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An analysis of
nanosecond-pulsed streamer
discharges in treating melanoma
cells: generation, source–plasma
interaction, and energy efficiency
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Soumaya Gouadria

Department of Physics, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh,
Saudi Arabia

Atmospheric pressure plasma has great potential in medicine, such as cancer
therapy and wound treatment. Skin cancer therapy is challenging due to the
thin layer of biological liquid covering the sample. This study aims to perform
a numerical simulation of nanosecond high-voltage pulse plasma streamers
applied to human tissue for melanoma cell therapy. This study investigates
the optimization of plasma energy transfer in relation to several parameters,
such as voltage, total energy, pulse frequency, flow rate, input power, and
pressure. Results show that transient electric discharges can reach much higher
electron energy levels than static discharges. As voltage increases, most reactive
species’ densities increase, and streamer length increases due to higher power
deposition. In addition, as the pressure varies from 1 atm to 0.3 MPa, the
breakdown time increases, and the propagation velocity of the ionizing front
decreases. Pulse frequency affects thermal processes because contact time
and input power of plasma increase with frequency. Due to a gradual cascade
of biochemical processes that occur after treatment, melanoma cells often
undergo apoptosis, resulting in slow cell death rather than necrosis, which
occurs immediately. Melanoma cell death is most likely caused by the hydroxyl
radical OH species produced from water vapor, which damages the outer
surface of cancer cells through the oxidation process. Reactive oxygen and
nitrogen species (RONS) like NO and O arising as primary products or metabolic
byproducts have less influence. Based on these findings, it appears that these
results are extremely important for treating cancer cells with non-thermal
streamer discharge plasma.

KEYWORDS

atmospheric pressure plasmas, biological effects of plasmas, plasma–surface interface,
pulsed streamer discharge, plasma oncology, apoptosis, modeling

1 Introduction

Various therapeutic plasma applications, such as treating infections, bleeding, healing
wounds, tumor treatment, and dental decay, have been intensively studied over the last
decades [1–3]. During plasma treatment, the human skin or culture medium is usually
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dusted with a light blood layer, saline solution, or a serum liquid,
bringing plasma into contact with a wet surface. Non-thermal
plasma discharges have shown significant results in the treatment
of diseases and the interaction with liquid systems [4]. Various
cold atmospheric pressure devices have been produced for these
purposes, such as dielectric barrier discharges (DBDs), plasma jets,
streamer discharges, and glow discharges. Several sources have been
used to evaluate the therapy mechanism and efficacy, including
sinusoidal, radio frequency (RF), direct current (DC), pulsed DC,
and microwave frequency [5]. DBD exhibits a non-equilibrium
and quasi-continuous performance that generates a wide range of
applications. DBD driven by pulse power offers more controllability
of the discharge process and higher chemical efficiencies with lower
gas temperature increases than alternating current (AC) or RF
power DBD [6]. Fast transient pulsed discharges like streamers
have the advantage of not being constrained by breakdown fields,
producing a much higher electric field, and causing more electrical
energy to be converted into energetic electrons, which contribute to
plasma–chemical reactions [7]. Ionization can be further increased
and electron energy distributions can be extended using short high-
voltage pulses. A key difference between jet plasmas and most
DBDs is the use of external feed gas [8]. Feed gas used in plasma
jet experiments instantly necrotizes cells when directly in contact
with the culture medium, even in plasma-off mode. As a result,
a plasma jet with large gas fluxes typically requires enough liquid
to prevent dehydration, even if part of the liquid is blown aside.
Nevertheless, excessive liquids allow competing non-cellular targets
to react with short-lived species, resulting in a dominant effect on
the cellular functions of long-lived oxidants. On the other hand, a
plasma streamer comes in contact with cells directly, simultaneously
increasing the contribution of UV-radiation (low range), electrical
fields, and short-lived species. Hence, nanosecond-pulsed streamer
discharges have demonstrated their ability to create an equally
diffuse, uniform, and highly reactive plasma as other standard
plasma devices.

Non-thermal plasma streamer discharges generated by pulsed
power are sources of high-energy electrons, ultraviolet rays, ozone,
and free radicals in atmospheric pressure [5]. Hence, a thin
layer of low-temperature, non-equilibrium plasma is formed and
applied to a wet surface, which activates chemical reactions that
affect cells, tissues, and bacteria without generating much heat
[9–11]. The plasma species react with each other as well as with
organic molecules present in the liquid layer prior to reaching the
skin [12, 13]. Multiple timescales regulate the chemistry of these
reactions in the plasma gas phase.

Various simulation models have been used to study the
biological effect of plasma liquid. Kelly et al. [14] studied a
radiofrequency plasma jet maintained in He/O2 to generate a
reactive surface on the liquid. A steady-state solution of a one-
dimensional model was used to analyze plasma dynamics. Later, a
2D fluid and neutral chemistry model was used [15] to extrapolate
the calculations of neutral plasma dynamics sources. The results
of this study show that H2O2, O3, O2 (1∆g), and HNO3 are the
predominant RONS in the vapor layer, while H2O2(aq) dominates
the RONS species in the liquid layer. Liu et al. [16] conducted
extensive modeling research regarding micro-discharge on a liquid
surface and defined three physical domains: plasma, gas containing
neutral species, and liquids. A kinetics approach was used in

the plasma zone, while a 1D transport approach was used in
neutral gases and liquids. Computationally, the strong coupling
between all three regions allowed a simultaneous integration of
all equations. The results showed that the potentially neutral
species OH, NO, and O2 (1∆g) transported from the distant
plasma source to the liquid do not survive. Liquid chemistry
was influenced by the gas phase species H2O2, O3, HNO3, and
HNO2, which produce dominant reactive species in the liquid,
including OH(aq), allowing them to reach deeper depth in the
liquid than the dominant reactive species generated from the remote
source of plasma.

For optimal biological results, it is critical to examine how
the gas phase is coupled to liquid chemistry and the effect of
physical parameters on these processes. The objective of this
research is to perform a simulation of a nanosecond high-voltage
pulse plasma streamer applied to human tissue for melanoma
cell therapy. A fluid model uses COMSOL Multiphysics®5.1
with a two-dimensional axisymmetric geometry [17]. The field
ionization mechanism and the morphology of the plasma channel
are investigated in the gas phase under nanosecond voltage pulses.
A parametric study of several operational conditions influencing
plasma discharge and energy efficiency, such as voltage, input
energy, pulse frequency, and pressure, is conducted. The effects of
gas flow rate and oxygen concentration effects on plasma therapy
are studied.

In this article, biomedical plasma processing is described
in Section 2, and the simulation model is developed in
Section 3. In Section 4, the results of this investigation are
presented and analyzed. Finally, conclusions are summarized
in Section 5.

2 General mechanism for biomedical
plasma treatment

This study investigates a nanosecond-pulsed streamer discharge
intended to treat melanoma cells. Recent research has demonstrated
the efficacy of this method in skin cancer cell treatment [18, 19].
The experimental system used for biomedical plasma treatment,
shown in Figure 1, includes an electrode system, an acrylic window
with a plastic vessel to measure optical signals, and a cable input
for inlet and outlet water [20]. A thin layer of serum or saline-
like liquid is often applied to tissue during plasma treatment. Prior
to reaching the underlying tissue, plasma species react with each
other, as well as with liquid molecules and organic molecules in
liquid. Water-dominated liquid systems havemultiple timescales for
reaction chemistry.

During gas-phase plasma pulses, the electron impact
dissociations during the nanosecond plasma pulse produce
oxygen atoms and hydroxyl radicals. Successive pulses are used
to renew these species. Many species of reactive nitrogen are
collected over several nanoseconds of discharge pulse [21].
Diagnostic methods are restricted to monitor concentrations of
reactive species in liquids over hours or minutes of treatment
[22]. The long-term chemistry of liquid plasma activation
requires a large dynamic time range approaching several
minutes [23].
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FIGURE 1
Experimental setup of discharge plasmas for medical therapy.

FIGURE 2
Schematics of the treating cells with plasma from a streamer
discharge reactor.

3 Numerical procedure

3.1 Geometrical model

A schematic reactor diagram producing a high-energy
streamer discharge is illustrated in Figure 2 [24]. A stainless-
steel inner electrode with less than 10−3 m diameter is connected
to a high-voltage cable. A generator with a variable number
of stages generates high-voltage pulses with 10 kV charge
voltage with 0.5–5 kHz frequency. The grounded electrode
is constructed of stainless steel with variable diameters of
approximately 40–88 mm. With a 2 mm air gap and a 1 mm
water thickness, the geometry represents the treatment of a 1 cm2

area of tissue.

3.2 Modeling equations

The streamer propagation in our study is modeled
using Equations 1–10, which takes into account spatial and
temporal variations in plasma particle densities. Several
sources of plasma concentration are included in the
plasma concentration equation, including electron drift,
ambipolar diffusion, and term sources (electron impact
ionization, three-body recombination, and dissociative
recombination) [25]:

∂ni

∂t
+ divΓi = ki(E/N)niN ‐βni

2‐β3ni
3, (1)

Γi = −Di∇ni +ZiμiniE, (2)

where ni denotes the density of different species i (electrons,
positive ions, and negative ions), Γi denotes electron
flux, Di is the coefficient of diffusion, and μi represents
the mobilities of the charged species. The diffusion
coefficients and the drift coefficients are calculated from the
Einstein relation.

ki(E/N) represents the rate of ionization; β and β3 are constants
of dissociative recombination and three-body recombination,
respectively.

To determine the electric field strength, conductive and
displacement currents should be considered [26].

div ( J ) = 0, (3)

J = (σ+ εε0
∂
∂t
)E, (4)

where σ conductivity σ = e · μe · n (for gas) and σ =
0,5,600μS/cm (for barrier dielectric or water); ε0 represents
the free space permittivity, and ε denotes the dielectric
permittivity.

The total current is continuous at the intersection of two
media, assuming the dielectric or conducting barrier has a
negative charge on its surface. Differences in normal electric
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FIGURE 3
(a) Two-dimensional axisymmetric diagram of model simulation. (b) Distribution of the mesh map area using COMSOL.

displacement fields on two sides of a barrier surface are calculated as
surface charges:

qs = ε0(ε ·Eb ‐Eair), (5)

where the electric field is determined as
E = ‐∇ ·V. (6)

A potential V = 0 is used at the grounded electrode as a
boundary condition, while the cathode potential Vcat can be
calculated as

Vcat = V0(t) ‐VR, (7)

where V0(t) represents the pulsed source voltage, and VR is the
resistance voltage on the external circuit calculated as

VR = R · JSUM. (8)

Over the grounded electrode, the vertical component of the
current density Jy is integrated to determine the total discharge
current as follows:

JSUM = ∫ Jy(x)dx. (9)

The initial gas composition is the humid air and consists of
80% N2, 17% O2, and 3% H2O mixture gas considering water
evaporation [27]. A high pulsed 10 kV voltage is applied to the
powered electrode with a rectangular signal which has a pulse width
of 10 ns, a decreasing or increasing time of 0.8 ns, and a frequency of
1 kHz to ensure a homogeneous discharge with safe treatment of an
irregular, dirty, and wet surface of living tissue. The initial electron
density is introduced as [28]

ne(r,z)t=0 = ne,0 exp[−(
r
σr
)

2
−(

z− z0
σz
)

2
]+ n0, (10)

where ne,0 = 1018 m−3; n0 = 1010 m−3; σz = σr = 0.07 mm; and z0
= 1.5 mm at r = 0. A constant 300 K room temperature is assumed
for the plasma air gap and water layer.

3.3 Computational modeling

Streamer discharge simulations are conducted using COMSOL
Multiphysics commercial software [29]. A pin plate electrode
arrangement is investigated, as shown in Figure 3a. This design is
characterized by a pin tip with a 0.2 mm radius and a 1.3 mm gap
distance between the pin and the plate. The applied area employed
to calculate simulated plasma parameters is r × z = 1 × 2 mm2.
Different meshing densities using the finite element method are
required for accuracy and stability because the streamer is mainly
concentrated near the axisymmetric line, where the discharge is
occurring and the electric field gradient is extremely high. The
numerical calculations are greatly improved by using an extremely
fine mesh structure near the symmetrical axis. Figure 3b shows
different fine grids applied near the symmetry line that divides the
simulation area.The inset in Figure 3b illustrates the zoomofmeshes
and the accuracy of enlargement of certain meshes.

4 Results and discussion

The initiation and development of the streamer are studied using
a discharge process at atmospheric pressure (0.1 MPa) in a plasma
gap of 1.3 mm containing a nitrogen, oxygen, and water vapor
mixture and with a pulsed voltage amplitude of 10 kV (the pulse
has the characteristics of 10 ns width and 0.8 ns rise time). Then, the
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FIGURE 4
Comparison of reduced electric field simulation results with experimental measurement (a) in pure nitrogen gas and (b) in air.

results are discussed according to various operational parameters,
including pulse frequency, voltage, and flow rate of gases.

4.1 Validation

The numerical results are compared with experimental
measurements to prove their accuracy. In Figure 4, the numerical
and experimental reduced electric fields are presented for pure
nitrogen and in air. Numerical results agree well with experimental
data performed using photo multipliers [30].

4.2 Characteristics of streamer discharge

Figure 5 shows the current and voltage distribution. A streamer
corona discharge is produced by applying 10 kV to the high-voltage
electrode. Streamer current is characterized by a fast pulse current
of 14 mA at a frequency of 1 kHz [31], producing a non-thermal
plasma of 300 K.

The plasma is highly capacitive and is dominated by
displacement current. A high-energy deposition per pulse for the
positive polarity is gained and can be calculated by integrating the
product of the current and voltage waveforms over time. This is in
accordance with previous results obtained by Van Doremaele [32],
who demonstrated a higher charge deposition on the substrate using
positive polarity.

Figure 6 represents the evolution of the electron density at
various instants, which supports understanding the morphology
of the discharge and of the different processes occurring from
the needle tip toward the ground electrode. When the voltage
attains 10 kV, the streamer creates a conductive channel that forms
a spark. Indeed, the local gas heating causes a decrease in the
gas density N. This enhances the reduced electric field (E/N)
associated with the streamer-induced channel. A spark breakdown
with higher current pulses occurs because E/N controls electron
impact reaction, in particular ionization [33]. A restricted spark

FIGURE 5
Voltage current characteristic of streamer discharge.

pulse current emerges, and the voltage drops with increasing
current. The sparks are only transient when they form due to
small energy discharge. New pulses are triggered in response to
the growing potential at the stressed electrode. One or more
streamer pulses precede each spark pulse, resulting in an endless
streamer-to-spark discharge. The small pulse duration, depending
on the frequency (0.5–5 kHz), prevents the plasma from reaching
local thermodynamic equilibrium and maintains the gas at a
low temperature.

Figure 7 shows the distribution of the charged and neutral
species density in humid air. As shown in Figure 7a, neutral species
like O3 and NO accumulated in the gas over several pulses;
however, the other neutral species are depleted with each pulse.
RONS accumulate at the surface liquid and then decline during
the post-plasma period. Liquid pH decreases as a result of the
presence of HNOx acids generated in the gas and dissolved in
the liquid. Figure 7b shows that negative ions are influenced by
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FIGURE 6
Electron density distribution in the discharge gap at various instants (t = 2 ns, 2.5 ns, 3 ns, 4 ns, 5 ns, 7 ns, 8 ns, 10 ns, and 11 ns).

the accumulation of neutral species and evolve over many pulses,
while positive ions are not significantly affected. In Figure 7c,
the propagation and diffusion of various RONS across the

plasma–liquid interface, along with the approximate timescale
governing various phenomena across the plasma–liquid phases and
biological interactions, are described.
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FIGURE 7
Distribution of (a) the neutral species, (b) the charged species densities in the discharge gap, and (c) an illustrative representation of the multi-phase
transfer of plasma species toward a biological sample.

Figure 8 shows the electric field distribution at various instants
of applied voltage. The maximum electric field intensity occurs
at the needle tip because it has the smallest radius of curvature.
After several nanoseconds, the electric field in the vicinity of the
electrodes becomes inhomogeneous, resulting in the occurrence of
the ponderomotive force, which acts on the plasma medium and
directs itself to the grounded electrodes [34].

The discharge dynamic is determined by the current continuity,
and the displacement current is converted into the convection
current inside the plasma [35]. Upon reaching the cathode, a glow
dischargewith a voltage drop and a constant value of the electric field
of approximately 531 kV/m (t = 1,100 ns) is established in front of
the cathode. There is a slow radial expansion of field enhancement.

4.3 Insensitivity to simulation parameters

4.3.1 Influence of applied discharge
Voltages ranging from 8 to 15 kV are applied in a parametric

study, as shown in Figure 9. Due to the greater energy deposition
at higher voltage, the density of most species increases. A change in
maximumelectrondensityoccurs from1.83×1020 m−3 at 8 kV to6.82
×1020 m−3 at 15 kV, aswell as an increase inelectron temperature from
13 V to 27.5 V. Because of the gap’s short diffusion length, the peak gas
temperature is kept lowprimarily by thermal conduction, and all cases
show a peak temperature below 303 K. The temperature difference of
3 K ina1.2 mmgap is sufficient toconductanenergyflux into thewalls
in 10 ns because the contact surfaces are maintained at 300 K [36].
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FIGURE 8
Electric field evolution in the discharge gap at different instants (t = 2 ns, 2.5 ns, 3 ns, 4 ns, 5 ns, 7 ns, 8 ns, 10 ns, and 11 ns).

As shown in Figure 10, the streamer length rises with applied
voltage from 8 kV to 25 kV. Hence, the streamer propagates further
at higher voltages due to the increase in expansion velocity with the

voltage amplitude. The homogeneity of the streamer is reduced with
the increased applied voltage, and the streamer is less constrained
along the axial axis with several branches.
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FIGURE 9
Electron density and electron temperature distribution for different applied discharges (8 kV, 10 kV, and 15 kV).

4.3.2 Influence of input power
In discharge plasma input, power plays a crucial role in

degrading cancer cell activities and killing them, where the increase
in input power enhances the medical therapy [37]. In fact, higher
input power is associated with a higher electron density in the
reaction medium, resulting in the production of many reactive
oxygen species, including O3, OH, and O, which contribute to the
degradation of microorganisms [38, 39]. By increasing input power,
electric fields allow electrons to gain more energy, thus causing
further ionization of oxygen and H2O molecules [40]. Then, higher
energy density means more energy can be stored and released.

The power density shows the acceleration of the quantity of
energy provided for a limited period of time. Higher power density
also signifies a faster charge/discharge rate, which can result in
more energy being recovered [41]. Figure 11 shows that the streamer
length rises with increasing energy input [42].

4.3.3 Influence of pressure
The streamer’s structure and velocity studied in a nanosecond

time scale are greatly affected by applied pressure. As shown in
Figure 12, the speed at which an ionizing front propagates declines
with pressure [43]. Hence, there is a decrease in the volume and
number of streamers in response to increased pressure [44].

Furthermore, the breakdown time increases as the pressure
changes from atmospheric to 0.3 MPa. If the pressure is increased
further, the streamer will disappear, along with the currents
and light pulses associated with it. However, when pulse
durations are reduced to sub-nanosecond levels, pressure influence
decreases [45].

4.3.4 Influence of pulse repetition frequency
Two distinct modes of pulsed plasma discharge are generated by

increasing the pulse frequency from 1 kHz to 10 kHz [46]: (i) the
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FIGURE 10
Variation of streamer length with applied voltage.

FIGURE 11
Variation of energy input into streamer discharge with interelectrode
distance at various applied voltage pulses.

first mode is a streamer mode, where a corona discharge propagates
through a streamer channel, and (ii) the second mode involves a
rise in pulse repetition rate which reduces the streamer channel and
suppresses the streamer mode when exceeding a threshold value,
usually 10 kHz.

With varying pulse frequencies, several effects contribute to the
change of plasma morphology. Indeed, increasing pulse frequency
changes thermal processes due to an increase in power input
and time of plasma contact. Figure 13 illustrates the increase in
temperature caused by high-voltage pulse discharge of 10 kV at
1 kHz and 6 kHz. A discharge operating at an elevated pulse
frequency heats the tissue to a higher temperature faster. A discharge
at 6 kHz increases the water temperature by more than 50°C
within 5 min, while this magnitude of temperature gradient is not

FIGURE 12
Variation of the velocity of ionizing front streamer with pressure.

FIGURE 13
Temperature variation during the discharge plasma treatment using
high-voltage pulses with the frequency of 1 kHz and 6 kHz.

observed at lower frequency discharges. Using 1 kHz only increases
temperature by 10°C [47].

4.3.5 Influence of the flow rate
Discharge plasma treatment technology greatly depends on

the quality and quantity of input gases. The degradation of
microorganisms is more efficient in oxygen than in air gas [48].
An analysis of the effects of oxygen concentration and gas flow
rate with pulsed streamer discharge is presented in this study. The
densities of O, NO, and OH, which play a crucial role in plasma
medicine, are displayed to analyze the correlation between cell
death and reactive species on the growth medium. A variety of
reactive species are generated in liquid from OH and NO radicals
[49,50], and atomic oxygen is a powerful oxidant with significant
biological effects.
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FIGURE 14
(a) Influence of the nitrogen flow rate and (b) influence of the oxygen ratio in an oxygen–nitrogen mixture.

Figure 14a shows that when (O2 = 0%) and as the N2 flow rate
increases, OH density declines by diluting it because of the existence
of water vapor concentration, which is necessary to produce OH
radicals. Hence, the increase in the N2 gas flow rate reduces
the cell death rate and decreases the efficiency of microorganism
removal by generating fewer reactive species. The degradation
efficiency does not improve beyond a certain gas flow rate, and the
decrease in NO concentration at the system outlet confirms these
results [51].

As shown in Figure 14b, the O2/N2 discharge does not affect
cell death despite a considerable increase in O2 concentration
with a constant flow rate. Based on these findings, it appears that
melanoma cell death is most likely caused by OH, which is a
reactive species that is derived from water vapor. Oxygen-derived
reactive species like NO and O have little influence because they
emphasize the significance of incorporating water evaporation into
the culture medium [52].

4.4 Correlation analysis

Rather than being removed by short-lived reactive species,
melanoma cells are removed by long-lived chemical species
dissolved in the medium. Long-lived chemical species interacting
in cell death are reactive oxygen species (HO)x, reactive nitrogen
species (HNO)x, and organic substances created when organic
compounds react with reactive gas species [53]. According to
Figure 14, OH radicals’ flux to the medium surface results in
cell death. Indeed, OH radicals are precursors of subsequent
chemical reactions that result in the removal of cancer cells. H2O2
is one of the long-lived chemical species that removes cancer
cells [54]. The flux of short-lived species in the medium has

an important correlation because it initiates the death process
in cells [55].

Initially, reactive plasma species interact with the
transmembrane proteins andmembrane lipids [56]. Cellmembranes
are initially oxidized or modified by plasma species. During lipid
oxidation, the membrane permeability is increased, lipid mobility
in the phospholipid bilayer (PLB) is altered, pores are created,
and the bilayer disintegrates [57]. The fluidity and stability of cell
membranes are maintained by cholesterol, which is typically low in
cancer cell plasmamembranes. Hence, the formation of pores allows
reactive species to easily enter cancer cells, explaining how plasma
treatment targets cancer cells. In addition, aquaporins (AQPs) act
as transport channels for H2O and small reactive molecules like
NO, NO3

−, and H2O2 [58] across the membrane. A higher number
of AQPs are found in the cytoplasmic membrane of cancer tissues
than in homologous normal tissues, explaining why cancer cells are
more susceptible to plasma therapy. A variety of nitration products
are formed by reactive nitrogen species (RNS) interacting with
the membrane, including nitro phospholipids. Nitrated lipids are
produced from this process in high yields, similar to lipid oxidation.
Nitrated membranes are three times more permeable to water than
oxidizedmembranes due to the impact of nitration. Reactive species
generated by plasma can penetrate cell membranes. Compared to
normal cells, cancer cells have a noticeable increase in reactive
oxygen species (ROS), increasing oxidative damage to biomolecules.
Cell deathmust also be activated by the apoptosismechanism.Along
with RONS generation, plasma sources also generate strong electric
fields, which play a synergistic role in plasma–cell interaction, as
they can temporarily or permanently electroporatemembranes [59].
Mitochondria are irreversibly damaged by repeated electric field
shots. Moreover, short electrical pulses can trigger apoptosis in
cells. Cells can be selectively killed using electrical pulses.
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FIGURE 15
Mechanism of cancer cell treatment during plasma treatment.

Consequently, when melanoma cells receive plasma treatment,
they often undergo apoptosis rather than necrosis [60]. Due to a
gradual cascade of biochemical processes, apoptosis induces cell
death that takes some days. In contrast, necrosis occurs instantly
following plasma treatment [61]. So, apoptosis mainly induces slow
cell death, and the survival rate does not decrease rapidly after
treatment.

Our results aligned well with the experimental study of Biscop
et al. [62], who emphasized an increase in caspase 3/7 and annexin
V expression, indicative of apoptosis, as well as lipid peroxidation,
characteristic of ferroptosis, following both direct and indirect
NTP treatment of melanoma cells. Furthermore, Arndt et al. [63]
investigated the effects of surface micro-discharge technology on
melanoma cell treatment.They affirmed that in response to different
CAP doses, tumor cells induce apoptosis or senescence differently.

Finally, plasma medicine could be considered more effective
than chemical radiation therapy because it considers short-
lived reactive species, charges, densities, electric fields, and
their synergetic effects, as well as long-lived species [64].
As shown in Figure 15, the immediate vicinity of an ignited plasma
creates reactive species that cause necrosis, DNA damage, and
potentially electroporate effects on cells. The diffusion of longer-
lived species into the tumor periphery contributes to the induction
of apoptosis. Plasma source proximity is used to estimate the effects
and responses of cells.

5 Conclusion

This research examines the biological assessment of plasma
liquid’s effects on the treatment of skin cancer. For this purpose,

a numerical simulation of high-voltage pulse streamer discharge
utilized for cancer medical therapy is investigated using COMSOL
Multiphysics software. Pulse-source plasma energy transfer is
optimized based on voltage, pressure, input power, total energy,
pulse frequency, and flow rate. Results show that the electron
energy and electric field can transiently reach greater levels than in
stationary discharges. Over many pulses, O3 and NO accumulate in
the gas, while other neutral species are consumed. At the surface
liquid, RONS accumulate and then decay after the plasma period.
As voltage increases, reactive species densities increase due to
higher power deposition. The streamer discharge improves with
increasing electrode separation. Pressure decreases the ionizing
front’s propagation velocity. As a result, increased pressure decreases
the number and the volume of streamer branches. Increasing the
flow rate of N2 gas reduces the cell death rate and decreases
the efficiency of removing microorganisms by generating fewer
reactive species. Another control mechanism is the pulse repetition
frequency, and a higher pulse frequency increases the temperature
of the active medium.

Because ROS and RNS have different timescales, gas flow can
regulate the relative rates of ROS and RNS solvation into liquids.
The gas flow rate increases while RNS in the liquid decreases.
Degradation efficiency does not improve beyond a certain gas
flow rate, and NO concentration at the system outlet decreases.
The most likely cause of melanoma cell death is the water vapor
reactive species like OH. As oxygen-derived reactive species, NO
and O have a less significant effect and highlight the significance
of the movement of water vapor from the surface into the
culture medium.

Compared to necrosis, which occurs immediately to remove
melanoma cells, plasma treatment causes cells to undergo apoptosis,
resulting in cell death over hours or days, and survival rates do
not decline quickly after treatment. Although chemical radiation
therapy provides faster results in removing melanoma cells, plasma
medicine, considering both long-lived and short-lived reactive
species, demonstrates its ability to remove cancer cells while
promoting tissue regeneration.
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