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Prediction of bundle-conductor
ampacity based on
transformer-LSTM

Song Bao*, Hua Bao, Miao Jin, Yong Ruan, Yunfei Shi and
Chao Yang

China Energy Engineering Group Anhui Electric Power Design Institute Co., LTD., Hefei, China

The traditional method cannot meet the demand of new power system for
dynamic regulation of transmission lines. In order to solve this defect, based on
finite element simulation and neural network, an overhead bundle-conductor
dynamic bundle-conductor ampacity prediction method is proposed in this
paper. Considering the four bundle- JL/G1A-400/35 steel-core aluminum
stranded wire, the three-dimensional electric-thermal-fluid coupling model of
the conductor is established by using the synergistic optimization of transformer
and long-short-term memory neural network (LSTM). The results show that the
mean square error and average absolute error of the proposed model are 31.14
and 6.93, respectively. Compared with the bidirectional long and short-term
memory network (BiLSTM), themean square error and average absolute error are
reduced by 74.55% and 7.35%, respectively. The maximum improvement of load
capacity prediction margin is 10.04%. It can effectively tap the dynamic potential
of transmission lines, and provide technical support for real-time scheduling of
smart grid.
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overhead line ampacity, dynamic regulation, bundle-conductor, longshort-term
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1 Introduction

The rapid decarburization of global energy systems is driving increased demand for
dynamic regulation capacity in renewable-dominated transmission networks [1, 2]. As
the central infrastructure of ultra-high voltage (UHV) transmission networks, dynamic
prediction of the real-time carrying capacity has emerged as a critical technological
challenge for ensuring safe, economic grid operations and efficient utilization of renewable
energy [3, 4].

The prediction methodologies of bundle-conductor ampacity are traditionally
classified into two principal categories: physics-based mechanistic models and data-driven
approaches, with pronounced disparities observed in their theoretical rigor, computational
performance, and versatility across application scenarios. Among the prediction methods
based on physical mechanisms, the conventional Static Thermal Rating (STR) method is
grounded in the steady-state thermal equilibrium equation.The conductor current-carrying
capacity is derived through exclusive reliance on prescribed environmental variables,
such as maximum ambient temperature and negligible wind conditions [5]. Despite its
simplicity and computational efficiency, the STRmethodunderestimates conductor capacity
due to reliance on fixed conservative assumptions (e.g., static meteorological thresholds)
rather than real-time environmental conditions. It fails to adapt to load fluctuations from
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intermittent renewables, limiting its relevance in dynamic power
systems. Especially in the high penetration scenarios of fluctuating
power sources, such as wind power and photovoltaic, the frequently
of transmission line faces the challenges of alternating short-term
overloads and long-term low loads. As a result, the traditional
static method cannot mitigate localized conductor overheating risks
and fully exploit transmission capacity, making them incompatible
with modern power systems requiring precise load flow prediction
under dynamic conditions. To address this issue, another prediction
method is proposed. It is based on physical mechanism, called as
dynamic thermal rating (DTR) [6]. By using conductor-mounted
sensors to monitor temperature, wind speed and solar irradiance,
and combining real-time data with heat transfer models, DTR
dynamically adjusts line capacity [7]. Its prediction accuracy is
significantly improved. As evaluated in [8], the transmission line
capacity obtained by DTR is enhanced by 5%–20% compared
by STR. A stochastic transmission expansion planning model
considering DTR uncertainty is proposed in [9]. It can optimize
the deployment of new lines with DTR systems, and uses DTR to
improve line capacity and reduce investment in new lines.

The data-driven load capacity prediction methods have
gradually become a research hotspot. Traditional machine learning
algorithms, such as Support Vector Regression (SVR) and Random
Forest (RF), combine historical meteorological data and load data
to train models. They are able to respond quickly to changes in
meteorological parameters by mining non-linear relationships in
historical data. The 15-min conductor load variation is predicted in
[10] using Random Forest and Quantile Random Forest combined
with numerical weather data. However, the model generalization
is limited by the quality and scale of training data, and long-
term temporal dependencies are not effectively captured. In [11],
a probabilistic machine learning method for dynamic line rating
is proposed. The weather observations are utilized to improve
short-term prediction accuracy, and two adaptive strategies are
developed to optimize the trade-off between capacity enhancement
and risk mitigation. Nevertheless, the model shows inadequate
adaptation to extreme events like sustained high temperatures,
potentially causing DTR prediction failures. Deep learning has
been introduced to load forecasting due to its superior time-
series modeling capability, where bi-directional long and short
term memory network (BiLSTM) effectively captures the temporal
dependencies ofmeteorological parameters through its bidirectional
processing mechanism. An auto-encoder (AE) and BiLSTM are
integrated in [12] to address the problem of encountering network
attacks in load forecasting. However, larger training datasets and
additional conductor-mounted weather sensors are required by
this approach. In addition, many studies ignore the influence of
the electromagnetic-thermal-fluid coupling effect between multiple
conductors of bundle-conductor on data characteristics. It limits the
applicability under complex working conditions.

To address the above problem, a dynamic bundle-conductor
ampacity prediction method for overhead bundle-conductors based
on finite element simulation and neural network is proposed. It
does not require the installation of meteorological sensors. Firstly,
a three-dimensional coupled electro-thermal-fluid finite element
model of bundle-conductor is developed by using COMSOL. This
model addresses the oversimplification of boundary conditions in
conventional approaches under extreme meteorological conditions.

Secondly, long-short-term memory (LSTM) model is developed to
predict the overhead conductor capacity without meteorological
sensors, combining the LSTM temporal modeling with the global
attention of transformer for enhanced feature extraction. Finally,
the accuracy of the model is demonstrated by comparing with the
rest of the load capacity prediction models. The gain effect on the
grid security margin and new energy consumption is quantified by
comparing with the traditional load capacity calculation methods.

2 Methodology for bundle-conductor
ampacity

2.1 Heat balance equation for
bundle-conductors

The dynamic equilibrium between joule heating and
environmental heat dissipation during operation are characterized
by the thermal balance equation of overhead bundle conductors
[13]. The fundamental equation serves as the theoretical basis for
both capacity calculation and transmission line safety assessment.
Neglecting the hysteresis loss, evaporative heat dissipation
and corona heating, the steady state heat balance equation of
bundle-conductor can be expressed by Equation 1:

qc + qr = qs + I
2R(TC) (1)

where qc is the conductor convection heat dissipation power; qr is
the conductor radiation heat dissipation power; qs is the conductor
sunshine heat absorption power. I is the conductor current, Tc is the
temperature of the conductor and R (Tc) is the AC resistance of the
conductor at Tc.

Conductor convection heat dissipation includes the natural
convection and forced convection. The power of natural convection
heat dissipation can be expressed by Equation 2:

qc1 = 0.0205ρ
0.5
f D0.75(Tc −Ta)

1.25 (2)

where Ta is the ambient temperature, andD is the outer diameter of
the wire. The power of forced convection heat dissipation at low air
velocity can be expressed by Equation 3:

qc2 = [1.01+ 0.0372(
Dρ fVw

μ f
)

0.52

]k fKangle(Tc −Ta) (3)

where Kangle is the wind direction coefficient, which can be
calculated by Equation 4:

Kangle = 1.194− cos φ+ 0.194 cos(2φ) + 0.368 sin(2φ) (4)

where φ is the angle between the wind direction and the axis of the
conductor.

The power of forced convection heat dissipation at high air
velocity can be expressed by Equation 5:

qc3 = 0.0119(
Dρ fVw

μ f
)

0.6

k fKangle(Tc −Ta) (5)

The convective heat dissipation power qc can be determined
by Equation 6:

qc =max{qc1 ,qc2 ,qc3} (6)
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FIGURE 1
Relationship between bundle-conductor ampacity and maximum
permissible operating temperature.

FIGURE 2
Relationship between bundle-conductor ampacity and ambient
temperature.

The radiant heat dissipation power of the conductor is defined
by Equation 7:

qr = πεDσ[(Tc + 273)
4 − (Ta + 273)

4] (7)

where ε is the radiation coefficient of the conductor, and σ is the
StephenBoltzmann constant, its value is 5.67 × 10−8 W/(m2⋅K4).The
power of heat absorption of conductor sunshine can be expressed by
Equation 8:

qs = αDSi (8)

where α is the absorption coefficient of the wire surface, for the
bright new line takes the value of 0.23–0.43, blackened old line takes

FIGURE 3
Relationship between bundle-conductor ampacity and wind speed.

FIGURE 4
Relationship between bundle-conductor ampacity and sunshine
intensity.

TABLE 1 JL/G1A-400/35 steel core aluminum stranded wire parameters.

Parameters Steel Aluminum

Number of sub conductors 7 48

Calibre (mm) 2.5 3.22

Calculate the cross-sectional area (mm2) 389.37 34.36

the value of 0.90–0.95. D is the outer diameter of the wire. Si is the
sunlight intensity. R (Tc) can be calculated by Equation 9:

R(Tc) = [

[

R(Thigh) −R(Tlow)
Thigh −Tlow

]

]
(Tc −Tlow) +R(Tlow) (9)
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FIGURE 5
Cross section for JL/G1A-400/35 steel core aluminum stranded wire model sub conductor.

TABLE 2 Parameters for JL/G1A-400/35 steel core aluminum stranded wire.

Parameters Aluminum layer Steel core Unit

Relative permeability 1 1 dimensionless

Relative permittivity 1 1 dimensionless

Conductivity 3.774 × 107 4.032 × 106 S/m

Thermal conductivity 238 44.5 W/(m·K)

Constant pressure heat capacity 900 475 J/(kg·K)

Density 2,700 7,850 kg/m3

where R (Thigh) and R (T low) represent the known AC resistance at
higher temperature Thigh and lower temperature T low, respectively.
When the conductor temperature Tc is the maximum permissible
operating temperature Tmax, the formula for calculating the
conductor ampacity can be expressed by Equation 10:

I = √
qc + qr − qs
R(Tmax)

(10)

2.2 Maximum permissible operating
temperature for conductor

The maximum allowable operating temperature of conductor
represents the critical thermal limit under normal operating
conditions [14, 15]. As the primary constraint for capacity

determination, the maximum allowable operating temperature of
conductor interacts with meteorological parameters through the
thermal balance equation to govern current-carrying capacity.
Taking steel core aluminum stranded wire LGJ-240/30 as an
example, the outer diameter of the wire is 21.6 mm, and the
ambient temperature is set to 40°C. The heat absorption coefficient
and heat dissipation coefficient are 0.9. The light intensity is set
to 1000 W/m2, and the wind speed is 0.5 m/s. The maximum
permissible temperature of the conductor is changed from 60°C to
100°C, and the step is taken to be 10°C for the calculation.

To obtain the maximum permissible conductor, the relationship
between conductor current-carrying capacity and operating
temperature is shown in Figure 1. As the maximum allowable
operating temperature of the conductor increases to 100°C, the
current-carrying capacity is considerably improved. However,
the growth rate is gradually reduced as the temperature rises. In
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FIGURE 6
Developed Model in COMSOL: (a) Four bundle- JL/G1A-400/35 conductor model grid section schematic diagram. (b) Temperature distribution of the
four-bundle- JL/G1A-400/35 model.

this paper, the maximum allowable operating temperature of the
conductor is set to 70°C.

2.3 Influence of meteorological conditions
on bundle-conductor ampacity

2.3.1 Effect of ambient temperature
The ampacity of overhead line is affected by the climatic

condition [16]. The ambient temperature varies from 20°C to 50°C,
and the result is presented in Figure 2.

As the ambient temperature increases, the corresponding
bundle-conductor ampacity decreases. When the ambient
temperature is lower, the conductor is able to withstand a
larger current. According to the principle of heat balance, the
heat dissipation of conductor mainly consists of radiation heat
dissipation and convection heat dissipation. As the ambient
temperature rises, the thermal conductivity of the air increases, and
the heat exchange between the air and the conductor is strengthened.
The temperature rise of the conductor is slightly less than the rise
in ambient temperature. The temperature difference between the
conductor and the surrounding air are reduced, which results in the
difficulty of heat dissipation in the conductor and a decrease in the
current-carrying capacity.

2.3.2 Effect of wind speed
The ambient temperature is set to 20°C, and other conditions

remain unchanged. Assuming that the wind direction is
perpendicular to the conductor, the wind speed changes from
0.1 m/s and gradually increases to 2 m/s, as shown in Figure 3.

It can be concluded that the conductor-carrying capacity
increases as the wind speed rises. The convective heat dissipation
power is closely related to the wind speed.The larger the wind speed,
the greater the heat transfer coefficient of air layer on the wire.
The convective heat dissipation power is thus greater, and the wire
can withstand a larger current. Moreover, the increase range of the

current-carrying capacity is relatively significant in the wind speed
of 0.1 m/s to 0.5 m/s. It indicates that the current-carrying capacity
of wire is sensitive to the wind speed.

2.3.3 Effect of light intensity
Themaximum allowable operating temperature of the wire is set

to 70°C, the ambient temperature is set to 20°C, the size of the wind
speed is set to 0.5 m/s, and other conditions remain unchanged.
Light intensity is changed from 500 W/m2 to 1000 W/m2, the curve
between the maximum allowable operating temperature of wire and
the light intensity is given in Figure 4.

As the light intensity increases, the bundle-conductor ampacity
decreases. According to the principle of heat balance analysis,
light heat absorption power is proportional to the light intensity.
The greater the light intensity, the more heat absorbed by the
wire, and the higher the wire temperature. Hence, the current-
carrying capacity is reduced. When the maximum allowable
operating temperature of wire is determined,meteorological factors,
including ambient temperature, solar radiation intensity and wind
speed, collectively affect the actual bundle-conductor ampacity
[17]. Therefore, considering real-time meteorological conditions,
the bundle-conductor ampacity can be assessed more accurately by
using the prediction technique [18].

3 Three-dimensional modelling of
overhead bundle-conductors

Bundle-conductor, as the main carrier of UHV transmission
line, is significantly affected by the coupling of electric-thermal-fluid
multi-physical fields. By integrating the real geometrical parameters,
dynamic material properties and meteorological condition-driven
boundary settings, the electric-thermal-fluid coupling model of a
four-bundle- JL/G1A-400/35 steel-core aluminum stranded wire is
established.
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FIGURE 7
Transformer coding layer structure.

3.1 Governing equations

3.1.1 Electromagnetic field
The conservation relationship for current can be described

by Equation 11:

∇ · J = Qj,v (11)

The left term of Equation 10 is the scatter of the current density
J , which represents the net outflow of current per unit volume. Its

FIGURE 8
LSTM decoding layer structure.

right side Qj,v, is the volumetric current source, and represents the
externally injected current density. Under steady-state conditions,
charge accumulation is zero. Hence, the current scatter is almost
determined by the external source.

The intrinsic equation for current density can be described
by Equation 12:

J = σE+ jωD+ Je (12)

It defines the components of the current density:
Conduction current density (σE) is determined by conductivity

σ and electric field E, corresponding to Ohm’s law.
Displacement current density (jωD) is related to the time

variation of electric field, D = εE (ε is the dielectric constant).
External current density (Je): the current density introduced by

an external excitation (e.g., current source).
The relationship between electric field and electric potential can

be described by Equation 13:

E = −∇V (13)

3.1.2 Heat transfer field
The energy conservation equation for heat transfer in solids can

be expressed by Equation 14:

ρCpu ·∇T+∇ · q = Q+Qted (14)

where ρ is the density of the material, Cp is the constant pressure
heat capacity of the material. u is the velocity field, which represents
the flow rate of the fluid. T is the temperature, q is the heat flow
density vector, which represents the direction and magnitude of the
heat transfer.Q is the internal volumetric heat source.Qted is the heat
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FIGURE 9
LSTM network structure.

FIGURE 10
Transformer-LSTM intra-cell network structure.
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FIGURE 11
Transformer-LSTM data transfer process.

due to the electromagnetic effect. The energy conservation equation
for heat transfer in fluid can be expressed by Equation 15:

ρCpu ·∇T+∇ · q = Q+Qp +Qvd (15)

where Qp is the heat source due to pressure work and Qvd is the
viscous dissipation, i.e., the heat generated by fluid friction.

Heat conduction equation can be expressed by Equation 16:

q = −k∇T (16)

where k is the thermal conductivity of the material. This equation
defines the relationship between the heat flow density q and the
temperature field T.

3.1.3 Fluid field
The momentum conservation equation can be defined by

Equation 17:

ρ(u ·∇)u = ∇ · (−pI+K) + F (17)

where p is the fluid pressure, I is the unit tensor, K is the viscous
stress tensor, and F is an external volumetric force (e.g., gravity).
The specific form of the viscous stress tensor K can be calculated
by Equation 18:

K = (μ+ μt)[∇u+ (∇u)
T] (18)

where μ is the dynamic viscosity of the fluid and μt is the turbulent
viscosity, which is used to describe the additional viscous effect in
turbulent flow. It is defined by Equation 19:

μt = ρCμ
k2

ϵ
(19)

where ρ is the density of the fluid, k is the turbulent kinetic energy,
and ϵ is the turbulent dissipation rate. Cμ is an empirical parameter
and is set to 0.09.

The continuity equation is defined by Equation 20:

ρ∇ · u = 0 (20)

For incompressible fluids, the density ρ is constant, which
implies that the mass of fluid flowing into a particular tiny control
body is equal to the mass of fluid flowing out of it.

Turbulent kinetic energy equation can be expressed by
Equation 21:

ρ(u ·∇)k = ∇ · [(μ+
μt
σk
)∇k]+ Pk − ρϵ (21)

Turbulent kinetic energy k is an important parameter describing
the intensity of turbulence. The left side of Equation 20 contains
the convective term of turbulent kinetic energy, while its right side
comprises three distinct components: the diffusion term, production
term, and dissipation term of turbulent kinetic energy. σk is the
turbulent kinetic energy Planck’s number, and is often set to
be 1. The generating term of the turbulent kinetic energy Pk is
computed from the velocity gradient. The turbulence viscosity is
determined by Equation 22:

Pk = μT[∇u:(∇u+ (∇u)
T)] (22)

where the double dot product () denotes the tensor reduction and
merging operation.

The turbulent dissipation rate equation is determined
by Equation 23:

ρ(u ·∇)ϵ = ∇ · [(μ+
μT
σϵ
)∇ϵ]+Cϵ1

ϵ
k
Pk −Cϵ2ρ

ϵ2

k
(23)

The turbulent dissipation rate ϵ describes the ratewhen turbulent
kinetic energy is converted to thermal energy.The equation is similar
to the turbulent kinetic energy equation. σϵ is the dissipation rate
Platt’s number, which is generally 1.3. Cϵ1 and Cϵ2 are empirical
constants, and they are 1.44 and 1.92 in the standard k-ε model,
respectively.
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FIGURE 12
Flowchart for prediction.

3.2 Simulation study

3.2.1 Simulation model
The outer diameter of the four-bundle- JL/G1A-400/35

steel-core aluminum stranded wire is 26.8 mm, and the
spacing is 450 mm. The basic parameters are given in Table 1.
As shown in Figure 5, it has seven steel cores which are
arranged according to the way of one inner layer and 6 outer
layers. 48 aluminum wires are arranged according to the way
of 10 inner layers, 16 next outer layers and 22 outermost
layers.

To conductor the electromagnetic-thermal-fluid coupling
calculation of steel-core aluminum stranded wire, the material
properties are defined, as listed in Table 2.

3.2.2 Simulation results
To optimize computational efficiency while maintaining

simulation accuracy, the model adopts the following geometric
parameters: each of the bundle-conductor has a length of 0.1 m,
enclosed within a cylindrical air domain with a radius of 0.5 m and
height of 0.1 m, as shown in Figure 6. The computational domain is
discretized using grid generation techniques, which transform the
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TABLE 3 Model hyperparameter settings.

Designation Element

Epochs 5,000

Batch Size 4

Criterion MSELoss

Optimizer Adam

Learning Rate 0.001

Weight-Decay 0.0005

continuous geometric space into discrete computational cells. This
discretization enables numerical analysis of complex geometries and
physical field distributions.

4 Prediction model

The meteorological factors, including ambient temperature,
wind speed and light intensity, determine the size of bundle-
conductor ampacity. The key to obtain the predicted value of
the conductor ampacity is optimally leveraging the respective
advantages of existing algorithms. It serves as the prerequisite for
coupling higher-performance model combinations.

4.1 Transformer coding layer

The Transformer encoder layer enhances the Transformer-
LSTM network by generating attention-weighted data. The
processed data can provide more features in the prediction of
carrier traffic. Through dot-product operations, the Transformer
coding layer generate attention to the data, while multiple identical
encoder layers operating in parallel enable efficient data processing
and prediction. The structures of Transformer coding layer are
the multi-head attention mechanism and the feed-forward layer.
Layer normalization operation is added after each multi-head
attention mechanism and feed-forward layer. The data processed
by layer normalization can reduce problems, such as gradient
explosion and improve the stability of the network. To retain the
original data characteristics during the processing, the encoder
architecture includes two linear summation layers, which improve
the model feature learning. Transformer coding layer structure is
presented in Figure 7.

The core part of the coding layer is the multi-head attention
mechanism. It is the key part of the Transformer-LSTM model
to realize accurate prediction. The multi-head attention strength
mechanism consists of multiple heads with self-attention. The self-
attention can be described as a process solved by a query vector
and a set of key-value vector matrices. The model simultaneously
computes the attention function on a set of query vectors and packs
them into a matrixQ, and packs the key-value vectors and the value
vectors into matrices K and V . The output of the query vectors is

determined by the hidden vectors encoded in the previous layer,
and the matrices K and V are assigned the same value as Q in
the self-attention. The output is the weight-weighted value, which is
derived from the compatibility operation between the query vector
and the key vector. f = {fi}

t
i=1 is the input of the multi-head self-

attention module.The key vectors, weight vectors and query vectors
are calculated by Equation 24:

K j = fW
k
j (24)

V j = fW
v
j (25)

Qj = fW
q
j (26)

where Wk
j ,W

k
j ,W

k
j ∈ R

d×dk is the trainable projection matrix.
Using the derived results, the scaled dot calculation can be
expressed by Equation 27:

Attention(Q,K,V)j = softmax(
QjK

T
j

√dk
)Vj (27)

In order to focus on the information fromvarious representation
subspaces at different locations, further optimization is required
by using H parallel attention computations. In the case of WA ∈
RHdk×d, the process of the multi-head attention mechanism is
calculated by Equation 28:

MultiHead(Q,K,V) = Concat({headj}
H
j=1
)WA (28)

The functionality of encoder layer is processed by a feed-
forward network. This network implements two sequential linear
transformations with a ReLU activation function between them,
applied uniformly across all temporal positions. The linear
transformation formula can be expressed by Equation 29:

y =WTx+ b (29)

4.2 LSTM decoding layer

The improvement of Transformer-LSTM network model is
architectural reconstruction of the decoding layer of the original
Transformer. When the original Transformer decoding layer is
applied in the field of regression computation, the decoding layer
is replaced by a linear layer. Hence, the prediction model produces
a large bias in the prediction of short data sets. To enhance
the predictive performance, a redesigned LSTM-based decoding
layer is proposed, which consists of a linear rectification layer,
an LSTM processing layer and a fully connected output layer.
The core part is LSTM operation layer and LSTM decoding layer,
as shown in Figure 8. The linear rectifier processes the output of
Transformer encoding layer, and transform the data into a format
compatible with the LSTMhidden layer, thereby facilitating effective
input representation.

The LSTM operation layer consists of input gates, forgetting
gates, output gates and cell states. The structure of LSTM network
is given in Figure 9. The LSTM module processes sequential data
by integrating three input sources: i) the encoded data from the
Transformer layer; ii) the hidden data ht from the previous time
step; iii) the cell state output Ct. These inputs are sequentially
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FIGURE 13
Regression curves: (a) Training set (b) Test set.

processed through the gating mechanism to enable effective
temporal modeling.

The data is calculated in the input gate according to Equation 30:
it = σ(Wi[ht−1,xt] + bi) (30)

The data is calculated in the forgetting gate according to
Equations 31, 32:

ft = σ(W f[ht−1,xt] + b f) (31)

Ĉt = tanh(WC[ht−1,xt] + bC) (32)

Thedata is calculated in the output gate according toEquation 33:
ot = σ(Wo[ht−1,xt] + bo) (33)

The gated outputs are subsequently distributed to two
distinct memory modules, where long-term and short-term
dependencies are selected to be processed by specialized pathways,
as follows:

The long memory is described by Equation 34:
Ct = ft ∗Ct−1 + it ∗ Ĉt (34)

The short memory is described by Equation 35:
Ot = ot ∗ tanh(Ct) (35)

Before the output of the improved LSTM decoder, the two
additional fully connected layers are applied to enhance the network
robustness and increase the output reliability.

4.3 Overall structure of Transformer-LSTM
network

The mechanism of the data processing in Transformer-LSTM
network can be categorized into two distinct phases: intra-
cell processing and inter-cell processing. To realize the load

capacity prediction, the data is transferred in two ways. The
intra-cell processing performs the parallel computation of feature
transformations, while the inter-cell processing facilitates sequential
information flow across temporal or spatial dimensions. The data
within the cell follows the designated pathway (Route ①), as
illustrated in Figures 10, 11. Each input is position coded as well
as Transformer coded. Therefore, the encoded data retains more
feature hierarchies to ensure less signal attenuation during the load
prediction process.

The transfer model of data is given in Figure 11. The out-
of-cell data processing is implemented through the LSTM-based
decoding layer, which achieves complete preservation of temporal
dependencies by its gated memory, as illustrated in② of Figure 11.
The architecture enables effective sequential pattern learning,
thereby improving the prediction performance of the
network.

5 Discussion

5.1 Prediction process

The proposed Transformer-LSTM model implements load
capacity prediction through the following technical route:
1) a dataset is constructed by integrating meteorological
parameters by using COMSOL. 2) Normalize the feature
dataset. 3) Build Transformer-LSTM model. 4) The dataset
is partitioned into training and validation subsets, with the
former utilized for model optimization and the latter employed
for performance evaluation. 5) A joint training-prediction
dataset is constructed to enable comprehensive quantitative
evaluation of model performance. The framework is presented
in Figure 12.
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TABLE 4 Prediction results of model on test set.

Meteorological element Sample values of
carrier volume (A)

Model prediction
results (A)

Wind velocity (m/s) Light intensity
(W/m2)

Environmental
temperature (°C)

0.5 100 0 1,210 1,231.24

0.5 100 10 1,126 1,131.85

0.5 100 30 936 928.61

0.5 500 30 896 881.32

0.5 500 40 774 796.03

0.5 1,000 10 1,060 1,078.434

0.5 1,000 20 962 956.194

0.5 1,000 40 721 732.66

1 100 20 1,163 1,125.43

1 100 30 1,051 1,040.33

1 100 40 915 894.92

1 500 20 1,136 1,093.24

1 500 30 1,023 1,013.41

1.5 500 0 1,475 1,464.91

1.5 500 30 1,100 1,068.48

1.5 1,000 20 1,205 1,161.34

1.5 1,000 30 1,066 1,049.94

2 1,000 10 1,412 1,404.09

TABLE 5 Prediction results for bundle-conductor ampacity.

Predictive model MSE MAE

SVR 1,190.22 26.88

RF 2,103.13 39.26

BiLSTM 122.37 7.48

Transformer-LSTM 31.14 6.93

A JL/G1A-400/35 steel-core aluminum strand wire is
established, and the spacing between sub-conductor is 0.45 m. The
wind speed is set to 0.5 m/s, 1.0 m/s, 1.5 m/s and 2.0 m/s. The light
intensity is 100 W/m2, 500 W/m2 and 1,000 W/m2. The ambient
temperature is set to 0 10°C, 20°C, 30°C and 40°C. A total of 4 × 3
× 5 = 60 combinations are selected. The calculations are conducted
for each combination to determine the current when the conductor
temperature is the maximum allowable operating temperature (i.e.,
70°C). 60 samples are obtained, which are divided into 42 training
subsets and 18 validation subsets.

5.2 Model parameterization and evaluation
indicators

5.2.1 Model parameterization
The Transformer-LSTM model is trained and tested with the

following configurations: for hardware level, CPU is AMD Ryzen
55,600 and GPU is NVIDIA GeForce RTX 3060 TI (8 GB). For the
software level, it is built based on Windows 11 64-bit operating
system. The programming language is Python 3.8, and the deep
learning framework is PyTorch 1.8. It is chosen as the deep learning
framework, while the GPU is accelerated by CUDA 11.1.The details
for training model are listed in Table 3.

5.2.2 Evaluation indicators
Evaluation indexes are important formodel prediction accuracy.

In this paper, the mean square error (MSE) and mean absolute error
(MAE) are selected as the evaluation indexes of prediction results.
They are defined by Equations 36, 37:

MSE = 1
N

N

∑
i=1
(yi − yp)

2 (36)
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TABLE 6 Comparison of Transformer-LSTM with existing methods.

Meteorological element Existing methodology
capacity/a

Transformer-LSTM
Bundle-conductor

ampacity/A

Improved margins over
existing methods

[0.5 100 0] 1,133 1,231.24 8.67%

[0.5 100 10] 1,046 1,131.85 8.21%

[0.5 500 30] 814 881.32 8.27%

[0.5 1,000 10] 980 1,078.434 10.04%

[1.0 100 30] 993 1,040.33 4.77%

[1.0 100 40] 855 894.92 4.67%

[1.0 500 20] 1,087 1,093.24 0.57%

[1.0 500 30] 962 1,013.41 5.34%

MAE = 1
N

N

∑
i=1
|yi − yp| (37)

where yi is the true value, yp is the value predicted by model, and N
is the number of samples.

5.3 Prediction results

5.3.1 Training process
During the training process of Transformer-LSTM model, the

regression curves demonstrate excellent fitting performance on
both the training and validation subsets, indicating strong learning
capability and generalization capacity of the proposed model, as
illustrated in Figure 13.The regression curves on the training subset
can closely fit the actual data points. It is confirmed that the
model is successfully capture the complex nonlinear relationships
and long-term dependency features in data through the synergistic
combination of Transformer self-attention and LSTM modeling
capability. The regression curves on the validation subset also show
high prediction accuracy with small deviation from the actual data,
and the model is not over fitted.

5.3.2 Discussion
The prediction results are given in Table 4. It demonstrates

that the proposed model can accurately capture the complex
correlation between the carrier volume and meteorological factors.
For the dynamic combination of wind speed (0.5–2.0 m/s), light
intensity (100–1000 W/m2) and ambient temperature (0°C–40°C),
the maximum relative error between the predicted value and the
actual value is only 3.76%. It is at a high degree of consistency for
most conditions. Notably, the proposed model demonstrates robust
predictive performance under extreme meteorological conditions,
maintaining consistently high accuracy (e.g., achieving merely
0.56% prediction error for the [21,000 10] configuration). This
performance persists even under thermally stressful (30°C–40°C
ambient temperature) and high irradiance (1000 W/m2 solar
loading) conditions. These results validate that the model can

capture nonlinear interactions between coupled physical fields in
the power transmission scenario through its advanced feature
representation mechanism. The Transformer-LSTM architecture
enables accurate prediction of bundle-conductor ampacity. It can
offer highly reliable decision support for thermal balance analysis
and real-time transmission capacity regulation under dynamic
weather conditions.

In order to verify the superiority of the proposed model, it is
compared with three representative benchmark algorithms, such
as Support Vector Regression (SVR), Random Forest (RF), and
Bidirectional Long Short-Term Memory Network (BiLSTM). The
results are given in Table 5. The prediction errors of the proposed
model are all lower than those of SVR, RF and BiLSTM models.
Compared with BiLSTMmodel, the MSE andMAE of the proposed
model are decreased by 74.55% and 7.35%, respectively. The
effectiveness and significant solution advantages of the Transformer-
LSTMmodel are validated.

Moreover, several sets of typical meteorological factors,
including wind speed, light intensity and ambient temperature,
are considered. The load capacity predicted by the Transformer-
LSTM model is compared with that from conventional methods, as
presented in Table 6.

It can be concluded that the ampacity calculated by the
Transformer-LSTM model is larger than that of the existing
method.The conventional calculation method of bundle-conductor
ampacity is conservative, whereas the Transformer-LSTM model
enhances the capacity margin by up to 10%. More effective
utilization of transmission potential of overhead lines is realized by
Transformer-LSTM model. When implemented in power systems,
the proposed model enables dynamic adjustment of overhead
transmission line capacity during peak demand periods based on its
predictive outputs.

6 Conclusion

A hybrid modeling method, which combines multi-physics
field simulation with neural network deep learning, is proposed
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to address the overhead bundle-conductor load capacity prediction
problem. The conclusions are summarized as follows.

• A 3D electro-thermal-fluid coupled model is developed
to analyze the conductor temperature rise under complex
meteorological conditions. It can provide a physics-based
foundation for bundle-conductor ampacity assessment.
• The Transformer-LSTM algorithm is designed to
establish a high-precision nonlinear mapping between
meteorological parameters and bundle-conductor ampacity,
improving prediction robustness.

• The experimental results demonstrate that the proposed
model outperforms traditional prediction models in accuracy,
confirming its practical applicability in load capacity prediction.
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