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Southeast University, Nanjing, China

This paper addresses the current challenges in coordinating interactions
between the power market and the carbon market, particularly the
shortcomings arising from the insufficient consideration of renewable energy
subsidies. To tackle these issues, we propose a collaborative optimization
approach for an integrated electric–carbon market that incorporates a
renewable subsidy mechanism. The aim is to foster deeper integration between
the power and carbon markets, enhance the share of clean energy in the
overall mix, and drive low-carbon transitions. A joint market clearing model is
constructed that explicitly includes renewable subsidy costs in the objective
function, thereby capturing the true cost-benefit dynamics of renewable
projects. A case study based on a regional power system demonstrates the
model’s effectiveness and feasibility, with the Particle SwarmOptimization (PSO)
algorithm successfully converging to a near-optimal solution. This research not
only provides theoretical support for the real-world application of coordinated
electric–carbon market operations but also offers significant practical value by
incorporating renewable energy incentives into the market design.

KEYWORDS

collaborative optimization, particle swarm optimization, market clearing model,
renewable energy subsidy, low-carbon transition

1 Introduction

Global climate change requires reducing emissions and advancing low-carbon energy
transitions. As the world’s largest emitter, China has set ambitious ‘dual carbon’
goals—carbon peaking and neutrality—through clean energy expansion and energy market
optimization. Renewable energy is central to these goals and relies heavily on policy support
for large-scale growth. The 2011 Renewable Energy Development Fund marked China’s
commitment to accelerating renewable energy through subsidies. Both the power and
carbon markets are critical for low-carbon transitions: the power market optimizes energy
allocation with price signals, while the carbon market incentivizes emission reductions
with carbon pricing. Coordinating these markets is key to achieving low-carbon goals.
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The power market determines electricity prices through
competition, optimizing resource allocation [1]. Power generators
decide output based on demand and costs, while consumers
choose suppliers based on price signals. Government policies
ensure market fairness, efficiency, and sustainability. The carbon
market reduces emissions through market-based mechanisms,
with emission allowances allocated by the government and traded
among companies. Companies that emit less than their allowance
can sell surplus, while those exceeding their allowance must
buy more permits [2]. This incentivizes emission reductions and
supports low-carbon transitions. Research on integrating electric
and carbon markets has progressed, particularly with diverse
market clearing models. For example, Yuan et al. [3] proposed a
model to enhance thermal power flexibility, Feng and Zhang [4]
developed a two-stage optimization model that increases thermal
power revenue and renewable energy integration, and Qu et al. [5]
introduced a multi-energy model that reduces emission costs by
23%. Studies have also explored renewable energy integration, with
Alizadeh et al. [6] emphasizing the role of thermal power flexibility
and demand-side response in mitigating renewable variability.
Additionally, Zhao et al. [7] proposed a carbon trading framework
for virtual power plants (VPPs), demonstrating a 14% revenue
increase but highlighting the need for subsidies. Garoarsdottir
et al. [8] showed that improving thermal power cycling can reduce
wind curtailment by 8%–15%, and Zhang et al. [9] found that
interprovincial carbon trading yields greater economic benefits
than intraprovincial trading. However, renewable energy subsidies
are not yet fully integrated into market clearing models, limiting
their economic impact. The Variable-Temporal Carbon Heat Rate
(V-TCHR) model by Akpan and Fuls [10] highlights that fixed
CO2 emission factors distort carbon price signals. Qi and Choi
[11] found that carbon prices in China’s pilot markets are only
40% of the marginal abatement cost, weakening the motivation
for emission reductions. Impram et al. [12] discovered that high
renewable energy shares affect system stability, requiring flexibility
indicators for optimal subsidy allocation. Liu et al. [13] pointed
out that intergovernmental competition could undermine carbon
trading policies, while Feng et al. [14] proposed adjusting wind
power sales according to regional demand elasticity to balance
investment.

This paper develops a market clearing model for integrated
electric-carbon markets, incorporating renewable energy subsidies,
and validates the model through a regional power system case study.
We assume rational participants aiming to maximize their payoffs:
power generators decide output based on electricity and carbon
prices, while consumers choose suppliers based on prices [15].
Participants have access to accurate market information, and
emission allowances are allocated using a baseline method. For
simplicity, we assume that: (1) all participants are price takers; (2)
carbon allowance supply is fixed or changes based on specific rules;
(3) electricity demand is constant in the short term; and (4) power
generators use both fossil fuels and clean energy. These assumptions
focus the analysis on the impact of renewable energy subsidies.
This study offers valuable insights for improving coordination
between power and carbon markets and assessing the effect of
subsidy policies on clean energy use.

2 Construction of the electric-carbon
joint market collaborative
optimization model

2.1 Generation cost

This study focuses on thermal power generation, specifically
including coal-fired and gas-fired power plants, as well as renewable
energy generation such as wind and solar power. According to
the research by Al-Hasan [16], the generation cost C(e,G) for
conventional power plants (coal and gas) can be approximated as
a quadratic function of their load power, expressed as Equation 1:

C(e,G) =
T

∑
t=1
∑
i∈ΩG

C(e,G)i,t =
T

∑
t=1
∑
i∈ΩG

[ai(P
G
i,t)

2 + biP
G
i,t + ci] , (1)

where i ∈ΩG represents the set of conventional power plants, and
T is the set of trading periods (in this case, 24 periods). C(e,G)i,t is
the generation cost of conventional power plant i at time t; PGi,t is
the actual output of plant i at time t; ai, bi, and ci are the quadratic,
linear, and constant coefficients of the generation cost function for
the conventional plants.

For renewable energy plants (such as wind and solar), the costs
are mainly attributed to capital costs and operational maintenance
costs, as these technologies do not require fuel. The generation cost
C(e,R) for renewable energy plants is calculated using the levelized
cost of electricity method as shown in Equation 2 [17]:

C(e,R) =
T

∑
t=1
∑
j∈ΩR

C(e,R)j,t =
T

∑
t=1
∑
j∈ΩR

CCj,t +OMj,t

PRj,t
, (2)

where j ∈ΩR represents the set of renewable energy plants, and
CCj,t and OMj,t represent the capital and operational maintenance
costs of renewable energy plant j at time t (in units of yuan). PRj,t
is the expected generation of the renewable energy plant j at time
t (in MWh).

Thus, the total generation cost Ce of the system, which includes
both conventional and renewable energy generation costs, is
expressed as shown in Equation 3:

Ce = C(e,G) +C(e,R)

=
T

∑
t=1
∑
i∈ΩG

[ai(P
G
i,t)

2 + biP
G
i,t + ci] +

T

∑
t=1
∑
j∈ΩR

CCj,t +OMj,t

PRj,t
.

(3)

2.2 Carbon cost

In the electric-carbon market clearing model, we need to
separately consider carbon emissions and carbon allowances for
conventional power plants (coal, gas) and renewable energy plants
(wind, solar). The carbon trading cost is mainly determined by
the carbon emissions, carbon allowances, and the carbon market
price [18]. If the emissions exceed the allocation, the plant must
purchase additional carbon allowances. Conversely, if there are
excess allowances, the plant can sell them and gain revenue. The
allocation of carbon allowances for conventional power plants is
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typically done using the baseline method, based on the plant’s
generation and industry carbon emission standards, yielding the
carbon allocation PGi,t for plant i at time t, as expressed in Equation 4:

PGi,t = P
(G,Power)
i,t × γG, (4)

where P(G,Power)i,t is the actual generation of plant i at time t (in
MWh), and γG is the carbon emission factor for conventional plants
(tCO2/MWh), set by the government based on the technology type
(coal or gas).

If the actual carbon emissions EGi,t exceed the allocated carbon
allowance PGi,t, the plant must purchase additional allowances. If
the emissions are below the allowance, the plant can sell the
excess allowances. The carbon trading cost (or revenue) CG for
conventional plants is given by Equation 5:

CG = ∑
i∈ΩG

T

∑
t=1
[EGi,t − P

G
i,t] ×Mc = ∑

i∈ΩG

T

∑
t=1
[EGi,t − (P

(G,Power)
i,t × γG)] ×Mc,

(5)

where Mc is the carbon market price.
Unlike conventional plants, renewable energy plants (wind,

solar) do not directly emit CO2. To encourage renewable energy, the
carbon allocation for these plants is based on the emission reduction
due to their displacement of fossil fuel generation, as shown in
Equation 6:

PRj,t = P
(R,Power)
j,t × ρc × PE, (6)

where ρc is the coefficient of displacement for standard coal power
generation (this study uses ρc = 0.32), PE is the carbon emission
factor for coal power generation (this study uses PE = 639.73), and
P(R,Power)j,t is the generation of the renewable energy plant at time t
(in MWh). Since renewable plants have negligible emissions, they
generally become sellers of carbon allowances. The carbon trading
cost (or revenue) CR for renewable plants is given by Equation 7:

CR = ∑
j∈ΩR

T

∑
t=1
[ERj,t − P

R
j,t] ×Mc = ∑

j∈ΩR

T

∑
t=1
[0− (P(R,Power)j,t × ρc × PE)] ×Mc.

(7)

Thus, the total carbon trading cost Cc, which includes both
conventional and renewable plants’ carbon costs (or revenues), is
expressed as shown in Equation 8:

Cc = ∑
i∈ΩG

T

∑
t=1
[EGi,t − (P

(G,Power)
i,t × γG)] ×Mc

+ ∑
j∈ΩR

T

∑
t=1
[ERj,t − (P

(R,Power)
j,t × ρc × PE)] ×Mc. (8)

2.3 Renewable energy subsidy cost

The government typically provides subsidies to renewable
energy plants, but the environmental benefits from the displacement
of fossil fuel generation should also be taken into account. The total
renewable energy subsidy cost Cs includes both the government

subsidies and the environmental benefits. The government subsidy
can be expressed as shown in Equation 9:

CB
s = ∑

j∈ΩR

T

∑
t=1
(PRj,t × S) , (9)

where S is the subsidy per unit of electricity (inMWh), and PRj,t is the
generation of renewable plant j at time t.

Renewable energy generation displaces fossil fuel generation,
reducing greenhouse gas emissions. If each unit of CO2
reduction generates a benefit EV (this study uses EV = 0.13), the
environmental benefit E can be expressed as shown in Equation 10:

CQ2 = ∑
j∈ΩR

T

∑
t=1
(PRj,t × ρc × PE) ,

E = CQ2 ×EV = ∑
j∈ΩR

T

∑
t=1
(PRj,t × ρc × PE×EV) .

(10)

Thus, the renewable energy subsidy cost Cs is the
sum of government subsidies and environmental benefits,
as given in Equation 11:

Cs = CB
s +E

= ∑
j∈ΩR

T

∑
t=1
(PRj,t × S) + ∑

j∈ΩR

T

∑
t=1
(PRj,t × ρc × PE×EV) .

(11)

2.4 Constraints

In the electric-carbon joint market clearing, several constraints
must be satisfied to ensure the stability and safe operation of the
system, as shown in Equations 12–18.

2.4.1 Power output constraints
2.4.1.1 Conventional power plants

PGi,min ≤ P
G
i,t ≤ P

G
i,max, ∀i ∈Ω

G,∀t = 1,…,T. (12)

where PGi,min and PGi,max represent the minimum and maximum
output of conventional power plant i.

2.4.1.2 Renewable energy plants

0 ≤ PRj,t ≤ P
(R, f)
j,t , ∀j ∈Ω

R,∀t = 1,…,T. (13)

where P(R, f)j,t is the forecasted output for renewable energy plant j at
time t.

2.4.2 Transmission line capacity constraints
2.4.2.1 Power flow constraints

Imin
n,m ≤ Bn,m (θn,t − θm,t) ≤ I

max
n,m , ∀{n,m} ∈ B,∀t = 1,…,T, (14)

where Imax
n,m and Imin

n,m represent the upper and lower limits of the
transmission line {n,m}; Bn,m is the line admittance between nodes
n andm; θn,t and θm,t represent the phase angles of nodes n andm at
time t.
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2.4.2.2 Ramp Rate Constraints
To ensure smooth operation of the power plants, the

output change between adjacent periods should remain within
reasonable limits

PGi,t − P
G
i,t−1 ≤ P

(G,O)
i , ∀i ∈Ω

G, t = 2,…,T, (15)

PGi,t−1 − P
G
i,t ≤ P
(G,H)
i , ∀i ∈Ω

G, t = 2,…,T, (16)

where P(G,O)i and P(G,H)i are the upward and downward ramp rates for
plant i.

2.4.3 Node power balance constraints

∑
i∈ΩG

n

PGi,t + ∑
j∈ΩR

n

PRj,t − ∑
m∈ΩR

n

Bn,m (θn,t − θm,t) = ∑
k∈ΩK

n

PDk,t, ∀n ∈ N,∀t = 1,…,T.

(17)

where ΩG
n , ΩR

n , and ΩK
n represent the sets of conventional plants,

renewable energy plants, and loads connected to node n; PDk,t
represents the load demand at node n at time t.

2.4.4 Renewable energy generation proportion
constraint

∑
j∈ΩR

T

∑
t=1

PRj,t ≤ βt
T

∑
t=1

PDk,t, (18)

where βt represents the maximum proportion of renewable energy
generation at time t, and ∑Tt=1P

D
k,t represents the total system load.

Based on these constraints, the system’s total cost is
minimized over 24 trading periods. The objective function
is given by Equation 19:

minC =min(Ce +Cc +Cs) , (19)

where C = Ce +Cc +Cs is the total system cost, with Ce as the
generation cost, Cc as the carbon trading cost, and Cs as the
renewable energy subsidy cost.

3 Case study

To verify the effectiveness of the proposed method, a test system
is set up with one coal-fired unit (G1), one gas-fired unit (G2),
one wind unit (R1), and one photovoltaic (R2) unit for a 24-
h market clearing simulation. We employ the PSO algorithm to
solve the objective function, which integrates the generation cost of
conventional units, the generation cost of renewable energy units,
the carbon trading cost, and the renewable subsidy cost. In the actual
solution process, to address various constraints—such as unit output
limits, ramping constraints, power flow balance, and line capacity
restrictions—a penalty function is introduced. Constraint violations
are penalized by adding large penalty terms to the objective function.

3.1 Parameter settings

3.1.1 Thermal unit cost parameters
The cost function for the coal-fired unit is given by Equation 20,

and the cost function for the gas-fired unit is given by Equation 21.

TABLE 1 Line parameters.

Line ID n→m Bn,m (p.u.) Imin
nm (MW) Imax

nm (MW)

L1 1→ 2 0.02 −200 200

L2 2→ 3 0.015 −150 150

3.1.1.1 Coal-fired unit (G1)

C(e,G)1,t = 0.05(P
G
1,t)

2 + 30 PG1,t + 500. (20)

3.1.1.2 Gas-fired unit (G2)

C(e,G)2,t = 0.08(P
G
2,t)

2 + 50 PG2,t + 300. (21)

3.1.2 Renewable unit cost parameters
3.1.2.1 Wind Unit (R1)

Using a levelized cost of electricity (LCOE) approach, the capital
cost is CCR1 = 20,000,000 CNY, and the annual operation and
maintenance cost is OMR1 = 500,000 CNY/MW. The predicted
output P(R, f)(R1,t) varies hourly.

3.1.2.2 PV Unit (R2)
Similarly, the capital cost is CCR2 = 15,000,000 CNY, and the

annual O&M cost is OMR2 = 400,000 CNY/MW. The forecasted
output P(R, f)(R2,t) varies with daytime solar irradiance.

3.2 Carbon market parameters

Carbon allowances are allocated based on a baseline method,
with an emission factor of 0.75 tCO2/MWh for coal-fired units
and 0.35 tCO2/MWh for gas-fired units. The carbon price is set
to Mc = 60 CNY/tCO2. The coal-displacement coefficient is ρc =
0.32, and the emission factor for coal is PE = 639.73.

3.3 Renewable subsidy parameters

Again, adopt ρc = 0.32 for the coal-displacement coefficient and
PE = 639.73 g CQ2/kWh. Let the revenue per unit CQ2 be EV =
0.13 CNY/kg, and the subsidy per unit of generated renewable
electricity be S = 0.1 CNY/kWh.

3.4 Other constraints

3.4.1 Power-flow constraints for conventional
units

Consider a grid with three nodes and two transmission lines,
where the line data are given as the Table 1.
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TABLE 2 Example time segment and power output for wind unit.

Time (h) 0−6 7− 12 13− 18 19−24

Power (MW) 120 80 60 150

TABLE 3 Example time segment and power output for PV unit.

Time (h) 0−6 7− 12 13− 18 19−24

Power (MW) 0 200 180 0

Voltage phase-angle constraints are given by Equation 22:

−30° ≤ θn,t − θm,t ≤ 30°, ∀(n,m) ∈ B,∀t ∈ T. (22)

3.4.2 Power-flow constraints for renewable units
Therenewable units share the same grid lines as the conventional

units, with the same line limits and phase-angle constraints.

3.4.3 Thermal unit output constraints
The thermal unit output constraints for the coal unit and gas unit

are given by Equations 23, 24.

3.4.3.1 Coal unit (G1)

100 ≤ PG(G1,t) ≤ 500MW, P(G,O)G1 = 50 MW/h,P(G,H)G1 = 60 MW/h.
(23)

3.4.3.2 Gas unit (G2)

50 ≤ PG(G2,t) ≤ 300MW, P(G,O)G2 = 80 MW/h,P(G,H)G2 = 100 MW/h.
(24)

3.4.4 Renewable unit output constraints
The renewable unit output constraints for the wind unit and PV

unit are given by Equations 25, 26.

3.4.4.1 Wind unit (R1)

0 ≤ PR(R1,t) ≤ P
(R, f)
(R1,t)MW. (25)

An example of the forecasted wind output P(R, f)(R1,t) by time
segment is as Table 2.

3.4.4.2 PV unit (R2)

0 ≤ PR(R2,t) ≤ P
(R, f)
(R2,t)MW. (26)

The forecasted PV output for sample time segments is as Table 3.

3.4.5 Renewable penetration constraint
The renewable penetration constraint is given by Equation 27.

∑
j∈ΩR

T

∑
t=1

PRj,t ≤ 0.6
T

∑
t=1

PDk,t, ∀ t ∈ T, (27)

which ensures that the renewable generation at any time does not
exceed 60% of the total load.

Figure 1 shows how the Particle Swarm Optimization (PSO)
algorithm converges to a near-optimal solution over 1,000 iterations.
The horizontal axis represents the number of iterations, and the
vertical axis indicates the objective function value. At the beginning
of the process, the objective function value is relatively high (around
9× 108). As the algorithm proceeds, particles within the swarm
explore the solution space, share information about promising
regions, and iteratively update their positions and velocities. We
can see a rapid decrease in the objective function value during
the first few hundred iterations, indicating that the swarm quickly
improves upon its initial guesses. After about 200–300 iterations,
the convergence curve flattens out, reflecting a gradual refinement
of the solution as the swarm narrows in on a near-optimal point. By
the final iterations, the curve levels off, suggesting that the algorithm
has largely converged and further improvements are minimal.

Figure 2 demonstrates the trade-off between reducing CO2
emissions and managing system costs. By adjusting carbon prices
and subsidy levels, policymakers can find an optimal balance
between encouraging renewable energy integration and minimizing
the economic burden on the system.

4 Conclusion

This paper introduces a renewable energy subsidymechanism to
address limitations in current electric-carbon joint market clearing
models, specifically the insufficient consideration of renewable
subsidies. The key findings are as follows: 1. A joint electric-
carbonmarket clearingmodel is proposed, incorporating renewable
subsidies.Thismodel overcomes the traditionalmarket shortcoming
of neglecting renewable energy incentives. By integrating renewable
subsidy costs into the objective function, the total system cost
is more comprehensively captured, and market signals more
accurately reflect the cost-effectiveness of renewable projects. 2.
Strengthening the connection between renewable subsidy policies
and market clearing mechanisms ensures effective coordination
between policy goals and market operations. This alignment
promotes an optimized energy mix and supports the achievement
of low-carbon transition targets. 3. The model accounts for the
bidirectional interaction between the power market and the carbon
market, achieving a dynamic balance that fosters the innovation
and development of clean energy technologies. To further enhance
the joint electric-carbon market clearing model and its handling of
renewable subsidies, we suggest the following directions for future
research: 1. Future research can incorporate uncertainties such as
renewable output forecast errors and carbon price fluctuations.
This would improve the model’s robustness, adaptability, and
practical applicability. 2. Investigating the coordination between
mid-to long-term carbon allowance allocations and short-term
market clearing could improve policy continuity and ensure the
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FIGURE 1
The optimal objective value.

FIGURE 2
Effect of Carbon Price and Subsidy Rate on CO2 Emissions and System Cost. This figure shows the impact of varying carbon prices and renewable
energy subsidies on CO2 emissions (blue bars) and total system cost (orange bars). The scenarios include low and high carbon price levels, as well as
low and high subsidy rates. The left y-axis represents CO2 emissions in million tons (× 106 tons), while the right y-axis shows total system cost in 108

Yuan. Higher carbon prices generally reduce emissions but increase costs, while higher subsidies lead to lower emissions but higher system costs.
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stability and effectiveness of market mechanisms over time. 3.
Exploring interconnections between cross-regional electric-carbon
markets would enable broader resource optimization, increase
energy utilization efficiency, and enhance market competitiveness.
Based on our findings, we recommend the following policy
actions: 1. Design renewable energy subsidies that are dynamic
and performance-based, adjusting according to regional integration
capabilities and marginal system benefits. 2. Develop coordinated
carbon allowance allocation mechanisms that balance baseline
allocation with incentives for flexibility improvements in power
generation systems. 3. Establish stronger coordination between
market operators and regulators to harmonize electricity prices with
carbon pricing signals, ensuring amore effective and efficientmarket
structure.The proposed joint electric-carbon market clearing model
incorporating renewable subsidies offers significant theoretical and
practical value. It enhances synergy between the power and carbon
markets while optimizing resource allocation. As renewable energy
technologies advance and policy frameworks evolve, this research
has the potential to support deeper market integration and drive
progress toward green, low-carbon energy transitions. Future efforts
to refine and adapt themodel to real-world conditions will be crucial
for creating a more sustainable and efficient energy structure.
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