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Production of the X(3872) in
Pb-Pb collisions at √sNN = 5.02
TeV from PACIAE model
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We employed the dynamically constrained phase space coalescence model
to study the X(3872), where the parton and hadron cascade model (PACIAE)
was used to simulate Pb-Pb collisions at √sNN = 5.02 TeV in centralities of
0− 10% and 30−50%. In this work, we examined the correlation between the
yield of the X(3872) and the parameters Δm and R. Additionally, We predicted
the yields of the X(3872) for its three plausible configurations, namely, the
hadronic molecular state, tetraquark state and nuclear-like state, in Pb-Pb
collisions at √sNN = 5.02 TeV. We also analyzed the transverse momenta for
three different structures of the X(3872). Sizable differences were observed
in the transverse momentum distributions among the three different X(3872)
structures.
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heavy ion collision, exotic hadron, hadronic molecular state, tetraquark state, nuclear-
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1 Introduction

Hadron spectroscopy is a field replete with frequent discoveries and surprises, and the
theoretical complexities associated with understanding the strong interaction in the color
confinement regime make the field even more fascinating. A very successful classification
scheme for hadrons in terms of their valence quarks and antiquarks was independently
proposed by Murray Gell-Mann [1] and George Zweig [2] in 1964. This classification,
known as the quark model, essentially divides hadrons into two major families: mesons
(quark-antiquark) and baryons (three-quarks). Theoretically, the basic theory of the strong
interaction, quantum chromodynamics (QCD), allows for the existence of exotic hadrons
beyond the conventional picture.

The first quarkonium-like state, the X(3872), was discovered by the Belle
collaboration in the decay B±→ K±X(3872) → K±(π+π−J/ψ) in 2003 [3]. It was
subsequently confirmed by other experiments [4–6]. With the development of
experimental techniques and the accumulation of data, a number of hadronic
states beyond the conventional two-quark meson and three-quark baryon picture
have been observed in the last 2 decades which are popular candidates for exotic
hadrons [7]. By now, many approaches have been used to disentangle the nature
of the numerous exotic hadrons discovered, but some difficulties remain [8, 9].
The study of exotic hadrons is also one of the most important topics in hadron physics.
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TABLE 1 The comparisons of the yield of D0, π, K, and p between PACIAE
model and the experimental data [43, 44] in |y| < 0.5, 0 < pT < 20 GeV/c
for π, K, and p, 1 < pT < 50 GeV/c for D0 meson, respectively.

Particle 0− 10% 30−50%

PACIAE ALICE PACIAE ALICE

π 1501.74 1538.65±
185.4

368.87 380.34±
40.22

K 228.53 247.95±
21.88

58.89 60.68±
4.99

p 68.64 68.04±
6.81

16.7 18.49±
1.72

D0 6.60 6.819±
1.43

1.02 1.275±
0.366

The production yields of exotic states in high-energy
collisions, which are expected to be strongly influenced by their
internal structure, have received increasing attention [10–18].
The internal structure of exotic hadrons is still under debate.
They are assumed to be loosely bound hadronic molecule, a
compact tetraquark, or just a kinematic effect such as the triangle
singularity, etc [8, 9]. The internal structure and interactions of
compact multiquark states and hadronic molecular states have
been extensively studied. The former are bound by the strong
interaction directly, while the latter are bound by residual strong
interaction [8, 9, 19].

The abundant number of quarks and antiquarks for both light
and heavy flavors suggests that heavy-ion collisions provide an
ideal environment for exotic hadron production, compared to
electron-positron and proton-proton (or antiproton) collisions. The
first evidence for the X(3872) production in relativistic heavy ion
collisions was reported by the CMSCollaboration [16]. In this work,
we think that the X(3872) may be a tetraquark, nuclear-like, or
molecular state, and study their production using the dynamically
constrained phase-space coalescence model (DCPC). We employ
the parton and hadron cascade (PACIAE) model to simulate Pb-
Pb collisions at √sNN = 5.02 TeV in centralities of 0− 10% and 30−
50%. Using the DCPC, we then predict the yield and transverse
momentum of the X(3872).

2 Model

The PACIAE model [20–22] is a parton and hadron cascade
model based on PYTHIA [23]. It has been successfully used
to describe particle multiplicity, transverse momentum, rapidity
distributions, and other observables in high-energy collisions [17,
24–27]. The PACIAE Monte-Carlo (MC) simulation provides a
complete description of one collision, which includes the partonic
initialization stage, partonic rescattering stage, hadronization stage,
and the hadronic rescattering stage. For nucleon-nucleon (NN)
collisions, compared to PYTHIA, the partonic and hadronic
rescattering are introduced before and after the hadronization,
respectively. The initial-state free parton is produced by breaking

the strings of quarks, antiquarks, and gluons formed in the Pb-
Pb collision with the PACIAE model. The parton rescattering is
further considered using the 2→ 2 leading-order (LO) perturbative
QCD parton-parton cross sections [28]. The total and differential
cross section in the evolution of the deconfined quark matter state
are calculated using MC method. After the partonic freeze-out, the
hadronization of the partonicmatter is executed by the LUND string
fragmentation [23] or the MC coalescence model [20]. Hadron
rescattering is performed based on the two-body collision until the
hadronic freeze-out.

The DCPC model was proposed to study production of the
light nuclei in pp collisions [29]. In the DCPC model, based on
the quantum statistical mechanics [30, 31], we can estimate the
yield of a single particle in the six-dimension phase space by
an integral

Y1 = ∫
Ea≤H≤Eb

dq⃗dp⃗
h3
, (1)

Here, Ea,Eb, and H denote the energy threshold and the energy
function of the particle, respectively. The variables q⃗ and p⃗
correspond to the coordinates and momenta of the particle in
the center-of-mass frame of the collision at the moment after
hadronization. Furthermore, the yield of a cluster consisting of N
particles is defined as following:

YN = ∫⋯∫
Ea≤H≤Eb

dq⃗1dp⃗1⋯dq⃗Ndp⃗N
(h)3N

. (2)

Therefore, the yield of an X(3872) consisting of DD̄∗ cluster in
the DCPC model can be calculated by.

YX(3872) = ∫…∫δ12
dq⃗1dp⃗1dq⃗2dp⃗2

h6
, (3)

δ12 =

{{{{{{{
{{{{{{{
{

1 if1 ≡ D,2 ≡ D̄∗;

mX(3872) −Δm ≤minv ≤mX(3872) +Δm;

q12 ≤ R;

0 otherwise.

(4)

where,

minv = √(E1 +E2)2 − (p⃗1 + p⃗2)
2. (5)

The q12 denote the relative distance between D and D̄∗. The R
represents the radius of the cluster (a free parameter). Obviously, the
relative distance between D and D̄∗ (q12) in the compact picture is
shorter than that in the nuclear or molecular picture. Consequently,
the radius R of the compact state is also smaller. We assumed to that
the X(3872)might exist in three different state: tetraquark, nuclear-
like, ormolecular state, eachwith a distinct radius. In our simulation,
we distinguish these three structures of the X(3872) based on the
value of R. According to the radius of deuteron and the result in
Refs. [15, 19], the X(3872) is assumed to be a tetraquark state when
R < 1.0 fm; a nuclear-like state when 1.0 < R < 1.74 fm; a molecular
state, when 1.74 < R < 10.0 fm.ThemX(3872) denotes the rest mass of
X(3872), and Δm refers to its mass uncertainty.The E1, E2 denote the
energies of the two particles (D and D̄∗), while ⃗p1, ⃗p2 represent their
respective momenta.
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FIGURE 1
Radius distributions of X(3872) Pb-Pb collisions at √sNN = 5.02TeV. As a function of radius parameter R. The left and right hand plot is performed in
centralities of 0− 10% and 30−50%, respectively. The distribution in top, middle and bottom is for tetraquark, nuclear-like, molecular state. The blue
empty markers indicates statistical uncertainties, red filled markers indicates data point by PACIAE + DCPC model.

The DCPC model has been successfully applied to different
collision systems at RHIC and LHC, including p− p[13, 17,
32–35], Cu-Cu [36, 37], Au-Au [24, 38–40], and Pb-Pb [41,
42] collisions. Especially, it has been successfully used to
calculate the yields of the exotic states following transport model
simulations [13, 17, 34, 35].

3 Result

In this work, we produce the X(3872) and investigate its nature
in Pb-Pb collisions at √sNN = 5.02 TeV within the 0−−10% and
30−−50% centrality ranges using PACIAE+DCPC.Theproduction
involves a two-step process: first, simulating Pb-Pb collisions at
√sNN = 5.02 TeV to generate the multi-particle final states; then,
combining the final states D0, D̄0, D0∗ and D̄0∗ to generate the
tetraquark, nuclear-like and molecular states of the X(3872) using
DCPC model.

In the production of final states particles with PACIAE, the
impact parameter b is set to 0− 4.89, and 8.47− 10.93, according
to Ref. [45], to simulate Pb-Pb collisions in the centrality ranges of

0−−10% and 30−−50%, respectively. The other model parameters
are fixed at their default values given in the PYTHIA model,
expect for the K factor and the parameters parj (1), parj (2), and
parj (3). Here, the K factor is introduced to include the higher
order and the nonperturbative corrections, parj (1) represents the
suppression of diquark–antidiquark pair production relative to the
quark–antiquark pair production, parj (2) denotes the suppression
of strange quark pair production relative to up (down) quark pair
production, parj (3) indicates the extra suppression for strange
diquark production compared to the normal suppression of a
strange quark. These parameters are determined by fitting to the
ALICE data [43, 44] for D0, π, K, and p in Pb-Pb collisions
at √sNN = 5.02TeV. The comparison of the yields for each final
states between the simulation from the PACIAE model with
determined parameters and the experimental measurements by
ALICE collaboration is shown in Table 1, which are consistent with
each other within uncertainties.

In this work, the X(3872) states are generated by combining
the final state particles D0 and D̄0∗ (or D̄0 and D0∗) using
the DCPC model, following the simulation of Pb-Pb collisions
by the PACIAE model. First, we calculate the yield of the
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FIGURE 2
Mass distributions of the X(3872) in Pb-Pb collisions at √sNN = 5.02TeV as a function of mass uncertainty Δm. The left and right hand plots correspond
to centralities of 0− 10% and 30−50%, respectively. The distribution in top, middle and bottom is for tetraquark, nuclear-like, molecular state. The blue
empty markers indicate statistical uncertainties, while red filled markers indicate data points obtained by PACIAE + DCPC model.

TABLE 2 The yield of X(3872)with three states in 0%–10% and 30%–50%
Pb-Pb collisions at √sNN = 5.02TeV.

Centrality Tetraquark Nuclear-like Molecular

0− 10% 3.12× 10−2 3.11× 10−2 1.65× 10−2

30− 50% 1.96× 10−5 5.02× 10−5 1.41× 10−3

X(3872) in Pb-Pb collisions at √sNN = 5.02TeV, with parameter
R varying from 1.0 fm to 10.0 fm, at a given mass uncertainty
Δm = 142MeV/c2 (obtained from 2mD <minv < 2mD̄∗ [18]).
Depending on the value of R, the exotic state X(3872) can be
classified into three structures: the tetraquark state for R < 1.0 fm,
the nuclear-like state for 1.0 < R < 1.74 fm, and the molecular state
for 1.74 < R < 10 fm. They are denoted as XT(3872), XN(3872) and
XM(3872), respectively [15, 19]. Figure 1 present the distribution
of the yield of these three different structures of the X(3872) as a
function of the parameter R. From Figure 1, we can conclude that

the yield of each structure of the X(3872) increase with parameter R
at a given mass uncertainty Δm = 142MeV/c2.

Then, we calculate the yields of three structures of the X(3872)
in Pb-Pb collisions as parameter Δm increases from 0.595 MeV
(the half of the width of X(3872)) to 142 MeV. The distribution
of the yield of the X(3872) as a function of Δm is shown in
Figure 2. From Figure 2, we observe that the yields of X(3872)
increase exponentially with increasing Δm.

As a reasonable prediction, we can predict the yields of the
X(3872) by assuming a mass uncertainty of Δm = 142MeV/c2

(obtained from2mD <minv < 2mD̄∗ [18]).Thepredicted yields of the
X(3872) in Pb-Pb collision at√s = 5.02TeV within 0− 10% and 30−
50% centrality ranges are shown in Table 2. From these results, We
observe that the yield is larger in central collisions.When comparing
the yield in central Pb-Pb collision with pp collisions, we find that
the yield in pp collision is lower.

Moreover, we calculate the transverse momentum distribution
of the tetraquark, nuclear-like and molecular states the
X(3872). Figure 3 shows the transverse momentum pT distributions
of these three different structures of theX(3872) in Pb-Pb collision at
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FIGURE 3
The transverse momentum distributions of the X(3872) as a tetraquark state, nuclear-like state and molecular state. The left and right hand plot
correspond to centralities of 0− 10% and 30−50%, respectively. The distribution in top, middle and bottom represent the tetraquark, nuclear-like,
molecular state, respectively. The blue empty markers indicate statistical uncertainties, while the red filled markers indicate data point by PACIAE +
DCPC model.

√sNN = 5.02TeV, for centralities of 0− 10% and 30− 50%. Obviously,
the pT distributions of the X(3872) for the three different structures
are similar to each other. From the pT distributions, we can
find the yield of X(3872) increases with increasing pT in small
pT range, and decreases with increasing pT in larger pT range.
However, the molecular state XM(3872) exhibits a narrower pT
distribution than the tetraquark state XT(3872) and nuclear-like
state XN(3872) in the 0− 10% centrality range. In the 30− 50%
centrality range, the pT differential yields of the compact and
nuclear-like state of the X(3872) are smaller than that of the
molecular state of theX(3872), and their uncertainties are larger.The
features of pT distributions may be used to distinguish X(3872) of
different structure.

In Figure 3, we show the predicted pT-differential yields of the
tetraquark, nuclear-like andmolecular states of theX(3872).We also
analyze the pT-differential yield ratios for the X(3872) and D0, with
the result shown in Figure 4.

From Figure 4, we observe that the yield ratio for the X(3872)
and D0 in the centrality ranges of 0− 10% is larger than that in the

centrality ranges of 30− 50%. In 0− 10% centrality, the yield ratio for
the molecular state of the X(3872) and D0 is lower than that for the
tetraquark and nuclear-like states of the X(3872). However, in 30−
50% centrality, the yield ratio for the molecular state of the X(3872)
and D0 is higher than that for the tetraquark and nuclear-like states
of the X(3872).

4 Conclusion

In this paper, we study the production of the X(3872) in Pb-
Pb collision at √sNN = 5.02 TeV within the centrality ranges of 0−
10% and 30− 50% using the PACIAE + DCPC model. First, we
investigate the dependence of the X(3872) production on the mass
uncertainty Δm and radius R. The results indicate that the yields
of X(3872) increase with the increasing Δm and R. We also predict
the yield of the tetraquark, nuclear-like and molecular states of the
X(3872) in Pb-Pb collision at √sNN = 5.02TeV for centralities of
0− 10% and 30− 50%, respectively. Subsequently, we examine the
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FIGURE 4
The yield ratio for X(3872) and D0 as a function of pT in centralities of 0− 10% (left panel) and 30−50% (right panel) in Pb−Pb collisions. The
distribution in top, middle and bottom is the ratio for tetraquark, nuclear-like, molecular state of X(3872) and D0, respectively. The blue empty markers
indicates statistical uncertainties, red filled markers indicates data point by PACIAE + DCPC model.

transverse momentum of these three different states of the X(3872).
We find that the pT distributions of the X(3872) for the three
different structures are generally similar to each other. However, in
the 0− 10% centrality range, the molecular state XM(3872) exhibits
a narrower pT distribution than tetraquark state XT(3872) and
nuclear-like state XN(3872).
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