool for measuring the
relationship and influences between financial markets (see, e.g.,
[35–40]). In the specific research process, the TVP-VAR model is
constructed by Equations 1, 2:

Yt = βtYt−1 + εt,εt ∼ N(0,∑
t
) (1)

vec(βt) = vec(βt−1) + vt,vt ∼ N(0,Rt) (2)

where Yt, Yt−1, and εt are all N× 1 dimensional vectors, which
represent the price series and corresponding errors of the stock

indices of the oil exploitation, oil processing and oil trading
industries in the t and t-1periods, respectively. βt and ∑t
are N×N dimensional vector matrices representing the time-
varying VAR coefficient and the time-varying variance-covariance,
respectively. Additionally, vec(βt) and vt are the N2 × 1 dimensional
vector matrices.

Furthermore, Koop et al. [41], Pesaran and Shin [42] introduced
the concept of Generalized Forecast Error Variance Decomposition
(GFEVD) based on the Wold theorem. To effectively apply this
concept, it is necessary to transform the TVP-VAR model into a
TVP-VMA process (Equation 3):

Yt =
p

∑
i=1

βitYt−i + εt =
∞

∑
j=1

Bjtεj−t (3)

where Bjt is a N×N dimensional vector matrix. Next, GFEVD is
calculated, which is used to quantify the variance share of a variable
in predicting the error of another variable. It reflects the degree to
which a variable’s change is influenced by itself or other variables in
the system, and is calculated as Equations 4, 5:

θHij,t =

−1

∑
jj,t

H−1

∑
h=0
(e′i,tBh,t∑

t
ej)

2

H−1

∑
h=0
(e′i,tBh,t∑

t
B′h,tei,t)

(4)

̃θHij,t =
θHij,t
N

∑
j=1

θHij,t

(5)

where H represents the prediction period, ei and ej are the
selection vectors (the ith element in ei is 1, and the remaining
elements are 0; the same applies to ej). ̃θ

H
ij,t represents the impact

of variable j on variable i in the H -step prediction variance.
Since the θHij,t is non orthogonalized, the sum of the contributions
of the prediction error method may not necessarily be equal
to 1, that is, the sum of all rows in θHij,t may not necessarily
be 1. Therefore, standardization of θHij,t will be carried out to
ensure that ΣN

j=1θ
H
ij,t = 1, and ΣN

i=1Σ
N
j=1θ

H
ij,t = N. Chatziantoniou and

Gabauer [43] confirmed through Monte Carlo simulation that
the range of values for the traditional total spillover index is [0,
(m-1)/m], and therefore adjusted it to the following expression
(Equation 6):

SHt =

N

∑
i = 1, j = 1

i ≠ j

̃θHij,t

N

∑
i=1,j=1

̃θHij,t

× 100 =

N

∑
i = 1, j = 1

i ≠ j

̃θHij,t

N
× 100 (6)

Based on the prediction error variance matrix constructed
above, the following spillover indices can be obtained:

The spillover from market i to other markets j is
defined as Equation 7:

TOit(H) = Σ
N
i=1,i≠j
̃θHij,t (7)

Market i receiving spillover from other markets j
is given by Equation 8:

FROMit(H) = Σ
N
j=1,j≠i
̃θHij,t (8)

Frontiers in Physics 03 frontiersin.org

https://doi.org/10.3389/fphy.2025.1599993
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Lei et al. 10.3389/fphy.2025.1599993

The net spillover effect of market i on other markets j can be
calculated as Equation 9:

NETit(H) = TOit(H) − FROMit(H) (9)

The net pairing spillover index NPDC is given by Equation 10:
NPDCij,t = ̃θ

H
ij,t − ̃θ

H
ji,t (10)

3.2 Frequency-domain spillover index
model

When a market faces price shocks from other markets, its
response and price spillover effects may exhibit different durations,
that is, different frequency performance. Baruník and Křehlík [44]
argue that the DY spillover index method is apply at the overall
level, which may cover spillovers of different frequencies. Therefore,
researchers adopt the spectral representation method of covariance.
This method obtains the frequency response function through the
Fourier transform of coefficients, which can then be used to obtain
the generalized variance decomposition in the frequency domain.
Specifically, at a given frequency ω, the calculation process of
generalized prediction error variance decomposition is as follows:

According to the spectral decomposition method of Stiassny
[45], the frequency response function ψ(e−iw) = Σ∞h=0e

−iwhψh is
first transform into its TVP-VMA (∞) form using Fourier
transform (Equation 11):

Sx(ω) = Σ
∞
h=−∞E(xtx

′
t−h)e
−iwh = ψt(e

−iwh)ΣΨ′t(e
iwh) (11)

Frequency GFEVD is a combination of spectral density and
GFEVD, which also requires normalization in the time domain as
shown in Equations 12, 13:

θij,t(ω) =
(Σt)
−1
jj |Σ
∞
h=0(Ψt(e−iwh)Σt)ij,t|

2

Σ∞h=0(ψt(e
−iwh)ΣtΨt(eiwh))ii

(12)

̃θij,t(ω) =
θij,t(ω)

ΣN
j=1θij,t(ω)

(13)

Where ̃θHij,t(ω) represents the impact of the ith variable on the
jth variable at frequency ω. This single frequency can be used to
measure short-term, medium-term, and long-term spillover effects.
For a given frequency band, where: d = (a,b),a,b ∈ (−π,π),a < b.
The frequency band d can be define as Equation 14:

̃θij,t(d) = ∫
b

a
̃θij,t(ω)dω (14)

The total revenue spillover within frequency band d can be
calculate using the following equations (from Equations 15–19):

NPDCij,t(d) = ̃θij,t(d) − ̃θji,t(d) (15)

TOit(d) = Σ
N
i=1,i≠j
̃θij,t(d) (16)

FROMit(d) = Σ
N
j=1,j≠i
̃θij,t(d) (17)

NETit(d) = TOit(d) − FROMit(d) (18)

TCIt(d) =
N

N− 1
ΣN
i=1TOit(d) =

N
N− 1

ΣN
i=1FROMit(d) (19)

Baruník and Křehlík [44] argue that the above formula
only describes fluctuations within specific frequency bands. The
contribution of the given frequency band d to the total spillover can
be measured by a weighted metric (from Equations 20–24), where
the weight is Γ(d) = ΣN

i,j=1
̃θij,t(d)/N.

NPDCij,t(d)′ = Γ(d) ·NPDCij,t(d) (20)

TOit(d)′ = Γ(d) ·TOit(d) (21)

FROMit(d)′ = Γ(d) · FROMit(d) (22)

NETit(d)′ = Γ(d) ·NETit(d) (23)

TCIt(d)
′ = Γ(d) ·TCIt(d) (24)

The oil industry chain, encompassing upstream extraction,
midstream processing, and downstream trade sectors, exhibits return
that are influenced by a multitude of macroeconomic factors, policy
interventions, andmarket supply-demanddynamics,with their effects
evolving over time. The TVP-VAR-DY model, built upon the vector
autoregression (VAR) framework and incorporating time-varying
parameter (TVP) and dynamic correlation (DY) features, provides
an effective analytical tool for investigating return spillover effects and
dynamic interdependencies among these sectors.

4 Empirical analysis

4.1 Data

According to the division of the industry chain, upstream
industries in the oil industry chain engage in oil extraction
and development, while downstream industries engage in oil
transportation, refining, processing, and sales. The oil industry stock
index is one of the comprehensive indicators for measuring the actual
operational performance of oil enterprises. Therefore, this article
selects the stock indices of oil extraction (Ex), oil processing (Pr),
and oil trade (Tr) industries from the tertiary industry index of
Shenwanas representatives for studying theupstream,midstream, and
downstream industries of oil, aiming to deeply explore the dynamic
correlation and mutual influence between the stock index returns
of the oil industry chain. We collect daily data spanning from 2
January 2014 to 26 April 2024, all source from the Eastmoney Choice
Financial Terminal1. After screening and matching, a total of 2,496
samples are finally obtained. To calculate the return, we perform
logarithmic first-order differencing on all data: rt = (ln Pt − ln Pt−1) ×
100. Among them, rt represents the return on day t and Pt represents
the stock index price on day t.

Table 1 shows the descriptive statistics of each variable.
According to the skewness coefficient, the stock index of the oil
extraction industry shows a right-skewed feature, while the stock
indices of both the oil processing and oil trade industries display
left-skewed features; From the kurtosis perspective, the kurtosis of
each variable is greater than 3, showing a hyperkurtosis distribution,

1 The data are available at https://choice.eastmoney.com/.
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TABLE 1 Descriptive statistics.

Industry Mean Maximum Minimum Std. Dev Skewness Kurtosis ADF

Ex 0.023 9.581 −10.524 1.732 0.088 10.211 −12.916a

Pr −0.030 8.931 −10.269 1.557 −0.471 9.559 −10.100a

Tr 0.012 9.516 −11.596 2.230 −0.820 7.058 −11.821a

Note: This table reports descriptive statistics on the returns of oil extraction (Ex), oil processing (Pr), and oil trade (Tr) industries indices.
aIndicates that the representation is significant at the significance level of 1%, and ADF is an Augmented Dickey-Fuller unit root test statistic.

TABLE 2 Total connectedness.

Industry Ex Pr Tr From

Ex 53.00 34.86 12.14 47.00

Pr 33.94 51.40 14.66 48.60

Tr 14.78 18.46 66.75 33.25

To 48.72 53.33 26.80

Net 1.72 4.73 −6.44 TCI = 42.95

Note: This table reports the total spillover matrix for the oil extraction (Ex), oil processing
(Pr), and oil trading (Tr) industry indices. The elements in the ith row and jth column
represent the contribution of market j’s price changes to market i’s price returns, representing
the spillover of returns from market j to market i. The diagonal elements in the matrix
quantify the shares attributed to each market’s own price changes, whereas the non-diagonal
elements represent cross-market spillover effects, i.e., spillovers from other markets. “To” and
“From” denote the total directional spillovers, with “To” representing the total spillovers
propagated to other markets (propagation) and “From” representing the total spillovers
received from other markets (acceptance), respectively. These are calculated as the sums of the
non-diagonal elements in the rows and columns, respectively. “Net” refers to the net spillover,
which is the result of subtracting the total received (“From”) from the total propagated (“To”).
The total spillover effect index, shown in the bottom right corner of the table, is obtained by
dividing the sum of all non-diagonal elements by the number of research variables.

which suggests a relatively concentrated distribution of data. After
ADF testing, all sequences significantly rejected the null hypothesis
of the existence of unit roots, thus proving that all variables are
stationary. Therefore, we can proceed with modeling and analysis.

4.2 Static analysis

To analyze the connectivity of the total spillover of stock
index returns in the oil extraction, oil processing, and oil trade
industries in the time domain and short-term (1–5 days), medium-
term (5–22 days), and long-term (22-infinite extension) frequencies,
we calculate connectivity matrices in both the time and frequency
domains. During the modeling process, we selected the optimal lag
length of the VARmodel as the 7th order based on the AIC criterion,
and the results are presented in Tables 2, 3.

Table 2 reports the total spillover matrix of stock indices
in the oil extraction, oil processing, and oil trading industries.

TABLE 3 Frequency connectedness.

Industry Ex Pr Tr From

Panel A: Short-term frequency(1–5 days)

Ex 42.77 28.00 9.64 37.64

Pr 27.88 41.71 11.59 39.47

Tr 12.28 14.68 53.26 26.97

To 40.16 42.68 21.24

Net 2.52 3.21 −5.73 TCI = 34.69

Panel B: Medium-term frequency(5–22 days)

Ex 7.48 4.93 1.90 6.83

Pr 4.76 7.33 2.43 7.19

Tr 1.97 2.78 10.09 4.75

To 6.72 7.71 4.34

Net −0.11 0.52 −0.41 TCI = 6.26

Panel C: Long-term frequency(22-Inf)

Ex 2.74 1.93 0.60 2.53

Pr 1.30 2.36 0.63 1,94

Tr 0.53 1.00 3.40 1.53

To 1.83 2.93 1.23

Net −0.70 1.00 −0.30 TCI = 2.00

Note: The table presents the spillover results of stock indices in the oil extraction (Ex), oil
processing (Pr), and oil trade (Tr) industries across different frequency domains. The
elements in the ith row and jth column represent the contribution of market j’s price returns
to market i’s price returns, specifically referring to the directional spillover of returns from
market j to market i. The diagonal elements in the matrix quantify the shares attributed to the
intrinsic volatility of each market, whereas the non-diagonal elements represent cross-market
spillovers, i.e., spillover effects originating from other markets. “To” and “From” signify the
total outgoing and incoming directional spillovers, respectively, calculated as the sums of the
non-diagonal elements in the rows (transmission) and columns (reception). “Net” refers to the
net spillover, which is the difference between the total outgoing (“To”) and incoming (“From”)
spillovers. The total spillover effect index, located in the bottom right corner of the table, is
derived by dividing the sum of all non-diagonal elements by the number of research variables.
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The data in Table 2 reveal that the diagonal elements of the matrix
generally exhibit higher values than the non-diagonal elements,
indicating that each variable has the most significant spillover effect
on itself. In other words, the impact of the returns of each variable
on itself dominates. The total spillover effect in the oil extraction, oil
processing, and oil trading industries is as high as 42.95%, indicating
that nearly half of the return variation among the three markets
can be attributed to the impacts from the other two markets, which
means a significant spillover relationship among variables. From the
Net Spillover Index (Net), it can be seen that both the oil extraction
industry and the oil processing industry have a net spillover greater
than 0, indicating that they are the transmitters of spillover in
the research system. Conversely, the oil trading industry has a net
spillover less than 0, indicating that it is the recipient of spillovers.

Table 3 presents a detailed list of the changes in spillover effects
in different frequency domains. We observe that the spillover effects
between the three markets were 34.69%, 6.26%, and 2.00% in the
short, medium, and long-term frequency domains, respectively.
Specifically, the BK model divides the total spillover into three-
time spans and we study the different degrees of spillover in these
three time spans. The frequency domain results in Table 3 show
that as the time span increases, the spillover index among the
three markets gradually diminishes. In addition, we also found that
regardless of whether in short, medium, or long cycles, the oil
trading industry has always been a transmitter of return spillovers,
the oil processing industry has always been a receiver of spillovers,
and the oil extraction industry transitions from being a transmitter
to a risk receiver.

4.3 Dynamic analysis

Under the influence of special events, the market price of the
crude oil industry chain may undergoes significant fluctuations.
Static spillover analysis mainly focuses on evaluating the average
impact of each variable across the entire sample period. However,
this approach has inherent limitations, as it struggles to effectively
capture the time-varying nature of spillovers betweenmarkets and the
specific spillover effects within distinct frequency domains.Therefore,
we further analyze the dynamic spillover effects between markets
from the perspective of each frequency domain. Figure 1 provides a
visual display of three frequency domain spillover indices: short-term,
medium-term, and long-term,where the total spillover across the time
domain is equal to the sumof the spillovers in each frequencydomain.

As shown in Figure 1, the overall trend reveals significant
volatility in the total spillover index of the system. The fluctuation
range of the total return spillover index between markets generally
falls between 20% and 50%, and in exceptional cases, the peak
can reach approximately 60%, indicating that the spillover effects
between the oil extraction, oil processing, and oil trading industries
exhibit time-varying characteristics. Notably, the spillover effect
primarily manifests in the short term, with impacts lasting less than
a week, suggesting a rapid spread among markets. In contrast, the
long-term spillover effects appear relativelyweak, possibly attributed
to the fact that the long-term behavior of the oil extraction,
processing, and trading industries within the oil industry chain is
primarily governed by their inherent fundamentals.

According to the time-domain and frequency-domain charts,
there are five significant increases in the total spillover index, namely,
the oil price crash in 2014, the Chinese stock market crash in 2015,
the United Kingdom Brexit in 2016, the outbreak of the pandemic in
2020, and the Russia-Ukraine conflict in 2022. In 2014, amid weak
demand for crude oil, the Organization of the Petroleum Exporting
Countries (OPEC)continued to increase crudeoil production inorder
to maintain its market share and engage in fierce competition with
US shale oil companies. This move led to a continuous increase in
oil supply and a rebalancing of supply and demand in the crude oil
market, resulting in significant market volatility. This change has also
intensifiedthespillovereffectsbetweenrelevantmarkets intheChinese
oil industrychain,making theentire industrychain facemorecomplex
and volatile risks. The “6.26” stock market crash in China was the
main reason for the rise in the total spillover index in 2015.This crash
caused significant turbulence in the Chinese oil market, with various
industries facing strong external shocks, thereby strengthening the
correlation between different markets. At the beginning of 2016, the
total spillover index began to show an upward trend again, which
may be attributed to two factors: one is Brexit, and the other is major
political, economic, and terrorist events, including the oil crisis. In
2020, the global epidemic broke out, and as the spread of the disease
continued to expand, related risks also intensified. The total spillover
effect at different time periods sharply increased and reached a peak.
The increase in uncertainty during this period has led to a more
uniform response from investors to shocks, thereby enhancing the
connections amongmarkets at different time frequencies. In 2022, the
Russia-Ukraine conflict again triggered market turbulence, leading
to an increase in the total spillover effect in oil-related industries.
With the implementation of a series of measures by the Chinese
government aimed at restoring the economy and improving people’s
livelihoods, such as the temporary zero tax rate on coal imports
in response to the Russia-Ukraine conflict, the exemption of VAT
for small-scale taxpayers, and the normalization of epidemic control
measures, the spillover effect is gradually declining. At this point, the
total spillover index began to stabilize, though it still remains relatively
highcomparedtopre-extreme-event levels. Insummary,whenever the
socio-economic situation confrontsmajor events or extreme risks, the
spillover effects among oil-related industry markets will significantly
intensify.As the economyand society gradually enter aperiodof stable
development, this risk effect will also gradually stabilize.

Based on the investigation of the time-varying spillover effects
of total returns in multiple markets, we further conduct in-depth
analysis of the specific time-varying spillover effects between each
market. Figures 2, 3 show the spillover effects and inflow effects2

of each market in the sample in the time domain and different
frequency domains.

From Figures 2, 3, we find that first, the directional spillover
index reflects the time-varying nature of spillover effects between
the oil extraction, oil processing, and oil trade industries. Secondly,
from the results of directional spillover indices, the spillover indices
and inflow indices of various markets show certain similarities in
overall trends, with their changes mainly concentrated between 1%

2 The spillover index serves as an indicator of the degree to which a market

is influenced by other markets, while the inflow index reveals the degree

to which a market is influenced by other markets.
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FIGURE 1
Dynamic total connectedness in various frequencies. This figure presents the trend in dynamic total spillover effects across different frequency bands
within Chinese oil industry chain, spanning from 2 January 2014, to 26 April 2024. The analysis is based on the results derived from the TVP-VAR-DY
model and the BK model. The frequency bands considered include the short-term band (set at 1–5 days, reflecting the 5-day trading week in stock
markets), the medium-term green band (spanning 5–22 days, considering approximately 22 trading days in a month), and the long-term band
(exceeding 22 days). The total spillover effect is calculated as the summation of spillover effects across these three frequency bands: short-term,
medium-term, and long-term.

FIGURE 2
Dynamic total directional connectedness to others. This figure illustrates the trend in spillover effects across various frequency domains for different
markets within Chinese oil industry chain, spanning from 2 January 2014, to 26 April 2024. The analysis is based on the results derived from the
TVP-VAR-DY model and the BK model. The red area depicts the spillover in the short-term frequency band (1–5 days), the green area represents the
spillover in the medium-term frequency band (5–22 days), and the blue area reflects the spillover in the long-term frequency band (exceeding
22 days). The black area, on the other hand, presents the summation of spillover effects across these three frequency bands: short-term,
medium-term, and long-term.

and 40%. Finally, the net spillover effects of all variables in the time
domain and short-term frequency bands are very obvious, while
the spillover effects in the medium and long-term frequency bands
are relatively small, which is consistent with the results of the static
analysis previously mentioned.

Due to the bidirectional nature of spillover effects, a higher
spillover index only indicates stronger correlation between markets,
but cannot accurately reveal the direction of net spillover from one
market to another. Therefore, it is necessary to conduct in-depth
analysis of the net spillover index to determine the direction of
return spillovers in the oil extraction, oil processing, and oil trade
industries.

According to the net spillover index graph in Figure 4, the
net spillover index fluctuates between positive and negative values,
showcasing its temporal variability. Predominantly, however, the oil

extraction and processing market exhibits a positive trend in its
net spillover index, indicating that these industries have a greater
spillover effect on the oil trading industry than they receive from
other markets. Conversely, the oil trading industry’s net spillover
index registers a negative value, revealing its primary role as a
recipient of spillovers. These findings suggest that within the oil
industry chain, the extraction sector, as the primary source of
crude oil resources, directly influences market supply through
its production decisions and output adjustments. The processing
sector, relying on crude oil supplied by extraction, transforms
raw materials into various petroleum products through advanced
refining technologies. Both sectors occupy relatively upstream
positions in the value chain. Due to their control over critical
resources and processing capabilities, they exert greater dominance
in pricing and supply dynamics, more actively transmitting market
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FIGURE 3
Dynamic total directional connectedness from others. This figure presents the trend in inflow spillover effects across different frequency domains for
various markets within Chinese oil industry chain, spanning from 2 January 2014, to 26 April 2024. The analysis is based on the results derived from the
TVP-VAR-DY model and the BK model. The red area illustrates the inflow spillover in the short-term frequency band (1–5 days), the green area
represents the inflow spillover in the medium-term frequency band (5–22 days), and the blue area depicts the inflow spillover in the long-term
frequency band (exceeding 22 days). The black area, in contrast, shows the aggregated result of inflow spillover effects across these three frequency
bands: short-term, medium-term, and long-term.

fluctuations to the trade sector while receiving comparatively
limited spillover effects from other markets. Conversely, the oil
trade sector operates at the mid-to-downstream level of the
industrial chain. In terms of market structure, it faces constraints
from upstream supply conditions (extraction and processing)
while simultaneously responding to demand fluctuations from end
consumers. Additionally, external factors such as trade policies,
tariff adjustments, and import-export quotas significantly impact
its operations. These combined factors render the trade sector
more susceptible to external shocks, primarily absorbing spillover
effects transmitted from upstream industries rather than generating
substantial outward spillovers. From this analysis, it becomes
evident that while directional spillover effects can illuminate
the overall beneficial impact of a variable on others within
the system, the degrees of correlation and sensitivity among
variables vary. Consequently, further analysis and discussion
are paramount.

To delve into the dynamic mechanism of mutual influence
between two industries, we employed a spillover index model with
time-varying parameters, analyzing the pairwise spillover effects of
returns across industries. The results are depicted in Figure 5.

From Figure 5, we find that the net paired spillover index
of the oil extraction and processing industries varies significantly
between positive and negative values, revealing the possibility of
bidirectional time-varying asymmetric spillover effects between
markets. The size and direction of this net spillover index often
fluctuate significantly at certain critical moments, driven bymultiple
factors. Specifically, the net spillover index of the extraction industry
initially showed a significant positive value, followed by a significant
change in 2016, which was likely closely related to major political
and economic events at the time, such as Brexit. After 2019, the
index rose significantly again and became positive, which may be
closely related to multiple factors such as energy price fluctuations,
the pandemic, and international political events (such as the Russia-
Ukraine conflict). These factors work together in the oil market,
leading to increased uncertainty in oil supply and costs, which in

turn affects downstream industries. In the oil processing industry
market, the positive and negative fluctuations of spillover effects
reflect their high sensitivity to market dynamics in the extraction
industry. During the sample period, the oil trading industry’s net
spillover index mostly showed negative values, indicating that the
industry played amore significant role as a spillover receiver formost
of the time.

To further investigate the directional spillover effects of different
variables, we constructed the spillover network diagram, which
is shown in Figure 6. From left to right, we have theDY time domain,
short-term, medium-term, and long-term frequency domains. Blue
represents the net transmitter of spillover, and yellow represents the
net receiver of spillover. The arrows in the figure visually display the
direction of the spillover effect, whereas the thickness of the arrows
accurately reflects the strength of the spillover effect. Specifically, the
thicker the arrow, the more significant the corresponding spillover
effect, that is, the greater the impact of one market or variable
on another market or variable. This representation allows us to
intuitively understand the degree of mutual influence between
different markets or variables.

As depicted in Figure 6, the oil processing industry exhibits
spillover effects on both oil extraction and oil trade, and the
oil trade industry is mainly affected by spillover effects. This
observation can be attributed to the oil processing industry’s pivotal
position in the industrial chain, bridging upstreamoil extraction and
downstream oil trade and terminal consumption. Consequently, its
operational status carries significant weight in the industry chain,
directly impacting the operations and profitability of both upstream
and downstream enterprises. On the other hand, the oil trading
industry is more susceptible to fluctuations in the global oil supply-
demand relationship. In instances of global oversupply or inadequate
demand for oil, oil prices tend to decline, subsequently compressing
profitability within the oil trading industry. This finding aligns with
the aforementioned analysis.
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FIGURE 4
Dynamic net directional connectedness. This figure presents an analysis based on the TVP-VAR-DY model and the BK model. It reveals the dynamic
evolution of net spillover effects across various markets within Chinese oil industry chain across different frequency domains, spanning from 2 January
2014, to 26 April 2024. These net spillover effect indices are derived by calculating the difference between the “outward spillovers” (To) and “inward
spillovers” (From) for each market variable. Positive values indicate that the market variable acts as a net transmitter to other variables across the entire
industry chain, whereas negative values suggest that the market variable is a net receiver, primarily receiving influences or information from other
variables. The red areas reflect net spillovers in the short-term frequency band (1–5 days); green areas represent net spillovers in the medium-term
frequency band (5–22 days); and blue areas depict net spillovers in the long-term frequency band (beyond 22 days). The black areas present the
summation of net spillover effects across the short-term, medium-term, and long-term frequency bands.

FIGURE 5
Dynamic net-pairwise directional connectedness. This figure presents the trend in net pairwise spillover effects across various markets within Chinese
oil industry chain, spanning from 2 January 2014, to 26 April 2024. The analysis is based on the TVP-VAR-DY model and the BK model. The red area
depicts the net pairwise spillovers in the short-term frequency band (1–5 days); the green area represents those in the medium-term band (5–22 days);
and the blue area indicates the net pairwise spillovers in the long-term band (beyond 22 days). The black area, on the other hand, summarizes the net
pairwise spillover effects across all three frequency bands—short-term, medium-term, and long-term.

4.4 Robustness test

To verify whether the empirical findings of this paper are overly
reliant on the choice of model parameters, we adopt the robustness
check methodology employ by Pavlova et al. [46], Wu et al. [38],
KočendaandMoravcová[47], amongothers.Byadjusting the lagorder
of theTVP-VARmodel,weinvestigate thesensitivityofspillovereffects
to variations in the lag order. On the basis of the benchmark 7th order,
we additionally construct TVP-VAR models with 5th, 6th, 8th, and
9th orders. Subsequently, based on the estimation outcomes of these
models featuring varying lag orders, we calculate the corresponding
total spillover index. The results are shown in Figure 7, which shows
the variation of the total spillover index for lag orders of 5th, 6th, 8th,
and 9th from top to bottom.

From the perspective of the size of the total spillover index,
both Figures 1, 7 fluctuate roughly within the range of 20%–50%,
with similar values, indicating a significant spillover effect in the
returns of Chinese oil extraction industry, oil processing industry,
and oil trade industry. In terms of the trend in the total spillover
index’s variations, both Figures 1, 7 show obvious time-varying
characteristics, and the trend over time is basically consistent.
Especially in extreme situations, the total spillover index shows
a significant increase, confirming that the total spillover index of
Chinese oil extraction, oil processing, and oil trading markets is
highly sensitive to extreme economic events. Generally, the total
spillover index in Figures 1, 7 has experienced five periods of
significant growth, namely, the period of oil price collapse in 2014,
the period of Chinese stock market crash in 2015, the period of
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FIGURE 6
Directional connectedness network. This figure presents a visual representation where each edge connecting two nodes signifies the net pairwise
spillover between two markets. The direction of the arrow indicates which market receives the shock from which market, and the thickness of the
arrow reflects the intensity of the spillover effect. Blue nodes represent markets that are the originators of shocks within the system, while yellow nodes
signify markets that are the recipients of shocks within the system.

FIGURE 7
Dynamic total connectedness with different lag orders. This figure presents the trend of dynamic total spillover effects across different frequency
domains for China’s oil industry chain, utilizing the TVP-VAR model with lag orders of 5, 6, 8, and 9, respectively.

Brexit in 2016, the period of infectious disease outbreak in 2020,
and the period of Russia-Ukraine conflict in 2022. In summary, the
empirical results of this article are robust and not overly dependent
on the lag order chosen by the model.

5 Concluding remarks

5.1 Conclusion

This paper employs the Time-Varying Parameter Generalized
Variance Decomposition Spillover Index Model (TVP-VAR-DY)

and the Baruník and Křehlík (BK) model, combined with a time-
frequency domain perspective, to conduct an in-depth analysis
of both static and dynamic spillover effects within China’s oil
industry chain system. The research not only calculates static
spillover indices to evaluate the overall spillover intensity and
direction within the system but also obtains dynamic spillover
indices through a rolling sample window approach. This allows
for the examination of spillover fluctuations throughout the entire
sample period. Furthermore, by incorporating significant events,
the study explores the changes in price linkage and risk contagion
within the system in response to external shocks. Firstly, the results
reveal significant dynamic and asymmetric spillover effects among
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the three major industries of oil extraction, oil processing, and oil
trade in the Chinese oil market. This finding reveals that price
fluctuations among these three industries are not isolated but
intertwined and mutually influential. Specifically, the oil processing
industry plays a major role as a net spillover source, with its price
fluctuations having a significant impact on the oil extraction and
oil trade industries. In contrast, the oil trade industry primarily
acts as a net spillover receiver, with its price fluctuations being
significantly influenced by the other two industries.This asymmetric
spillover effect demonstrates the complex interaction among various
segments within the oil industry chain. Secondly, a deeper analysis
from the frequency dimension reveals significant differences in
spillover effects at different frequencies. As the frequency increases,
the spillover index among the three markets gradually decreases,
indicating the time-varying nature of the spillovers among market
returns. Specifically, in the short term, the spillover effect among
markets is most significant, reaching 34.69%; in the medium term,
the spillover effect weakens to 6.26%; and in the long term, the
spillover effect further decreases to 2%. This finding reveals the
strong mutual influence of market returns spillovers in the short
term and their gradual weakening trend in the long term. Thirdly,
when confronted with the impact of extreme events, the overall
total spillover level of the system tends to significantly amplify.
Different types of extreme events have significant impacts on
the directional spillover effects of market returns and the net
pairwise spillover effects among markets, exhibiting their respective
differences and dynamic changes. This finding emphasizes the
important influence of extreme events on the spillover effects within
the oil industry chain.

5.2 Implications

Building upon these findings, several insights are proposed.
Given the dynamic, bidirectional, and asymmetric spillover effects
among Chinese petroleum extraction, processing, and trade
industries, it is imperative to strengthen collaborative management
across the upstream and downstream segments of the industrial
chain. Enterprises in these sectors should establish a digital
information-sharing platform to exchange real-time data on
production, inventory, and sales, jointly develop risk prevention
and control plans, and achieve efficient resource allocation and
risk sharing.

As the oil processing industry serves as a critical net spillover
source, it is essential to formulate precise risk management policies.
Enterprises should adopt advanced risk assessment models to
conduct quantitative analyses of risks such as raw material price
fluctuations and market supply-demand imbalances. Additionally,
they should utilize futures hedging to lock in costs and enhance
risk resilience. Government regulatory agencies must develop a
comprehensive market monitoring system, leveraging big data
and blockchain technologies to track global oil market dynamics
in real time.

Given the time-varying nature of inter-market spillover
effects, short-term measures should include establishing market
liquidity monitoring indicators to closely observe significant
market fluctuations. Enterprises should flexibly adjust inventory
and production schedules, while governments should promptly

implement temporary regulatory policies. In the medium term,
enterprises ought to optimize their investment portfolios based
on market trends, and governments should refine energy
strategic reserve mechanisms. In the long run, even if spillover
effects diminish, continuous optimization of risk management
mechanisms remains crucial. Governments should promote energy
structure transition, and enterprises should explore new energy
ventures.

In the face of extreme events, systemic spillover levels tend
to amplify. Therefore, governments and enterprises must enhance
preparedness by establishing comprehensive risk early-warning
and emergency response mechanisms, improving extreme event
response capabilities, and proactively mitigating potential crises.
Furthermore, international cooperation and exchange should be
strengthened to collectively address the challenges and risks
confronting the global oil market.

5.3 Limitations and future works

This study also acknowledges certain limitations. While it
recognizes the impact of extreme events on the overall system
spillover level, it does not delve deeply into the distinctions
among different types of extreme events, such as natural disasters,
policy shifts, and fluctuations in international oil prices, or their
specific impact mechanisms. Furthermore, the primary focus of
this study is on the return spillover effects within the oil industry
chain, without considering the influence of external factors, such
as the global economic environment and geopolitical risks, on
these internal spillover effects. Future research could consider
utilizing advanced models such as high-frequency data models or
machine learning algorithms for comparative validation, refining
the classification of extreme events and analyzing their impact
mechanisms, as well as expanding the analysis to include external
linkages of the industry chain to gain a more comprehensive
understanding of the dynamic changes within the oil industry
chain.
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