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Image optimization method for
ablation defects in high-voltage
cable buffer layers based on
X-ray detection technique

Baiyuan Liu*, Weifeng Wang, Tengfei Liu, Zhen Xu,
Xiangchen Kong, Xu Zhou and Yanan Cheng

Shangqiu Power Supply Bureau of Henan Power Supply Grid Co., Ltd., Shangqiu, China

This paper proposes an optimization method based on image enhancement
and feature detection to address the challenges of low-quality X-ray
images,significant noise interference, and difficulty in defect identification
during the detection of ablation defects in high-voltage cable buffer
layers. By analyzing the advantages of X-ray detection technique and its
practical challenges, the study employs a Multi-Scale Retinex with Color
Restoration(MSRCR) algorithm to enhance image contrast, balancing dynamic
range compression and color constancy, thereby improving the visibility
of defects in low-light or lowcontrast regions. The research optimizes the
Speeded-Up Robust Features(SURF) detection algorithm by adjusting the
Hessian matrix threshold to enhance sensitivity to low-contrast defects. It
combines multi-scale analysis with directional constraints to reduce false
detections in complex backgrounds and utilizes Lanczos3 interpolation to
reconstruct defect edge textures with high fidelity while suppressing ringing
artifacts. Practical results demonstrate that this method significantly improves
the recognition accuracy and visualization of defect regions in X-ray images,
supports automatic localization and magnification, and provides reliable
technical support for rapid diagnosis of high-voltage cable buffer layer
conditions.

KEYWORDS
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1 Introduction

Cross-linked polyethylene (XLPE) insulated cables have become the mainstream choice
for urban power transmission projects due to their excellent electrical and mechanical
properties, simple manufacturing processes, and ease of installation and maintenance. In
recent years, incidents of cable defects caused by buffer layer ablation have been reported
in domestic and international cities. Damage or defects in the buffer layer, such as ablation,
wear, or cracks, may lead to severe cable failures, including fires or power outages.Therefore,
regular inspection of high-voltage cable buffer layers is critical for maintaining the normal
operation of power systems [1–4].

Current methods for detecting ablation defects in high-voltage cable buffer
layers include ultrasonic testing, infrared thermography, capacitive imaging,
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high-frequency electromagnetic testing, and X-ray detection
[5–7]. Ultrasonic testing detects internal ablation, voids, or
delamination defects by analyzing reflected acoustic waves. Infrared
thermography identifies temperature anomalies caused by altered
thermal conductivity in ablation regions. Capacitive imaging detects
defects through changes in electrical properties. X-ray imaging,
however, stands out due to its non-contact nature, non-destructive
inspection, and ability to visualize internal structures, making it a
vital tool for identifying internal defects such as pores, cracks, or
inclusions without sample destruction [8, 9].

Nevertheless, X-ray detection of high-voltage cable buffer layers
faces challenges such as environmental noise, scattered radiation,
and equipment instability, which degrade image quality and hinder
accurate defect identification. Signal attenuation in thick buffer
layers further reduces image resolution. Additionally, the large
volume of X-ray data demands high-performance computing
and advanced image processing algorithms [10, 11]. To address
these issues, this study focuses on optimizing X-ray images to
enhance defect visibility, enable automated defect recognition,
and implement magnification functions for improved diagnostic
efficiency.

2 Image processing algorithm

2.1 Image enhancement

Retinex theory is an image enhancement method that simulates
the human visual system, especially suitable for low light or low
contrast images [12, 13]. The fundamental principle of Retinex
theory is to decompose an image into reflective and illumination
components, and enhance the image by adjusting the illumination
component. Its theoretical foundation is the trichromatic theory and
colour constancy. Specifically, an object’s color is determined by its
ability to reflect long-wave, medium-wave, and short-wave light, not
by the absolute intensity of the reflected light. Due to this property,
the object’s color remains unaffected by non-uniform illumination,
demonstrating consistency. Retinex theory is grounded in this
principle of color constancy.

In contrast to the traditional linear and non-linear methods that
can only enhance a certain type of features in an image, Retinex
can strike a balance between dynamic range compression, edge
enhancement and colour constancy, and therefore can adaptively
enhance a wide range of different types of images. Retinex theory
suggests that the image I (x, y) is the final image data we get,
consisting of an illumination image and a reflection image. Firstly, it
is illuminated by the incident light, then reflected by the object into
the imaging system, and finally forms the image we see, as shown
in the following equations: the former refers to the illumination
component, which describes the distribution of the ambient light,
and is usually a low-frequency signal (e.g., shadows, luminance
gradient), denoted by L (x, y); and the latter refers to the reflection
component, which reflects the intrinsic properties of the object
(e.g., texture, colour), and is a high-frequency signal, denoted by
R (x, y), as shown in Equation 1. The Retinex image principle as
illustrated in Figure 1.

I(x,y) = R(x,y) · L(x,y) (1)

FIGURE 1
Principle of Retinex theory.

The Retinex-based image processing method is illustrated
in Figure 2. Since the logarithmic domain closely mimics
the human visual system’s perception of brightness, the
entire process is transformed into logarithmic operations. By
estimating and removing the illumination component l(x,y),
the enhanced reflection component r(x,y) can be obtained.
This conversion not only aligns with human visual perception
but also reduces computational complexity by transforming
multiplicative operations into additive ones, as shown in
Equation 2 and Equation 3.

log (I(x,y)) = log (R(x,y)) + log (L(x,y)) (2)

i(x,y) = r(x,y) + l(x,y) (3)

There are several variants of the Retinex algorithm, with the
most common being Single Scale Retinex (SSR),Multi-Scale Retinex
(MSR), and Multi-Scale Retinex with Colour Restoration (MSRCR)
[14, 15]. Among these, Multi-Scale Retinex extends Single Scale
Retinex by applying multiple sigma values [16] and computing a
weighted average of the SSR results across different scales. This
approach enhances the final image and better handles illumination
variations at different scales, as demonstrated in Equation 4.

RMSR(x,y,σ) =
n

∑
k=1

wkRSSRk
(x,y,σk) (4)

This study employs the Multi-Scale Retinex with Color
Restoration (MSRCR) algorithm for image enhancement [17]. The
detailed implementation workflow of this algorithm is illustrated in
Figure 3.Themethod adds a color restoration step toMSR, restoring
color by applying logarithmic operations to each channel’s pixel
values and multiplying them by coefficients alpha and beta, thereby
better preserving image color information. Additionally, since the
Retinex algorithm compresses the original image’s dynamic range,
grayscale stretching is applied to the processed image to enhance
its grayscale dynamic range. Color restoration in MSR is usually
computed using Equation 5 [18].

RCR(x,y) = R(x,y) · (log (α · I(x,y)) − log(∑
c
Ic(x,y))) (5)

For the selection of intermediate parameters, the standard
deviation (sigma) of the Gaussian filter determines the smoothness
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FIGURE 2
Flowchart of Retinex image processing method.

FIGURE 3
Multi-scale Retinex algorithm flow.

of the illumination component, a smaller sigma preserves more
detail while a larger sigma better handles global lighting variations.
The weight distribution (weight_list) typically employs uniform
weighting (e.g [1/3, 1/3, 1/3]), but these can be adjusted based
on image characteristics. The color restoration coefficient (alpha)
should be set between 100–200, with the exact value requiring
further adjustment according to the specific image.

The application of Retinex image processing algorithms to cable
buffer layer X-ray images solves, to some extent, the traditional
problems of high noise and low contrast in X-ray images, and small
differences between defects and background. It has the following
advantages:

(1) Simulation of human vision with excellent colour constancy;
(2) Multi-scale processing adapts to different lighting conditions;
(3) Dynamic range compression balanced with detail

enhancement.

2.2 Image feature detection

The SURF detection algorithm is a feature detection and
description algorithm used in image processing, which maintains
the robustness of the SIFT algorithm while significantly enhancing
computational efficiency through algorithmic optimizations. In
contrast to the SIFT algorithm, which employs the difference
of Gaussians pyramid to detect scale-space extrema, the SURF
algorithm utilizes the Fast Hessian matrix for extremum detection,
an improvement that grants it superior performance in scale-space
computation [19]. Innovatively, the SURF algorithm introduces the
Integral Image technique, which efficiently computes gradients and
feature descriptors within the neighborhood of keypoints, thereby
substantially accelerating the computational process. Owing to its
good invariance to scale, rotation, and affine transformations, as
well as its faster processing speed, the SURF algorithm demonstrates

stronger applicability in scenarios with high real-time requirements.
The feature extraction process of the SURF algorithm can be
primarily divided into three parts: feature point detection, feature
point orientation assignment, and feature descriptor generation.

2.2.1 Feature point detection
For keypoint localization, SURF utilizes integral images and

Boxfilter to efficiently compute the Hessian matrix. The locations
and scales of feature points are determined by comparing the
extremum of the Hessian matrix determinant. In contrast to the
SIFT, which relies on the DOG operator, SURF constructs a multi-
scale spatial pyramid by dynamically adjusting the size and variance
parameters of the Box filters [20]. Constructing the Hessian matrix
to construct the Gaussian image pyramid: First, the scale space is
constructed for the input image. This usually involves constructing
a pyramid of images using Gaussian filters to detect features at
different scales by using images at different scales. SURF uses a
Hessian matrix determinant approximation of the image. A Hessian
matrix is a square matrix consisting of the second-order partial
derivatives of a real-valued function whose independent variables
are vectors. For ease of arithmetic, the function f (x, y) is assumed
and the HessianmatrixH is a squarematrix consisting of the second
order partial derivatives of the function. The Hessian matrix at a
given pixel location in the image is shown in Equation 6.

H(L) = (
Lxx Lxy
Lxy Lyy

) (6)

For each pixel in the image, a corresponding Hessian matrix
can be computed. The sign of the matrix determinant det(H)
determines whether the point represents an extremum. To ensure
scale invariance of feature points, Gaussian smoothing must be
performed prior to Hessianmatrix construction.The computational
procedure consists of two steps: first applying Gaussian filtering to
the image, followed by per-pixel Hessianmatrix calculation, with the
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FIGURE 4
Schematic diagram of Haar wavelet filter model.

FIGURE 5
Schematic of feature point direction assignment.

detailed formulation provided in Equation 7.

L(x,y) = G(t)∗I(x, t) (7)

where L (x, y) represents the multi-scale representation of an image,
which is essentially obtained by convolving the Gaussian kernelG(t)
with the original image function I(x) at point x, yielding Gaussian-
smoothed images at different scales. To optimize the trade-
off between approximation error and precision, a scale-adaptive
weighting coefficient is introduced. Accordingly, the discriminant of

FIGURE 6
Schematic diagram of feature descriptor generation.

the Hessian matrix can be expressed by Equation 8.

Det(Happrox) = DxxDyy − (0.9Dxy)
2 (8)

where the coefficient 0.9 is used to balance the approximation error
of the Gaussian filter.

During keypoint detection, each pixel is first evaluated based
on its Hessian matrix response value. A preliminary localization
of keypoints is achieved by comparing each pixel with its 26
neighboring points in both the 2D image space and the scale-space
domain to identify local extrema. Subsequently, unstable keypoints
with low contrast are filtered out through thresholding, and edge
response points are eliminated to correct mislocalizations. This
ensures that only stable keypoints with significant feature responses
are retained. For the detected extremum points (either maxima or
minima), a quadratic interpolation method is applied to further
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FIGURE 7
Detection optimization results, (a) Original image, (b) Feature point, (c) Zoomed-in map for individual feature point extraction.

refine their spatial positions and scale parameters.This optimization
enhances localization accuracy to sub-pixel precision and yields
floating-point scale information.

2.2.2 Feature point orientation assignment
In SURF, the orientation assignment of feature points

is achieved by analyzing Haar wavelet responses within a
circular neighborhood around each feature point [21]. As
illustrated in Figure 4, the left template computes the response in
the x-direction, while the right template computes the response
in the y-direction. The weights are assigned such that darker
regions have a coefficient of −1, whereas lighter regions have a
coefficient of +1.

In the circular neighborhood of the feature point, the sum of
horizontal and vertical Haar wavelet features of all the points in the
60-degree sector is counted, and then the sector is rotated at certain
intervals and after counting the values of theHaar wavelet features in
the region again, the direction of the sector with the largest value is
finally taken as themain direction of the feature point.The schematic
diagram of feature point direction assignment is shown Figure 5.
The specific method is to first draw a circle with a diameter of 6s
at the location of the feature point, with s as the scale. Calculate
the HaarX and HaarY features at each point in this circle sampled
at s∗s intervals, and calculate the feature direction of each point at
the same time: θi = arctan (HaarY/HaarX). The respective sums
sumX and sumY of the HarrX and HarrY of the points falling
within the angular range of the sector are counted in a 60-degree
sector, which is rotated around the center with an accuracy of
15° at a time, and the direction of the sector that maximizes the
modal length of sum is selected as the direction of the feature
point. If a secondary peak exists with magnitude exceeding 80%
of the maximum response, multi-directional feature points are
generated.

2.2.3 Feature descriptor generation
To generate 64- or 128-dimensional vectors describing the

texture information around feature points, the following procedure
is employed: First, a 20σ×20σ region centered at the feature point
is divided into 4 × 4 sub-regions. Within each sub-region, the
horizontal and vertical Haar wavelet responses (dx and dy) are
computed at 25 uniformly sampled points, and four key statistical
measures are aggregated: the sum of horizontal responses (∑dx),
the sum of absolute horizontal responses (∑|dx|), the sum of
vertical responses (∑dy), and the sum of absolute vertical responses
(∑|dy|). Each sub-region contributes four feature values, ultimately
forming a 64-dimensional descriptor vector. Finally, normalization
is applied to enhance the descriptor’s robustness to illumination
variations, thereby achieving an effective representation of local
texture information. A schematic diagram of the feature descriptor
generation principle is illustrated in Figure 6.

2.2.4 Optimization scheme for feature detection
algorithm

In the imaging optimization process for X-ray defect detection
in high-voltage cable buffer layers, the SURF algorithm exhibits the
following application limitations: It is prone to false detections in
high-texture regions, and complex backgrounds tend to generate
redundant feature points. Additionally, the algorithm demonstrates
insufficient sensitivity to low-contrast features, necessitating
parameter tuning when processing blurred or low-contrast defects
(such as those in X-ray imaging).

This study focuses on feature detection optimization in the
following aspects, which significantly improves defect detection
accuracy, enhances operational convenience, and further optimizes
performance: 1) Adjustment of Hessian threshold: When the
image contrast is relatively low, the detection algorithms with high
thresholds have difficulty in accurately detecting the image, and
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therefore the thresholds can be appropriately lowered to increase the
sensitivity to the weak features. 2) Multiscale analysis: Increase the
number of Octave layers to capture defects of different sizes, and
at the same time refine the scale level to improve the detection of
small defects. 3) Orientation constraints: Limit the orientation range
for the axial features of the cable. 4) Defect amplification display:
Lanczos3 interpolation and amplification method is used, Lanczos3
is a high-quality image interpolation algorithm, and its core idea is to
reconstruct the pixel values by the product of the window function
(Lanczos window) and the sinc function, which reduces the ringing
effect while preserving the image details.

The Lanczos3 interpolation kernel consists of two components:
The ideal signal reconstruction sinc function, whose equation
is given by Equation 9.

sinc(x) =
sin (πx)
πx

(9)

Lanczos window function: Limits infinite oscillations of the sinc
function, reducing the amount of computation and ringing effects.
The Lanczos3 window is defined as Equation 10.

L(x) =
{{
{{
{

sin (πx/3)
πx/3
·
sin (πx)
πx
, if|x| < 3

0, otherwise
(10)

where the parameter “3” indicates that the window coverage
is [-3, 3][-3, 3], six neighboring pixels are considered in each
direction.

For the target pixel position x, the interpolated result can be
obtained by calculating the weighted sum of its neighboring pixels,
as formally expressed in Equation 11.

Inew(x) =
|x|+3

∑
k=|x|−2

I(k) · L(x− k) (11)

3 Results and discussion

A section of cable buffer layer X-ray inspection images as an
example of optimization processing, before and after the comparison
results are shown in Figure 7.

For high-voltage cable buffer layer X-ray defect detection
images, the Lanczos3 interpolation amplification method can more
accurately reconstruct the image edges and texture through a
wider neighborhood (6 × 6) sampling, especially suitable for
amplifying low-contrast defects (such as the cable buffer layer
of the small cracks). Furthermore, the window function L(x)
can effectively attenuate the high-frequency oscillation of the
sine function, reducing the “ghosting” phenomenon at the edges,
which is more suitable for high-precision defect analysis, such as
detection of tiny bubbles or cracks in X-ray images, and its high-
fidelity characteristics can significantly improve the usability of the
magnified area, helping to accurately identify tiny defects. At the
same time, through a reasonable choice of interpolation algorithms
and the use of hardware acceleration, the efficiency and quality
can be taken into account. The algorithm in this paper performs
better in enhancing the color reproduction and detail clarity of
the image, which is more in line with the vision of the human
eye, and has different types of enhancement effects on images
with different characteristics, possessing different advantages and
processing images more comprehensively.

4 Conclusion

The integrated approach combining Retinex-based image
enhancement algorithms with SURF-optimized feature detection
significantly improves the quality of X-ray images for high-
voltage cable buffer layer inspection. This method effectively
enhances the discernibility of low-contrast defects while enabling
automated defect detection and magnification. Meanwhile, the
average processing time for a single image after GPU acceleration is
100–300 ms, which can be close to real-time processing to provide
reliable support for operational condition assessment by inspection
personnel.With demonstrated advantages in luminance adjustment,
detail enhancement, and noise suppression, the processed images
exhibit more natural visual representation and superior clarity,
meeting the requirements of diverse inspection scenarios.
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