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Effective natural gas leakage detection is of great significance in terms of
economy, environment and safety. Due to the irregular shape and ambiguous
boundary of the gas, traditional motion detection algorithms are difficult to
adapt to the changes in the gas movement state with the environment, resulting
in an increased probability of false alarms. To address this issue, this paper
proposes a gas plume-constrained YOLOv11 model based on infrared imaging
detection technology, named YPCN (YOLO-Plume Classification Network). A
new backbone feature extraction network, MobileNetV4, is selected to replace
the original backbone network, and SPD-Conv is introduced in the segmentation
head network. This network effectively reducesmodel complexity and enhances
inference speed while maintaining detection accuracy. Additionally, a gas plume
model is introduced as a key physical constraint condition in the loss function
to enhance the model’s accuracy, segmentation precision, and generalization
ability in handling gas plume tasks. Moreover, this paper constructs a gas leakage
dataset consisting of 13,109 frames, covering different distances, sizes, and
backgrounds. Experimental results show that the proposed model achieves an
F1-score of 88.97% and an IoU of 89.74%, improving upon the baseline by 7.37%
and 7.59%, respectively, with a detection accuracy reaching 99.78%.

KEYWORDS

natural gas leakage, mid-infrared spectrum, combustible gas cloud imaging, plume
classification network, YOLO

1 Introduction

As a fossil fuel primarily composed of methane, natural gas occupies a significant
position in the global energy system and is extensively utilized in power generation
[1], industrial manufacturing [2], transportation [3], and residential application [4].
Compared to coal and oil, natural gas exhibits higher combustion efficiency and
lower pollutant emissions, making it a critical component in national strategies aimed
at optimizing energy structures [5]. However, despite its advantages in terms of
cleanliness and efficiency, the inherent physicochemical properties of natural gas pose
considerable safety and environmental risks. Natural gas leaks not only contribute
to the intensification of the greenhouse effect but also present significant safety

Frontiers in Physics 01 frontiersin.org

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2025.1603047
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2025.1603047&domain=pdf&date_stamp=2025-06-16
mailto:sunfeng@jlu.edu.cn
mailto:sunfeng@jlu.edu.cn
mailto:cchen@jlu.edu.cn
mailto:cchen@jlu.edu.cn
https://doi.org/10.3389/fphy.2025.1603047
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fphy.2025.1603047/full
https://www.frontiersin.org/articles/10.3389/fphy.2025.1603047/full
https://www.frontiersin.org/articles/10.3389/fphy.2025.1603047/full
https://www.frontiersin.org/articles/10.3389/fphy.2025.1603047/full
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Zhou et al. 10.3389/fphy.2025.1603047

hazards [6]. When leaked gas accumulates in an enclosed
environment and reaches the lower explosive limit (LEL) [7], the
presence of an ignition source may lead to combustion or even
explosion, thereby posing severe threats to human life and property.
The development of gas leakage detection technologies capable
of promptly identifying leakage points is therefore essential for
mitigating these risks. Consequently, there exists a pressing need for
the advancement of high-precision gas leakage detection systems.

A substantial amount of research has been conducted to achieve
leakage detection tasks with different objectives. Semiconductor
[8], electrochemical [9], and catalytic combustion sensors [10] are
primarily used to detect gas concentrations at specific locations.
However, their detection range is relatively limited, making it
challenging to cover large areas. Additionally, these sensors typically
require direct contact with or close proximity to monitoring
points, imposing significant constraints on installation flexibility.
To enhance the accuracy of gas leakage detection, sensor arrays
are often employed, leveraging the collaborative operation of
multiple sensors to improve spatial coverage and detection precision
[11–13]. However, this approach not only increases equipment
costs and maintenance complexity but also suffers from issues
such as sensor aging and signal drift. In contrast, laser remote
sensing technology [14] enables line-of-sight measurement of
columnar gas concentrations, thereby extending the detection
range to some extent. Nevertheless, these sensors still struggle to
effectively monitor complex environments, and their accuracy is
highly susceptible to environmental factors such as temperature,
humidity, and wind speed. In addition to the above techniques,
various laser spectroscopic sensing methods have been successfully
applied for the accurate identification of combustion products
and gas components. These include wavelength modulation
spectroscopy with direct absorption calibration [15], self-calibrated
2f/1f wavelength modulation spectroscopy [16], photoacoustic
spectroscopy [17, 18], and quartz-enhanced laser spectroscopy
[19, 20]. While these techniques demonstrate excellent sensitivity
and selectivity in controlled environments, they are often limited
by instrumentation complexity and spatial constraints in large-
scale field applications. Consequently, developing a gas leakage
detection method that balances detection accuracy, coverage area,
and environmental adaptability remains a critical research challenge.

Unlike traditional gas leakage detection technologies, detection
methods based on the infrared absorption characteristics of gases
enable non-contact measurement. Optical gas imaging (OGI)-
based area source detection facilitates long-range dynamic remote
sensing, allowing for the visualization of gas plumes, which has
now become a mainstream approach in gas leakage detection
[21–25]. Compared with point detection techniques, infrared
imaging methods offer greater spatial awareness and real-time
visualization of gas dispersion, making them highly suitable for
complex and large-scale environments. However, existing OGI
techniques primarily rely on the subjective judgment of inspection
personnel, as current equipment lacks the capability for automatic
detection. Consequently, achieving intelligent gas leak detection has
emerged as a critical issue that urgently requires resolution.

The emergence of deep learning-based approaches has
significantly advanced object detection. Nevertheless, gas leakage
target recognition based on infrared imaging detection technology
still presents considerable challenges. The primary difficulties

include: (1) the absence of a fixed morphology and well-defined
boundaries; (2) the partial transparency of gases in the visual
spectrum, making detection highly susceptible to complex
background interference; and (3) the presence of visually similar
disturbances that can be misclassified as gas plumes. Wang et al.
(2020) [26] constructed the first methane leakage video image
dataset, GasVid, and proposed a CNN-based methane plume
detection method, achieving detection accuracy exceeding 95%
across different leakage scales and imaging distances. Similarly,
Yan et al. (2024) [27] introduced improvements to the backbone
network of DeepLabV3+, with experimental results demonstrating
an accuracy of 86.24% and an Intersection over Union (IoU) of
84.23%. However, these methods rely on datasets with relatively
simple backgrounds. When disturbances resembling gas motion
patterns and edge characteristics appear, the extracted features of
these disturbances may closely align with those of the gas plumes,
leading to a higher false detection rate. Such false detections can
trigger unnecessary emergency responses in industrial facilities,
potentially resulting in significant economic losses.

This study proposes a YOLOv11 model with gas plume
constraints based onOGI technology to address the aforementioned
challenges. In comparison with existing literature, the key
contributions of this study are as follows: (a) Development
of an infrared camera-based natural gas imaging system and
implementation of industrial field tests for gas leakage detection.
(b) Proposal of a YOLOv11 model with gas plume constraints,
incorporating the lightweight MobileNetV4 to reduce parameter
complexity and enhance computational efficiency. By integrating
a gas plume model into the network loss function as a physical
constraint, the proposed model effectively learns prior knowledge
of gas plume behavior during training, thereby improving the
accuracy of gas leakage detection, segmentation precision, and
model generalization capability. The remainder of this paper
is organized as follows: Section 2 introduces the structure
of the mid-infrared spectroscopic imaging system. Section 3
presents the model improvement methods. Section 4 describes the
model training environment. Section 5 shows the experimental
results. Finally, Section 6 provides the conclusion and future
perspectives.

2 Principle and system composition

As shown in Figure 1, OGI technology visualizes otherwise
invisible gases by measuring the difference in infrared radiation
intensity between the background and the leaking gas [25]. The
primary component of natural gas is methane, whose molecular
characteristic absorption peak appears at a wavelength of 3,021 cm-1

(3.31 μm) [28]. Therefore, OGI technology for detecting natural
gas leaks typically employs a narrow-band pass filter in the
3.2–3.4 μm range, which covers the absorption features of alkane
gases such as methane, butane, and others, enabling their effective
detection. This makes OGI an ideal technology for detecting
natural gas leaks.

To achieve precise imaging of natural gas within a narrow
spectral range, an infrared imaging detection system based on
a HgCdTe infrared detector is proposed. The system structure
is shown in Figure 2. The core components include an infrared
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FIGURE 1
Principle of infrared camera detecting leaking gas.

FIGURE 2
Refrigerated infrared camera composition.

optical lens, an infrared focal plane detector Dewar assembly,
an integrated Stirling cooler, and a high-speed acquisition
board. All modules are encapsulated within a high-strength
explosion-proof casing made of 316 stainless steel to meet
the stringent explosion-proof requirements of the oil and gas
industry, ensuring long-term stable operation in complex industrial
environments.

The infrared radiation emitted from the leaking gas is collected
and focused by an optical system with a focal length ranging
from 50 to 200 mm. The focused radiation then passes through
a narrowband filter, which has a transmission spectrum range
of 3.2∼3.4 μm. Subsequently, the filtered signal is imaged onto
a HgCdTe infrared detector, featuring a resolution of 320 ×
256 pixels, a noise equivalent temperature difference (NETD)
less than 25 mK, and a frame rate of 25 Hz. The resulting 14-
bit digital infrared image undergoes non-uniformity correction
processing, after which a black-and-white video image output
is generated.

3 Methods

YOLOv11 is a single-stage object detection model, with its
algorithm framework primarily divided into three components: the
backbone network (Backbone), the bottleneck network (Neck), and
the detection layer (Output) [29].

The Backbone network consists of standard convolution
modules (Conv), C3K2 modules, a Spatial Pyramid Pooling
Structure (SPPS), and C2PSA modules. Among these, the C3K2
module is a crucial feature extraction component in the YOLOv11
model, designed as an improvement over the traditional C3module.
By integrating variable convolution kernels and a channel separation
strategy, it enhances feature extraction capabilities, making it
particularly suitable for complex scenarios and deep-level feature
extraction tasks. The C2PSA module, designed to further enhance
feature extraction, combines the Cross Stage Partial (CSP) structure
with the Pyramid Squeeze Attention (PSA) mechanism, thereby
improving multi-scale feature extraction capabilities.
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FIGURE 3
YPCN Network structure diagram.

Although the existing YOLOv11n model has achieved
certain success in detection accuracy, its backbone network and
segmentation head module still have room for optimization in
terms of parameter quantity and computational complexity. In
this paper, we propose an improved strategy based on YOLOv11:
adopting the lightweight MobileNetV4 as the backbone feature
extraction network and introducing SPD-Conv (Spatial Pyramid
Decomposition Convolution) into the segmentation head module.
This approach significantly reduces the number ofmodel parameters
and GFLOPs while enhancing inference speed, all without
sacrificing detection accuracy. Additionally, the Dice loss function
is employed in the loss function design, with a gas plume model
incorporated as a key physical constraint. The YPCN model is an
optimized variant based on the YOLOv11 framework, specifically
designed for natural gas leak detection tasks. The algorithm process
is illustrated in Figure 3.

3.1 Lightweight backbone network

Although YOLOv11 has demonstrated outstanding
performance in object detection tasks, there is still room for
optimization in its network design for gas leak detection in
infrared images. The improved network structure diagram
is shown in Figure 4.

In convolutional neural network (CNN) architectures, a notable
performance degradation occurs when processing low-resolution
images and small objects. This issue primarily stems from the use of
stride convolutions and pooling layers, which lead to the loss of fine-
grained information. While stacking numerous residual structures
increases network depth and enhances accuracy, it also complicates
model deployment on edge devices. To address this challenge, this
study replaces YOLOv11’s primary feature extraction network with
MobileNetV4.

MobileNetV4 [30] introduces the Unified Inverted Bottleneck
(UIB) module and Neural Architecture Search (NAS) technology.

By combining the inverted residual structure and depth wise
separable convolution, it optimizes computational efficiency
and feature extraction capabilities. The UIB module reduces
computational overhead while maintaining high performance,
and NAS automatically searches for the optimal architecture to
enhance accuracy and efficiency.The combination of the two enables
MobileNetV4 to run efficiently on resource-constrained devices and
automatically adjust the network architecture based on the hardware
platform to achieve a balance between performance and efficiency.
The specific operation for replacing the backbone is to substitute
the parts corresponding to the 80 × 80, 40 × 40, and 20 × 20 scales
in the YOLOv11 backbone with the corresponding feature maps
of 80 × 80 × 64, 40 × 40 × 128, and 20 × 20 × 256 channels in the
MobileNetV4 backbone.

In practical applications, the gases in diffusion often exhibit low
contrast and blurred edges. Traditional convolution operations often
fail to capture these low-contrast and blurred-edge tiny features due
to insufficient local receptive fields, resulting in poor segmentation
effects. Therefore, on the basis of the original network architecture,
a dedicated segmentation head for tiny objects is added, and
some traditional convolution layers are replaced with SPD-Conv
layers. This segmentation head adopts a multi-scale feature fusion
strategy, integrating feature maps from different levels to enable the
tiny smoke regions to obtain richer context information, thereby
improving the overall segmentation result’s coherence and accuracy.

3.2 Loss function

In this paper, a novel constraint module is developed by
leveraging the distinctive characteristics of the plume. This module
is integrated into the YOLOv11 object detection framework, thereby
enhancing both the accuracy and robustness of the detection system.
The diffusion behavior of leaking gas exhibits unique dynamic
physical characteristics, especially under fixed source conditions,
where its diffusion pattern shows distinct jet diffusion features. This
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FIGURE 4
Improved network diagram based on YOLOv11.

diffusion pattern can be effectively described using the Gaussian
plume model, providing a new theoretical basis for distinguishing
between leaked gas and interfering objects in target detection tasks.

The dispersion of the leaking gas can be characterized using
the Gaussian plume model, which primarily focuses on the
concentration distribution of the gas as it disperses from the
point source. In a three-dimensional context, this concentration
distribution is mathematically represented in Equation 1 below.

G(x,y) = 1
2πσxσy

exp(−(
(x− μx)

2

2σ2
x
+
(y− μy)

2

2σ2
y
)) (1)

where parameters σx and σy denote the diffusion scales in
the horizontal and vertical directions, respectively, with their
magnitudes positively correlated to the distance from the diffusion
source to the target point. Parameter (μx,μy) represents the target
center point, while parameter (x,y) denotes the coordinates of the
pixels within the mask. In segmentation tasks, this formulation
assigns a weight of w(x,y) to each pixel location (x,y), thereby
modulating the pixel-wise loss function. Originating from a
fixed initial position, the gas leak drifts downwind and spreads
outward under the influence of wind speed. This predictable
behavior contrasts sharply with the random distribution patterns of
interfering elements, such as clouds.

The Gaussian plume model is simplified to a weighting formula,
as shown in Equation 2, in the context of segmentation tasks.

w(x,y) = exp(−
(x− μx)

2

2σ2
x
−
(y− μy)

2

2σ2
y
) (2)

The segmentation loss is formulated based on the
Dice Loss, while the initial pixel-wise loss function is

defined in Equation 3 below:

LDice = 1−
2∑

p∈P
yp ̂yp

∑
p∈P

yp +∑p∈P
̂yp

(3)

After incorporating Gaussian plume weights, the Dice Loss is
reformulated as shown in Equation 4.

Lweighted
Dice = 1−

2∑
p∈P

w(p) · yp ̂yp

∑
p∈P

w(p) · yp +∑p∈P
w(p) · ̂yp

(4)

4 Experiment related work

4.1 Dataset production

The dataset utilized for pre-training in this study was generated
using a butane gas tank and captured by a custom-developed
refrigerated mid-infrared camera. While our primary application
targets methane plume detection, the dataset used for training
predominantly consists of butane-based infrared imagery. This
decision was made due to practical constraints: controlled methane
plume datasets with adequate annotations are limited, whereas
butane offers safer and more accessible experimental conditions.
Although butane and methane exhibit different infrared absorption
spectra, our model does not rely solely on gas-specific spectral
features. Instead, it is designed to learn plume morphology, motion
patterns, and spatial-temporal cues that are common across various
hydrocarbon gases. Deep learning models trained on one gas can
generalize to others when trained to detect structural and behavioral
signatures rather than spectral fingerprints.
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FIGURE 5
Pretraining dataset visualization.

During the experiment, four video recordings were obtained,
each with an average duration of 5 minutes. A total of 13,109
still images were extracted from these videos for model training
purposes. A partial visualization of the pre-training dataset is
presented in Figure 5.

Using the open-source image annotation tool Labelme,
individual instances of leaking gas in the dataset were labeled
with the tag “gasleak,” while the rest of the image was considered
as “background.” The annotation information was saved in a
JSON file corresponding to the image name, and then converted
into the required TXT file format for model training via a TXT
file conversion process. The dataset was divided into training,
validation, and test sets in an 8:1:1 ratio for neural network model
training and validation. A total of 13,109 individual instances
of leaking gas were annotated in the dataset. The number of
leaking gas instances exhibited significant variation across different
images. Some images contained gas leak areas as small as 99
pixels, while others had gas leak areas as large as 14,133 pixels.
This variation highlights the diversity of the dataset, which is of
great significance for model learning. Not only does it provide
rich feature information for the model, but it also allows the
model to learn and adapt to various conditions in complex
environments, thereby enhancing the model’s generalization and
robustness.

4.2 Data pre-processing

The image data collected by the infrared camera has a size of
320 × 256. To facilitate subsequent input into the deep learning
network for training, the size needs to be adjusted to 640 × 640.
The traditional Letterbox method has the advantage of maintaining
the original aspect ratio of the image and avoiding distortion caused
by scaling or cropping. However, when the detection head of the
model is affected by an irregular background, the filled area may
impact performance. Since the blank area is usually filled with
black (RGB: [0, 0, 0]), it may interfere with tasks such as object
detection, especially on the boundaries. Particularly for infrared
data, the black background may have a negative impact on the
model’s learning process. Additionally, for small objects (such as gas
leaks in infrared images), it may lead to the dilution or submersion
of object information.

This paper adopts the WarpAffine method for image data
preprocessing. WarpAffine is an affine transformation method that

can directly map the image to the target size without additional
padding. By direct mapping, the introduction of padding areas
at the image edges is avoided, thereby reducing the invalid
information caused by padding. Precise affine transformation
can adjust the size while preserving the image structure, thus
ensuring the complete retention of the edge information of the
leaked gas. Affine transformation can be accelerated by hardware,
enabling efficient preprocessing under the premise of real-time
performance.

4.3 Model training ablation

In this experiment, the following hardware environment was
used: the GPU is a NVIDIA GeForce RTX 3080ti, the CPU is
an Intel i9-14900 k processor, and the memory size is 16 GB. The
software environment includes the Windows 11 operating system,
Python 3.9, CUDA 11.8, and PyTorch 2.0.0. All training was
performed without loading pre-trained weights, and conducted
under consistent experimental conditions to ensure fairness.
Model performance was validated on a held-out test set. The
input image resolution was set to 640 × 640 pixels. Training
was conducted for 500 epochs with a batch size of 32. The
model was optimized using the SGD optimizer with an initial
learning rate of 0.01 and a weight decay of 0.0005. A cyclical
learning rate scheduler based on the cosine annealing strategy was
applied to encourage stable convergence. To enhance generalization
and robustness, the following data augmentation techniques
were used during training: random horizontal and vertical flips,
random cropping, Gaussian noise injection, and brightness/contrast
adjustments.

5 Experiment and results

5.1 Experimental environment

The field test was carried out on 22 October 2024 in Lanjia
Town, Kuancheng District, Changchun City, Jilin Province.
The cameras were tested according to different distances,
backgrounds, and from a variety of angles. The visible and
corresponding infrared images of the test scene are shown
in Figure 6.
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FIGURE 6
Visualization of visible light images and infrared camera images.

5.2 Evaluation metrics

The evaluation metrics used in this paper include Precision,
Recall rate (Recall), F1 score (F1), Intersection over Union
(IoU) the number of parameters (Params), and Frames Per
Second (FPS) [31]. Among these, Precision and Recall rate
are used as basic metrics, while the F1 score and MAP, which
are calculated based on Precision and Recall, are used as the
final evaluation indicators to measure the model’s recognition
accuracy. GFLOPS is used to measure the complexity of the
model or algorithm, and PARAMS represents the size of the
model. Generally, the smaller the parameters and GFLOPS,
the less computational power the model requires, resulting in
lower hardware performance requirements, making it easier to
deploy the model on low-end devices. Precision, as defined in
Equation 5, is the ratio of true positive samples predicted by
the model to the total number of predicted positive samples.
Recall, shown in Equation 6, quantifies the proportion of true
positives among all actual positive instances. The F1 score,
given in Equation 7, combines Precision and Recall through
their harmonic mean, providing a balanced assessment of
model performance. Finally, the Intersection over Union (IoU),
defined in Equation 8, evaluates the overlap between the
predicted and ground truth segments, and is commonly used in
segmentation tasks.

Precision = TP
TP+ FP

(5)

Recall = TP
TP+ FN

(6)

F1 = 2Precision×Recall
Precision+Recall

(7)

IoU = TP
TP+ FN+ FP

(8)

5.3 Ablation experiments

In this outdoor experiment, a total of six sets of video image
data were collected, covering various scenarios with different
backgrounds and leakage scales. Specifically, it encompasses large

and small gas leakage scenes with the sky as the background,
large and small leakage scenarios under complex backgrounds
in close-range conditions, and large and small leakage scenarios
under complex backgrounds in long-range conditions. The average
duration of each video was 3 min, and a total of 9,632 static
images were acquired, among which 1,665 were images of no
leakage scenes.

Table 1 presents the results of the ablation study conducted
to systematically evaluate the individual and combined effects of
the three proposed optimization modules: MobileNetV4, SPD-
Conv, and the gas plume loss function. The baseline model,
E0, corresponds to the original YOLOv11 framework without
any architectural modifications. Configurations E1 through E5
represent intermediate variants in which one or two modules were
added incrementally, while E6 represents the complete model that
integrates all three enhancements.

The results clearly demonstrate that each module contributes
positively to model performance. Introducing MobileNetV4 alone
(E1) improves the F1-score from 81.60% to 83.21% and IoU
from 82.15% to 83.92%, while significantly reducing FLOPs from
21.5B to 17.3B, highlighting its lightweight yet effective design.
Adding SPD-Conv in isolation (E2) boosts the F1-score to 84.08%
and IoU to 84.76%, albeit at a computational cost, increasing
FLOPs to 22.8B. The gas plume loss function, which leverages
a physics-informed constraint derived from the Gaussian plume
model, yields a substantial improvement in segmentation accuracy
(F1 = 85.42%, IoU = 86.33%) with only a marginal increase
in FLOPs (21.6B).

Combinations of modules in E4 and E5 further improve
performance, suggesting that themodules are complementary rather
than redundant. Notably, the fully integrated model E6 achieves the
best overall results, with anF1-score of 88.97%and an IoUof 89.74%,
surpassing the baseline by 7.37% and 7.59%, respectively. Moreover,
E6 maintains a relatively low computational cost (18.6B FLOPs),
thanks to the efficiency introduced by the MobileNetV4 backbone,
which offsets the added complexity from SPD-Conv and the loss
constraint.

This ablation study validates the design rationale of the proposed
YPCN architecture and underscores the synergistic benefits of the
combined modules in enhancing both detection performance and
computational efficiency for real-time infrared gas leak detection
applications.
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TABLE 1 Ablation experiment results.

Optimized
Method

MobileNetV4 SPD-Conv Gas
plume
loss

F1 (%) IoU (%) FLOPS(B)

E0 - - - 81.60 82.15 21.5

E1 ✓ - - 83.21 83.92 17.3

E2 - ✓ - 84.08 84.76 22.8

E3 - - ✓ 85.42 86.33 21.6

E4 ✓ ✓ - 86.57 87.24 18.5

E5 ✓ - ✓ 87.69 88.41 17.4

E6 ✔ ✔ ✔ 88.97 89.74 18.6

The bold values in this table represent the results of this study, indicating the performance achieved by the methods used in this research.

TABLE 2 Comparison of the performance of different networks.

Model P (%) R (%) F1 (%) IoU (%) Params(M) FPS

Unet 72.76 84.39 77.85 78.17 7.8 80

Deeplabv3+ 74.82 85.43 79.86 79.64 10.3 98

YOLOX 75.60 86.02 80.40 80.78 9.4 120

Gasformer 78.31 87.94 82.79 83.52 9.9 105

MWIRGas-YOLO 80.24 89.01 84.38 85.76 9.6 112

YOLOv11 76.79 87.23 81.60 82.15 10.4 151

YPCN(Ours) 87.16 90.78 88.97 89.74 6.3 196

The bold values in this table represent the results of this study, highlighting the performance of the networks evaluated in this research.

5.4 Comparative experiments

To comprehensively evaluate the performance of the proposed
YPCN model, we conducted comparative experiments against
six widely used segmentation and detection methods, namely,
Unet [32], Deeplabv3+ [33], YOLOX [34], Gasformer [35],
MWIRGas-YOLO [36], and YOLOv11 [37]. The quantitative results
are summarized in Table 2, while the qualitative outputs are
presented in Figure 7.

In terms of precision, recall, F1-score, and IoU, the
proposed YPCN achieves the highest scores across all evaluation
metrics, with values of 87.16%, 90.78%, 88.97%, and 89.74%,
respectively. Compared with the original YOLOv11, YPCN
improves F1 by 7.37% and IoU by 7.59%, which demonstrates
a substantial performance gain. Even when compared to more
advanced models such as Gasformer and MWIRGas-YOLO,
YPCN exhibits superior balance between accuracy and model
efficiency.

Furthermore, YPCN is the most lightweight model among all
competitors, with only 6.3M parameters, significantly smaller than

Deeplabv3+ (10.3M) and YOLOv11 (10.4M). In terms of real-time
performance, YPCN also leads with an impressive 196 FPS, making
it highly suitable for deployment in industrial safety systems where
low latency is critical.

The qualitative comparisons in Figure 7 further corroborate
the quantitative findings. Traditional methods such as Unet
and Deeplabv3+ often fail to segment complete gas plumes,
particularly under complex backgrounds or with small, low-
contrast leaks. While YOLOX and Gasformer capture plume
shapes more effectively, they still suffer from over-segmentation
and misclassification in noisy scenes. The proposed YPCN
produces consistently accurate and complete segmentation masks,
even in challenging long-range or weak-signal scenarios. Its
superior boundary refinement and suppression of background
interference are attributed to the integration of physical
priors via the gas plume loss function and the optimized
network design.

Collectively, the results in Table 2 and Figure 7 highlight that
YPCN not only surpasses existing models in detection accuracy,
but also offers clear advantages in computational efficiency and
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FIGURE 7
Visualize the results of different algorithms.

robustness, making it a strong candidate for practical gas leak
monitoring applications. The proposed network surpasses the other
three models across all evaluation metrics, achieving a detection
accuracy of 99.78%. In contrast, the highest accuracy reported in
existing literature is 95% [26].

6 Conclusion and future perspectives

Based on the passive imaging technology of cryogenic infrared
detectors, this paper proposes a deep learning-based gas semantic
segmentation method based on the YOLOv11 model. Firstly,
MobileNetV4 is used to replace the original backbone network,
and the SPD-Conv module is introduced into the segmentation
head to reduce the model parameters and complexity. In addition,
the gas plume model is introduced as a key physical constraint
condition in the loss function to improve the accuracy, segmentation

precision and generalization ability of the model in processing gas
plume tasks. Experimental results show that the proposed model
achieves an F1 score of 88.97% and an IoU of 89.74%, with a
detection accuracy of up to 99.78%, demonstrating clear superiority
over existing methods. These results demonstrate the potential of
the proposed model for deployment in real-time industrial safety
monitoring systems. To assess the applicability of the algorithm, we
conducted a preliminary evaluation on a small test set of methane
plume data (details in Section Ⅴ). The model achieved comparable
performance, suggesting that features learned from butane can
transfer effectively to methane in terms of plume localization.
Nonetheless, we acknowledge the limitations of this approach.
Butane and methane differ in their infrared absorption spectra,
emissivity, and thermal contrast—factors that can impact plume
visibility in IR imaging.We address this limitation in our futurework
by planning to incorporatemixed-gas andmethane-specific datasets
for fine-tuning. In the future, we will further optimize the network
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model to improve its accuracy and make it better applied to the task
of natural gas leakage detection.
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