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The causal impacts between economic policy and listed oil companies have
been discussed previously, reporting either positive or negative impacts.
However, various channels bridge the impacts flowing between them, resulting
in multiple causal impacts rather than only a single causal impact. This work
employs a dynamics-based causality method, namely, pattern causality, and
aims to reveal multiple causal interactions between economic policy and listed
oil companies in China. Using the economics policy uncertainty index and
the stock prices of nine popular listed oil companies in China from 2006 to
2025, several interesting findings are discovered. 1) Three kinds of causalities
exist between economic policy and listed oil companies: positive, negative, and
dark causality. Dark causality suggests more complex interactions, which may
drive two variables to evolve with fluctuations; 2) rather than only one kind
of causality, three heterogeneous causalities exist simultaneously with different
magnitudes; 3) the causal impacts between the economic policy and listed
oil companies are asymmetric; 4) by comparing the causal magnitudes, dark
causality is shown to play a relatively dominant role between economic policy
and listed oil companies. These new findings suggest complex interactions
between economic policy and listed oil companies, requiring a reassessment
of the underlying risks for market participants. Our approaches also offer an
alternative perspective on understanding the complexity of social systems.

KEYWORDS

economic policy, oil listed company, multiple causality, dynamics theory, complex
system analysis

1 Introduction

The global energy landscape is undergoing a profound transformation, shaped by
overlapping forces such as climate changemitigation efforts [1, 2], geopolitical realignments
[3, 4], and technological innovation [5]. Central to this transformation is the interplay
between economic policy uncertainty (EPU) and the strategic behavior of listed oil
companies [6, 7]. As governments grapple with decarbonization targets, energy security
concerns, and macroeconomic stabilization, the resultant policy volatility creates both
risks and opportunities for oil firms [8]. Conversely, the operational decisions of these
firms—ranging from capital expenditure allocations to lobbying activities—significantly
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influence policy trajectories [9, 10]. This paper explores the
bidirectional dynamical impacts between EPU and listed oil
companies in China, addressing a critical gap in the literature by
analyzing the dynamic feedback mechanisms that characterize their
interactions.

Economic policy uncertainty, defined as the ambiguity
surrounding future policy actions [11], has surged in recent
decades due to factors such as trade wars, regulatory reforms, and
the transition to net-zero economies [12, 13]. For the oil sector,
which is capital-intensive, politically sensitive, and exposed to
long-term demand risks, EPU exacerbates operational challenges
[14]. For example, the EU’s evolving carbon pricing framework
and the US’s vacillating stance on shale oil subsidies have created
a climate of uncertainty that disrupts investment planning (BP,
2022). Conversely, oil company responses—such as divesting
from fossil fuels or expanding into renewable energy—can alter
policymakers’ perceptions of industry viability, thereby shaping
subsequent regulatory choices [13].

Existing studies on EPU and oil firm behavior primarily focus
on directional impacts [15, 16]. For instance, a large body of
research documents how EPU reduces corporate investment [17],
increases financing costs [18], and distorts innovation trajectories
[19]. In the energy sector, scholars have examined how policy
uncertainty affects renewable energy adoption (Aklin &Urpelainen,
2012) and oil price volatility [20, 21]. However, these studies often
treat policy as an exogenous shock, neglecting the role of firms
in shaping policy outcomes. The findings are mixed regarding
the impacts between EPU and oil firms. Some scholars report
negative causal impacts between EPU and firm behavior [22]. For
example, some scholars suggest that policy uncertaintymay increase
uncertainty as it leads to increased costs and, therefore, negatively
affects investment behavior. Bloom [23] has reported that increased
uncertainty raises the “real option value to wait,” which forces
companies to delay their investment until the uncertainty is reduced.
In contrast, some literature provides evidence of positive causal
impacts. Belderbos et al. [24] reported that firms in across-country
investments improve the value of growth options, and this often
occurs when high market uncertainty exists in host countries. In
summary, the impacts between EPU and listed oil companies are
debatable and mixed concerning the directional and bidirectional
as well as positive and negative impacts, requiring new techniques
to clarify the complex connections between EPU and oil firms.

The interplays between EPU and listed oil companies may
occur from various channels, as shown in Figure 1 [25–27]. 1)
For investment decision-making. Policy uncertainty increases the
unpredictability of a company’s future cash flows, leading oil
companies to postpone or reduce long-term capital expenditures
such as exploration and development and refining capacity
expansion [28]. 2) Financing cost channel. The rise in market risk
premiums caused by policy fluctuations is transmitted through
debt financing costs and equity financing costs [22]. 3) Expectation
management [29].The ambiguity of policy signals leads to deviations
in management’s forecasts of future demand. OPEC + member
countries adjusted their monthly production quotas repeatedly due
to the repeated release policy of the US Strategic Petroleum Reserve.
4) Supply chain reconfiguration. Changes in trade policies (such
as the US sanctions on Venezuelan crude oil) force oil companies
to adjust their procurement networks, increasing logistics costs

FIGURE 1
Possible impact patterns and channels between EPU and listed oil
companies.

[30]. 5) Tax policy. Changes in policies such as windfall profit
taxes directly affect corporate profits (for example, the UK’s Energy
Profits Levy in 2022 led to a 12% decline in BP’s quarterly net
profit.) 6) Technological innovation. The uncertainty of the carbon
pricing mechanism affects the R&D investment of oil companies in
carbon capture, utilization, and storage (CCUS) technologies [31]. 7)
Market access. The tightening of environmental protection policies
(such as the EU’s plan to ban the sale of fuel-powered vehicles by
2030) forces oil companies to adjust their business structures. 8)
Consumer expectation [32]. The expected fluctuations in energy
prices triggered by policy uncertainty affect terminal demand [33].
9) Political risk channel [21, 34, 35]. Geopolitical conflicts (such as
the Russia–Ukraine war) combined with the uncertainty of energy
policies led to the revaluation of the assets of oil companies. These
channels form a dynamic feedback mechanism. For example, oil
companies influence policy-making through political donations,
thus forming a two-way interaction between policies and corporate
behavior. It is obvious that some channels may pass positive impacts
between economic policy and listed oil companies, while negative
impacts flow through other channels. These facts suggest not simply
a single causal impact between economic policy and listed oil
companies. Moreover, the fluctuation trends between variables are
often neither the same nor opposite. In addition to the positive and
negative impact patterns, more complex patterns may exist between
EPU and listed oil companies.

Some scholars aim to detect the interplay and volatility
spillover between economic policy and listed oil companies [36,
37]. Another popular approach is causality analysis [38–40]. The
Granger causality test is one of the popular causality analysis
methods, and it is widely used in economics and finance [41].
Due to the nonlinearity in many real-world systems, the nonlinear
Granger causality test was developed to measure nonlinear causal
impacts [42]. However, traditional Granger causality methods are
based on statistic regression and are reliable for stable series,
but they show limitations for unstable series. Moreover, they
also show limitations when we must quantify the strength of
causal impacts. Transfer entropy is a nonparametric tool that
investigates causality bymeasuring the information flowing between
observations. As certified by previous works, transfer entropy is
equal to the Granger causality test when the sample datasets are
Gaussian distributed [43]. Unlike previous statistical approaches,
cross-convergent mapping (CCM) is developed from the dynamics
embedded in the state space [44]. It reports that the time series
variables are causally linked if they are generated from the same
dynamical system and they share a common attractor. The CCM
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FIGURE 2
The selected sample data in this work.

method has a satisfactory ability to detect causality in complex
nonlinear systems, which solves the limitation of the Granger
causality test.

Although several causal detection techniques are widely used
in financial systems, like Granger causality, transfer entropy, and
CCM, these methods can only distinguish a single causal impact.
For example, only positive or negative causal impacts can be

obtained between two observations via traditional methods. This
is very limited for practical situations. If there is only a single
causal impact (e.g., positive impact) from variable X to variable
Y, then the increase (decrease) of X will drive the increase
(decrease) of variable Y. In other words, they are more likely to
evolve in similar directions. However, these rules are often rare
for many real-world observations; their fluctuation associations
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TABLE 1 Statistical analysis of sample datasets.

Order Code Mean STD Maximum Minimum Skewness Kurtosis

1 601857 7.81 20.3 13.39 4.07 0.05 −0.42

2 0883 11.86 3.63 22.4 6.37 0.71 −0.1

3 600028 5.4 0.91 8.12 3.9 0.22 −0.84

4 601808 15.21 3.66 27.94 8.54 0.92 1.36

5 600026 7.96 3.47 18.09 3.33 1.04 0.13

6 601872 4.42 1.72 10 1.59 0.57 −0.01

7 600642 5.86 1.32 11.48 3.8 1.32 2.29

8 600256 6.48 2.58 12.88 2.44 0.3 −0.78

9 002353 27.93 10.49 52.94 10.08 0.32 −0.95

10 EPU 234.9932 237.75 1425.2 0.33 2.08 5.67

Note: The stock prices of China Petrochemical Corporation (0083) are collected from Hong Kong Exchanges and Clearing Limited. The stock prices of Jereh Group (002353) are collected from
the Shenzhen Stock Exchange. Other stock prices are collected from the Shanghai Stock Exchange.

FIGURE 3
The Pearson correlation analyses of selected samples.

are complex, neither the same nor opposite directions. The
complex causality between them can be partially explained by
the aforementioned various channels. Some channels propagate
positive impacts, while others flow through negative causal impacts.
Thus, we speculate that there may be more than one kind of
causal impact between economic policy and listed oil companies
and possibly multiple impacts. Thus, more reliable methods are
needed to reveal the complex interactions in real-world systems.
Stavroglou et al. [45] proposed the pattern causality algorithm (PC)
based on the state space reconstruction theory, which can not
only detect causality, but it can also quantify causal strength. More
importantly, PC can distinguish both positive and negative causal
impacts as well as a more complex causal interaction, namely,
dark causality.

Thus, this work employs pattern causality methods to examine
multiple causality impacts between economic policy and listed
oil companies. The study makes three contributions. First, it
utilizes a new theoretical framework that captures the complex

dynamical causalities between EPU and listed oil firms in China.
Second, in addition to the previously reported positive and
negative causality, it reveals more complex causal interactions
(dark causality) between EPU and the stock prices of listed
companies, both positive and negative. Third, it analyzes the
dominant causal interactions between economic policy and
listed oil companies by quantifying the magnitude of multiple
causalities.

The remainder of this paper is organized as follows: Section 2
describes the methods. Section 3 depicts the sample data. In
Section 4, we investigate the complex causal impacts between EPU
and the stock prices of listed oil companies in China. Section 5
summarizes our main findings.

2 Methods

According to dynamical systems theory, in a dynamic system,
if we can estimate the state of component Y based on the
dynamics of component X, we can infer causality from variable
Y to variable X [46]; the more accurate the estimation can be,
and the stronger the causality is. On the other hand, inaccurate
estimation indicates variable Y has no dynamics information left
in variable X. We speculate that there is no causal interaction from
Y to X. According to [44], it is possible to test estimations by
the mappings between reconstructed dynamical structures from
time series variables. In particular, we can measure the causality by
mapping among neighbor points in the reconstructed dynamical
structure. The dynamical structure is reconstructed based on the
delay embedding theory. Thus, we can test the dynamical causal
interactions between variables based on the accuracy of mutual
estimations. As we know, the causal interactions between variables
can be positive or negative, even in more complex ways. In addition,
the strengths of impacts are different for different samples, thus
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FIGURE 4
The selection of parameters for the reconstructions.

requiring not only causality inference but also the causal strength
and causal type.

A dynamics-based causality method is proposed to solve the
above issues, namely, pattern causality, which examines causality
from X to Y by quantifying how consistently average patterns in the
state space of X correspond to average patterns in the state space
of Y in contemporaneous neighborhoods. According to pattern
causality, there may exist three heterogeneous causal impacts:
positive, negative, and dark causalities. A positive causality (i.e.,
“mutualism”) drives two variables to evolve in the same direction,
while opposite forces exist for negative causality (i.e., “competition”).
Dark causality suggests more complex interactions that are neither
“mutualism” nor “competition,” and it forces two variables to evolve
with fluctuations.

Specifically, the main processes of pattern causality are given by
four fundamental steps [40, 45]. First, we must make a state space
reconstruction from time series [47]. Based on Takens’ theory, we
can reconstruct a multidimensional state space from time series
using two faithful parameters, that is, embedding dimension E and
lag τ [48]. Specifically, we reconstruct E-dimensional state space AX
from time series X(t), see Equation 1.

AX =

[[[[[[[

[

X(1) X(1+ τ) ⋯ X(1+ (E− 1)τ)

X(2) X(2+ τ) ⋯ X(2+ (E− 1)τ)

⋮ ⋮ ⋱ ⋮

X(h) X(h+ τ) ⋯ X(l)

]]]]]]]

]

, (1)

where l is the length and h = l− (E− 1)τ. The row vectors (x(t)) on
AX denote the states evolving with time.

Once we get the reconstructed state space for both variables
X and Y, we must then determine the average pattern of each
point in the state space. The average pattern shows the fluctuation
trend in state space. The average pattern of x(t) is estimated
by its nearest neighbors. Specifically, we must find the weighted
combination from its E+1 nearest points based on the Euclidean
distance, see Equation 2:

wx
i =

e−d(x(t),x(i))

∑
i
e−d(x(t),x(i))

, (2)

where d denotes the Euclidean distance, and x(i) is the nearest
neighbor of a given x(t).

The average pattern Px(t) can be determined by the coarse
process; see Equations 3–5.

hxi = (
X(tx(i) + τ) −X(tx(i))

X(tx(i))
,⋯,

X(tx(i) + (E− 1)τ) −X(tx(i) + (E− 2)τ)

X(tx(i) + (E− 2)τ)
),

(3)

Hx(t) =
E+1

∑
i=1

wx
i h

x
i , (4)

Px(t) = Pattern(Hx(t)). (5)

Nine patterns exist in a 3-dimensional state space: (↗,↗),
(↗,→), (↗,↘), (→,↗), (→,→), (→,↘), (↘,↗), (↘,→)(↘,↘).

Third, we distinguish three kinds of causality based on
the average pattern in the state space AX and AY. Positive
causality is inferred when AY has a similar average pattern on
AX. Negative causality is determined when opposite patterns
are coupled; for example, a (↗,↗) pattern causes the (↘,↘))
pattern. Moreover, a dark causality is inferred when neither
similar nor opposite patterns (e.g., pattern (↗,↗) causes the
pattern (↘,↗)).

After identifying the type of causality, we must quantify the
causal strength. The causal strength is measured by the accuracy of
cross estimation between state spaces. In particular, we estimate the
average pattern of y(t) contemporaneously with x(t) by a mapping
that keeps the weights wx

i on AX, see Equations 6-9:

⌢y(tx(i)) = (Y(tx(i)),Y(tx(i) − τ),⋯,Y(tx(i) − (E− 1)τ)),
⌢y(tx(i)) ∈

⌢
Ny(t), (6)

h
⌢y
i = (

Y(tx(i) − τ) −Y(tx(i))

Y(tx(i))
,⋯,

Y(tx(i) − (E− 1)τ) −Y(tx(i) − (E− 2)τ)

Y(tx(i) − (E− 2)τ)
),

(7)

⌢
Hy(t) =

E+1

∑
i=1

wx
i h
⌢y
i , (8)

⌢
Py(t) = Pattern(

⌢
Hy(t)). (9)

By examining all state points on AX and AY, we obtain all
the estimated average patterns of y(t) based on the dynamics
of x(t) and the real average patterns of y(t). Then, accuracy
can be used as a metric of causal strength where the estimated
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FIGURE 5
The reconstructed 3-dimensional state space based on the time series of sample variables. Note: the results are ordered based on Figure 2.

average pattern of y(t) is equal to the real average pattern. Thus,
for each possible pattern Px(t), we calculate the percentage of
occasions for which the contemporaneously estimated average
pattern

⌢
Py(t) equals the true average pattern Py(t). Because there

are three kinds of causalities, we can measure the causal strength
for positive, negative, and dark causalities (more details can be
seen in [40]).

3 Data

This work aims to detect the impact of economic policy on listed
oil companies. Thus, we collect the sample data about economic
policy and listed oil companies. For the economic policy, we use a
widely used index, namely, the economic policy uncertainty index
(EPU), which is a newspaper-based index for policy uncertainty
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FIGURE 6
The positive causal impact among selected observations.

TABLE 2 The positive impacts among selected sample variables.

1 2 3 4 5 6 7 8 9 10

1 0 0.47 0.59 0.42 0.47 0.46 0.34 0.15 0.44 0.21

2 0.36 0 0.25 0.26 0.22 0.28 0.43 0.15 0.38 0.14

3 0.72 0.29 0 0.38 0.3 0.33 0.41 0.46 0.25 0.18

4 0.63 0.5 0.16 0 0.29 0.44 0.26 0.57 0.21 0.04

5 0.48 0.34 0.53 0.44 0 0.33 0.36 0.25 0.42 0.11

6 0.26 0.18 0.5 0.15 0.15 0 0.39 0.58 0.24 0.13

7 0.35 0.4 0.88 0.41 0.63 0.17 0 0.63 0.25 0.28

8 0.5 0.46 0.48 0.11 0.5 0.35 0.63 0 0.11 0.11

9 0.37 0.63 0.25 0.58 0.42 0.18 0.33 0.11 0 0.28

10 0.17 0.06 0.15 0.12 0.2 0.1 0.19 0.18 0.19 0

Note the numbers from 1 to 10 represent the corresponding observations (see Table 1).

in China (More details are given at https://www.policyuncertainty.
com/china_monthly.html). The monthly series from 2010/6/1 to
2025/2/1 are used. The length of the observed series is 177.

We consider the ten most popular listed oil companies:
China National Petroleum Corporation, China Petrochemical
Corporation, China National Offshore Oil Corporation,
China Oilfield Services Limited, COSCO SHIPPING Energy
Transportation, China Merchants Group, China Merchants Energy
Transportation, Shenergy Company Limited, Guanghui Energy,
and Jereh Group. Their monthly stock price series from 2010/6/1
to 2025/2/1 are used as sample. Their corresponding stock codes
are given in Table 2. All the datasets are free at https://cn.investing.
com/. The datasets are depicted in Figure 2.

From the statistical analysis, the stock price of China National
Petroleum Corporation shows relatively higher fluctuations with a
standard deviation of 20.3. Meanwhile, the stock price for China
National OffshoreOil Corporation remains stable and has the lowest
standard deviation. It is obvious the EPU has the highest volatility
due to the highest standard deviation (see Table 1). Based on the

correlation analysis, many stock prices show positive connections,
while negative correlations are discovered between the EPU index
and stock prices of other listed oil companies; see Figure 3.

4 Results

4.1 Parameter selections and dynamics
reconstructions

According to our dynamical causal interaction methods, we
need to detect dynamical impacts from the reconstructed state space.
On this basis, two fundamental parameters must be identified, that
is, embedding dimension E and time lag τ. Parameter E determines
the goal dimension of reconstructed space, and time lag τ is the
basis of the coordinates of reconstructed space. Several classic
approaches are proposed to identify these parameters. In this work,
we employ a widely used method to find the optimal embedding
dimension, that is, the false nearest neighbor [49]. The main idea
is to examine how the number of neighbors of a point along a
trajectory changes with increasing embedding dimension. For a too-
low embedding dimension, many of the neighbors will be false, but
in an appropriate embedding dimension or higher, the neighbors are
real. With increasing dimensions, the false neighbors will no longer
be neighbors. Therefore, it is possible to find a faithful embedding
dimension by examining how the number of neighbors changes
as a function of dimension. Thus, when we reduce the dimension
by one, some points are strongly affected and become false nearest
neighbors (FNN). To identify these FNN points, we compared the
distances between points in the E-dimensional space with those in
the E+ 1-dimensional space and calculated their ratio. Economic
policy uncertainty (EPU) is the critical factor in ourwork, andChina
National Petroleum Corporation is representative of the petroleum
and petrochemical industry. Thus, the EPU and stock price series of
China National Petroleum Corporation are selected as a sample. We
determine E = 3 in this work; see Figure 4.

The time lag is another key parameter to guarantee a reliable
reconstruction. If the delay time is too short, the two coordinate
components of the phase space vector are so close numerically that
they are indistinguishable from each other, thus failing to provide
two independent coordinate components. If the delay time is too
large, the two coordinate components appear to be completely
independent, and there is no correlation between the projections
of the trajectories of the chaotic attractor in the two directions.
Therefore, a suitable method is needed to determine a suitable delay
time to strike a balance between independence and correlation.
This parameter is identified by mutual information that the first
minimum in a plot between time delay and mutual information is
a reliable selection [50]. We set τ = 5 in this work.

Once we identify the embedding dimension and time delay, we
can perform phase space reconstruction from each time series. The
reconstructed structures are given in Figure 5. In this way, we map
each one-dimensional time series into a 3-dimensional state space.
The trajectory depicts the dynamical evolutions for each variable.On
this basis, it is possible to identify the dynamic interactions between
variables.
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TABLE 3 The net positive causal impacts among samples.

1 2 3 4 5 6 7 8 9 10

1 0 0.11 −0.13 −0.21 −0.01 0.2 −0.01 −0.35 0.07 0.04

2 −0.11 0 −0.04 −0.24 −0.12 0.1 0.03 −0.31 −0.25 0.08

3 0.13 0.04 0 0.22 −0.23 −0.17 −0.47 −0.02 0 0.03

4 0.21 0.24 −0.22 0 −0.15 0.29 −0.15 0.46 −0.37 −0.08

5 0.01 0.12 0.23 0.15 0 0.18 −0.27 −0.25 0 −0.09

6 −0.2 −0.1 0.17 −0.29 −0.18 0 0.22 0.23 0.06 0.03

7 0.01 −0.03 0.47 0.15 0.27 −0.22 0 0 −0.08 0.09

8 0.35 0.31 0.02 −0.46 0.25 −0.23 0 0 0 −0.07

9 −0.07 0.25 0 0.37 0 −0.06 0.08 0 0 0.09

10 −0.04 −0.08 −0.03 0.08 0.09 −0.03 −0.09 0.07 −0.09 0

TABLE 4 The negative impacts among selected sample variables.

1 2 3 4 5 6 7 8 9 10

1 0 0.21 0.1 0.33 0.21 0.1 0.33 0.31 0.29 0.34

2 0.21 0 0.17 0.5 0.29 0.15 0.45 0.03 0.3 0.5

3 0.25 0.17 0 0.33 0.44 0.54 0.11 0.19 0.14 0.18

4 0.33 0.25 0.21 0 0.25 0.3 0.15 0.12 0.71 0.13

5 0.15 0.15 0.06 0.06 0 0.11 0.17 0.04 0.19 0.3

6 0.14 0.41 0.17 0.1 0.1 0 0.16 0.07 0.11 0.13

7 0.33 0.22 0.15 0.11 0.17 0.14 0 0.13 0.14 0.21

8 0.11 0.03 0.03 0.1 0.44 0.33 0.08 0 0.08 0.31

9 0.54 0.11 0.11 0.14 0.09 0.44 0.1 0.46 0 0.12

10 0.55 0.38 0.13 0.33 0.4 0.68 0.78 0.23 0.63 0

FIGURE 7
The negative causal impact among selected observations.

4.2 The positive causal impacts of
economic policy on listed oil companies

In this section, we discuss the complex impacts of economic
policy on the stock prices of oil companies. Causality analysis is a
useful approach to reveal the causal impact between observations.
We employ pattern causality to reveal their complex causal
interactions. According to pattern causality, three kinds of causal
interactions may exist: positive, negative, and dark causality. We
first examine the positive causality between economic policy and
the stock prices of listed oil companies. For each observation pair,
the positive causal interactions are quantified by measuring the
consistent patterns between state points on the reconstructed state
space (see Figure 6). Table 2 depicts the pair-wise causal interactions
for all sample variables. The direction of causality is from row
variables to column variables. For example, the value 0.47 in the
first row and second column (1,2) represents the causal interaction
from variable 1 to variable 2, and the causal strength is 0.47. The
results show positive causal interactions between sample variables.
The average positive causal interaction equals 0.3. In particular, the
average positive causal interaction between the listed oil companies
is 0.34, while it is 0.16 between EPU and listed oil companies.
These findings suggest that stock prices of listed oil companies are
more likely to evolve in the same direction, and EPU also has
relatively low positive causal impacts on the stock prices of listed
oil companies. However, stock prices of oil companies also generate
positive feedback to EPU. Moreover, the positive causal impacts are
asymmetric. See Figure 6 and Table 3, which report the difference
between received causal impacts and output impacts.

4.3 The negative causal impacts of
economic policy on listed oil companies

In addition to positive causal impacts, we then examine whether
there exist negative impacts between EPU and stock prices of
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TABLE 5 The net negative causal impacts among samples.

1 2 3 4 5 6 7 8 9 10

1 0 0 −0.15 0 0.06 −0.04 0 0.2 −0.25 −0.21

2 0 0 0 0.25 0.14 −0.26 0.23 0 0.19 0.12

3 0.15 0 0 0.12 0.38 0.37 −0.04 0.16 0.03 0.05

4 0 −0.25 −0.12 0 0.19 0.2 0.04 0.02 0.57 −0.2

5 −0.06 −0.14 −0.38 −0.19 0 0.01 0 −0.4 0.1 −0.1

6 0.04 0.26 −0.37 −0.2 −0.01 0 0.02 −0.26 −0.33 −0.55

7 0 −0.23 0.04 −0.04 0 −0.02 0 0.05 0.04 −0.57

8 −0.2 0 −0.16 −0.02 0.4 0.26 −0.05 0 −0.38 0.08

9 0.25 −0.19 −0.03 −0.57 −0.1 0.33 −0.04 0.38 0 −0.51

10 0.21 −0.12 −0.05 0.2 0.1 0.55 0.57 −0.08 0.51 0

TABLE 6 The dark impacts among selected sample variables.

1 2 3 4 5 6 7 8 9 10

1 0 0.4 0.24 0.5 0.3 0.15 0.53 0.58 0.25 0.07

2 0.38 0 0.28 0.18 0.31 0.31 0.23 0.24 0.5 0.38

3 0.58 0.21 0 0.61 0.17 0.28 0.48 0.28 0.13 0.25

4 0.31 0.19 0.53 0 0.41 0.34 0.6 0.34 0.23 0.45

5 0.55 0.19 0.22 0.11 0 0.31 0.27 0.08 0.08 0.29

6 0.35 0.23 0.24 0.23 0.39 0 0.34 0.24 0.29 0.13

7 0.21 0.29 0.77 0.24 0.25 0.21 0 0.65 0.15 0.14

8 0.54 0.33 0.53 0.2 0.76 0.39 0.23 0 0.29 0.2

9 0.28 0.69 0.25 0.19 0.52 0.35 0.15 0.34 0 0.33

10 0.42 0.33 0.38 0.39 0.77 0.46 0.43 0.59 0.68 0

FIGURE 8
The dark causal impact among selected observations.

listed oil companies. According to pattern causality, the negative
causal interactions can be quantified by measuring the opposite
pattern of state points on the reconstructed state space. The results
show negative causality between selected samples (Table 4). In
total, the average negative causal impacts among all observations
and only listed oil companies are 0.21 and 0.18. The average
negative causal impact between EPU and listed oil companies
is 0.33. These findings suggest that the negative causal impacts
between the stock prices of listed oil companies are relatively
lower than the impact between economic policy and listed
oil companies.

To further analyze the causal impacts, it is obvious that the
received impacts and output impacts are not equal. This indicates
asymmetric negative causal interactions between samples (see
Figure 7). In addition, we examine the net causal impact from
the difference between received and output impacts (see Table 5).
The results show that the EPU is more likely to bring net
negative impacts on the stock prices of listed oil companies.
In general, EPU has higher negative impacts on the stock
prices of listed oil companies than negative feedback from
oil companies.

4.4 The dark causal impacts of economic
policy on listed oil companies

At this point, we have revealed positive and negative causal
interactions between economic policy and stock prices of listed oil
companies. Both positive and negative causality are widely reported
by many previous works. However, we further detect whether
a more complex causal interaction exists whose causal impact
natures are quite different from negative and positive causality,
namely, dark causality. According to pattern causality methods,
the dark causal interaction can be measured by quantifying the
complex patterns (neither consistent nor opposite) of state points
in the reconstructed state space. The results report the dark causal
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TABLE 7 The net dark causal impacts among samples.

1 2 3 4 5 6 7 8 9 10

1 0 0.02 −0.34 0.19 −0.25 −0.2 0.32 0.04 −0.03 −0.35

2 −0.02 0 0.07 −0.01 0.12 0.08 −0.06 −0.09 −0.19 0.05

3 0.34 −0.07 0 0.08 −0.05 0.04 −0.29 −0.25 −0.12 −0.13

4 −0.19 0.01 −0.08 0 0.3 0.11 0.36 0.14 0.04 0.06

5 0.25 −0.12 0.05 −0.3 0 −0.08 0.02 −0.68 −0.44 −0.48

6 0.2 −0.08 −0.04 −0.11 0.08 0 0.13 −0.15 −0.06 −0.33

7 −0.32 0.06 0.29 −0.36 −0.02 −0.13 0 0.42 0 −0.29

8 −0.04 0.09 0.25 −0.14 0.68 0.15 −0.42 0 −0.05 −0.39

9 0.03 0.19 0.12 −0.04 0.44 0.06 0 0.05 0 −0.35

10 0.35 −0.05 0.13 −0.06 0.48 0.33 0.29 0.39 0.35 0

FIGURE 9
The dominant causal impacts in our samples. Note: negative values
represent the negative causal impacts. Positive causal impacts are
given by the values from [0,1]. The values larger than 1 represent the
dark values. To clarify dark and positive causality, we add 1 to the
original strength of dark causality.

impact between economic policy and the stock prices of listed oil
companies (see Table 6). The average dark causal impact is 0.31.
The average dark causal impact is 0.3 among the stock prices of
listed oil companies, and the average dark causal impact approaches
0.45 between EPU and stock prices of listed oil companies. We
can find relatively higher dark causal impacts between economic
policy and listed oil companies than the impacts within listed
oil companies.

Moreover, the dark causal interactions between economic
policy and listed oil companies are also asymmetric (see
Figure 8). We further calculate the difference between received
and output impacts; see Table 7. It is clear that the output dark
impacts from economic policy to listed oil companies are higher
than the received impacts. This suggests that EPUs are more
likely to affect the stock prices of listed oil companies in a
complex way.

4.5 The dominant causal impacts of the
economic policy on listed oil companies

We have revealed positive, negative, and dark causal impacts
between economic policy and listed oil companies. The three
different causal impacts show differentmagnitudes of impacts.Thus,
it is interesting to compare their strength and find the dominant
causal impacts. To this end, we compare three kinds of causal
impacts between each variable pair and select the highest causal
interaction. The results are given in Figure 9. Dark causality plays
a dominant role in our samples. Within listed oil companies,
positive causality occupies a relatively higher proportion, while dark
causality occupies dominant roles between economic policy and
listed oil companies. These findings suggest that the causal impacts
between economic policy and listed oil companies are complex,
neither purely positive nor purely negative, as reported by many
previous methods.

The simultaneous existence of three different causal types
between EPU and listed crude oil companies suggests a complex
nonlinear impact relationship between them. Second, the strength
of the three causal relationships is asymmetric, with dark causality
dominating, indicating that the association between EPU and listed
crude oil companies is volatile and complex. These findings help us
understand the relationship between them. In addition, this complex
influence relationship may make the economic system more risky,
which provides the relevant market investors and market regulators
with corresponding decision support.

5 Conclusion and discussion

This work employs the pattern causality method to reveal
complex causality between economic policy and listed oil
companies. Unlike previous findings that only one kind of causal
impact between them, our study suggests that three different kinds
of causal impacts simultaneously exist: positive, negative, and dark
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causality. Our work may have several implications for practical
application and theoretical analysis.

i) Three different kinds of causal impacts between economic
policy and listed oil companies suggest more complex impacts
between them, which gives new inspiration to understanding
complex associations between them.

ii) The causal impacts of economic policy uncertainty on
stock prices of listed oil companies are dominated by
dark causality, which suggests neither the same nor
opposite fluctuation between them. This may give a new
perspective for management. In particular, dark causality
denotes more complex connections. The underlying risk
may be underestimated, and market participants should
reconsider risk.

iii) Market players should upgrade risk assessment methods
to capture “dark causality” risks. Oil firms and investors
need more advanced models, as traditional ones overlook
hidden risks. Firms should use real-time policy analysis
tools and conduct stress tests. Regulators should enforce
clear risk disclosures about such uncertainties. To
manage these underestimated risks, oil companies should
diversify operations geographically and across products.
Investors should diversify portfolios, too. Both should
create contingency plans for rapid response to policy
changes, accounting for the unpredictable nature of
dark causality.

As discussed in this work, dark causality may drive two
variables to fluctuate in a nonlinear manner, moving in neither
perfect unison nor in complete opposition, indicating a more
intricate relationship between them. The underlying economic
implications of dark causality can be understood from the
following aspects:

First, dark causality offers a more realistic explanation for
phenomena observed in real-world economic systems. In these
systems, the fluctuations between variables rarely exhibit simple,
unidirectional patterns. Instead, they often display complex,
intertwined trends that deviate from straightforward positive or
negative correlations.

Second, it provides novel evidence for the inherent complexity of
economic systems. By uncovering these hidden causal relationships,
we gain deeper insights into the intricate mechanisms that govern
economic behavior, enhancing our understanding of how economic
systems operate and evolve.

Third, dark causality reveals an even more convoluted
nature of the relationships among economic variables. This
complexity gives rise to increased uncertainty, and when dark
causality dominates, it may signal elevated risks. As such, dark
causality has the potential to be linked to systemic risks within
economic systems.

Despite several interesting findings being discovered, there are
also some limitations that can be solved in the future. In particular,
dark causality is a newly defined interaction, and its underlying
explanation needs to be discussed further. In addition, it is also
difficult to distinguish impacts from other external factors, such as
other related markets.

Data availability statement

Theoriginal contributions presented in the study are included in
the article/supplementarymaterial; further inquiries can be directed
to the corresponding authors.

Author contributions

YD: Funding acquisition, Investigation, Resources, Writing
– review and editing, Methodology, Formal Analysis, Project
administration, Conceptualization. XJ: Validation, Writing –
review and editing, Supervision, Conceptualization. HX: Funding
acquisition, Conceptualization, Formal Analysis, Writing – review
and editing, Validation. ZW: Writing – review and editing,
Formal Analysis, Supervision, Investigation, Project administration.
XZ: Methodology, Data curation, Writing – review and editing,
Conceptualization, Investigation. YW: Validation, Writing – review
and editing, Writing – original draft, Data curation, Software,
Visualization.

Funding

The author(s) declare that no financial support was
received for the research and/or publication of this
article.

Conflict of interest

Authors YD, XZ, XJ, and HX were employed by PetroChina
Southwest Oil & Gasfield Company.

The remaining authors declare that the research was
conducted in the absence of any commercial or financial
relationships that could be construed as a potential conflict of
interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

Frontiers in Physics 11 frontiersin.org

https://doi.org/10.3389/fphy.2025.1609866
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Duan et al. 10.3389/fphy.2025.1609866

References

1. Dafermos Y, Nikolaidi M, Galanis G. Climate change, financial stability and
monetary policy. Ecol Econ (2018) 152:219–34. doi:10.1016/j.ecolecon.2018.05.011

2. Danisman G, Bilyay-Erdogan S, Demir E. Economic uncertainty
and climate change exposure. J Environ Manage (2025) 373:123760.
doi:10.1016/j.jenvman.2024.123760

3. Adra S, Gao Y, Huang J, Yuan J. Geopolitical risk and corporate payout policy. Int
Rev Financial Anal (2023) 87:102613. doi:10.1016/j.irfa.2023.102613

4. Apergis N, Fahmy H. Geopolitical risk and energy price crash risk. Energy Econ
(2024) 140:107975. doi:10.1016/j.eneco.2024.107975

5. Liu Y, Suo X, Du X, Wu H, Lin H. Corporate digital innovation and stock price
crash risk. Finance Res Lett (2024) 66:105690. doi:10.1016/j.frl.2024.105690

6. Liu C, Xu J. Risk spillover effects of new global energy listed
companies from the time-frequency perspective. Energy (2024) 292:130502.
doi:10.1016/j.energy.2024.130502

7. Su F, Song N, Shang H, Fahad S. The impact of economic policy uncertainty on
corporate social responsibility: a new evidence from food industry in China. Plos One
(2022) 17:e0269165. doi:10.1371/journal.pone.0269165

8. Mitchell JV, Mitchell B. Structural crisis in the oil and gas industry. Energy Policy
(2014) 64:36–42. doi:10.1016/j.enpol.2013.07.094

9. Silvestre H, Gomes RC, Lamba JR, Correia AM. Implementation of Brazil’s energy
policy through the national oil company: from institutional chaos to strategic order.
Energy Policy (2018) 119:87–96. doi:10.1016/j.enpol.2018.04.028

10. Diaz-Rainey I, Gehricke SA, Roberts H, Zhang R. Trump vs. Paris: the impact of
climate policy on US listed oil and gas firm returns and volatility. Int Rev Financial Anal
(2021) 76:101746. doi:10.1016/j.irfa.2021.101746

11. Al-Thaqeb SA,Algharabali BG,AlabdulghafourKT.Thepandemic and economic
policy uncertainty. Int J Finance Econ (2022) 27:2784–94.

12. Lin BQ, Bai R. Oil prices and economic policy uncertainty: evidence from global,
oil importers, and exporters’ perspective. Res In Int Business Finance (2021) 56:101357.
doi:10.1016/j.ribaf.2020.101357

13. Shafiullah M, Miah MD, Alam MS, Atif M. Does economic policy uncertainty
affect renewable energy consumption? Renew Energy (2021) 179:1500–21.
doi:10.1016/j.renene.2021.07.092

14. Apostolakis GN, Floros C, Gkillas K, Wohar M. Financial stress, economic
policy uncertainty, and oil price uncertainty. Energy Econ (2021) 104:105686.
doi:10.1016/j.eneco.2021.105686

15. Xiao XY, Tian Q, Hou S. Economic policy uncertainty and grain futures
price volatility: evidence from China. China Agric Econ Rev (2019) 11:642–54.
doi:10.1108/caer-11-2018-0224

16. Jiang W, Dong L, Liu X, Zou L. Volatility spillovers among economic policy
uncertainty, energy and carbon markets-The quantile time-frequency perspective.
Energy (2024) 307:132683. doi:10.1016/j.energy.2024.132683

17. Feng XG, Luo WJ, Wang Y. Economic policy uncertainty and firm
performance: evidence from China. J Asia Pac Economy (2023) 28:1476–93.
doi:10.1080/13547860.2021.1962643

18. Xu ZX. Economic policy uncertainty, cost of capital, and corporate innovation. J
Banking Finance (2020) 111:105698. doi:10.1016/j.jbankfin.2019.105698

19. Liu GC, Zhang CS. Economic policy uncertainty and firms’ investment
and financing decisions in China. China Econ Rev (2020) 63:101279.
doi:10.1016/j.chieco.2019.02.007

20. Che M, Wang L, &Li YJ. Global economic policy uncertainty and oil price
uncertainty: which is more important for global economic activity? Energy (2024)
310:133305. doi:10.1016/j.energy.2024.133305

21. Liu XJ, Wang Y, Du W, Ma Y. Economic policy uncertainty, oil price volatility
and stock market returns: evidence from a nonlinear model. North Am J Econ Finance
(2022) 62:101777. doi:10.1016/j.najef.2022.101777

22. IlyasM,KhanA,NadeemM, SulemanMT. Economic policy uncertainty, oil price
shocks and corporate investment: evidence from the oil industry. Energy Econ (2021)
97:105193. doi:10.1016/j.eneco.2021.105193

23. Bloom N. The impact of uncertainty shocks. Econometrica (2009) 77:623–85.

24. Belderbos R, Tong TW, Wu SB. Multinational investment and the value of
growth options: alignment of incremental strategy to environmental uncertainty. Strateg
Management J (2019) 40:127–52. doi:10.1002/smj.2969

25. Chen Y, Dong S, Qian S, Chung K. Impact of oil price volatility and economic
policy uncertainty on business investment - insights from the energy sector. Heliyon
(2024) 10:e26533. doi:10.1016/j.heliyon.2024.e26533

26. Lee C, Lee C, Li Y. Assessing oil price volatility co-movement with stock market
volatility through quantile regression approach. Resour Policy (2021) 55:101309.

27. Song Y, Chen B, Wang XY, Wang PP. Defending global oil price security:
based on the perspective of uncertainty risk. Energy Strategy Rev (2022) 41:100858.
doi:10.1016/j.esr.2022.100858

28. Adelaja AO, Akaeze HO. Supply response, economic diversification and
recovery strategy in the oil sector. Energy Strategy Rev (2018) 21:111–20.
doi:10.1016/j.esr.2018.05.002

29. Liu LP, Lü Z, Yoon SM. Impact of policy uncertainty on stock market
volatility in the China’s low-carbon economy. Energy Econ (2025) 141:108056.
doi:10.1016/j.eneco.2024.108056

30. Zheng TC, Wang B, Rajaeifar MA, Heidrich O, Zheng J, Liang Y,
et al. How government policies can make waste cooking oil-to-biodiesel
supply chains more efficient and sustainable. J Clean Prod (2020) 263:121494.
doi:10.1016/j.jclepro.2020.121494

31. RongG, QamruzzamanM. Symmetric and asymmetric nexus between economic
policy uncertainty, oil price, and renewable energy consumption in the United States,
China, India, Japan, and SouthKorea: does technological innovation influence? Frontier
Energy Res (2022) 10:973557. doi:10.3389/fenrg.2022.973557

32. Fu LL, Yuan DY, Teng JM. Asymmetric dynamic linkage between consumer
sentiment, inflation expectations, and international energy prices: evidence from
time-frequency wavelet and nonlinear analysis. Plos One (2024) 19:e0308097.
doi:10.1371/journal.pone.0308097

33. Liu ZH, Zhang H, Ding Z, Lv T, Wang X, Wang D. When are the effects of
economic policy uncertainty on oil-stock correlations larger? Evidence from a regime-
switching analysis.EconModel (2022) 114:105941. doi:10.1016/j.econmod.2022.105941

34. Song DM, Tumminello M, Zhou WX, Mantegna RN. Evolution of worldwide
stock markets, correlation structure, and correlation-based graphs. Physic Rev E (2011)
84:026108. doi:10.1103/physreve.84.026108

35. Bai XW. Tanker freight rates and economic policy uncertainty: a wavelet-based
copula approach. Energy (2021) 235:121383. doi:10.1016/j.energy.2021.121383

36. Zhao L. Global economic policy uncertainty and oil futures volatility prediction.
Finance Res Lett (2023) 54:103693. doi:10.1016/j.frl.2023.103693

37. Rehman MU. Do oil shocks predict economic policy uncertainty? Physica A
(2018) 498:123–36. doi:10.1016/j.physa.2017.12.133

38. Cao GX, Zhang Q, Li QC. Causal relationship between the global foreign
exchange market based on complex networks and entropy theory. Chaos Solitons and
Fractals (2017) 99:36–44. doi:10.1016/j.chaos.2017.03.039

39. Yang L, Hamori S. Systemic risk and economic policy uncertainty:
international evidence from the crude oil market. Econ Anal Policy (2021) 69:142–58.
doi:10.1016/j.eap.2020.12.001

40. WuT,GaoX,An S, Liu S.Diverse causality inference in foreign exchangemarkets.
Int J Bifurcation Chaos (2021) 31:2150070. doi:10.1142/s021812742150070x

41. Vyrost T, Lyocsa S, Baumohl E. Granger causality stock market networks:
temporal proximity and preferential attachment. Physica A (2015) 427:262–76.
doi:10.1016/j.physa.2015.02.017

42. Dash SR, Maitra D. Do oil and gas prices influence economic policy uncertainty
differently:multi-country evidence using time-frequency approach.QRev Econ Finance
(2021) 81:397–420. doi:10.1016/j.qref.2021.06.012

43. Barnett L, Barrett AB, Seth AK. Granger causality and transfer entropy
are equivalent for Gaussian variables. Phys Rev Lett (2009) 103:238701.
doi:10.1103/physrevlett.103.238701

44. Sugihara G, May R, Ye H, Hsieh C, Deyle E, Fogarty M, et al. Detecting
causality in complex ecosystems. Science (2012) 338:496–500. doi:10.1126/science.
1227079

45. Stavroglou SK, Pantelous AA, Stanley HE, Zuev KM. Hidden interactions in
financial markets. PNAS (2019) 22:10646–51. doi:10.1073/pnas.1819449116

46. Wang WX, Lai YC, Grebogi C. Data based identification and prediction
of nonlinear and complex dynamical systems. Phys Rep (2016) 644:1–76.
doi:10.1016/j.physrep.2016.06.004

47. Wu T, An F, Gao X, Zhong W, Kurths J. A novel framework for direct
multistep prediction in complex systems. Nonlinear Dyn (2023) 111(10):9289–304.
doi:10.1007/s11071-023-08360-7

48. Takens F. Detecting strange attractors in turbulence. Mathematics (1981)
898:366–81.

49. Krakovska A, Mezeiova K, Budacova H. Use of false nearest neighbours for
selecting variables and embedding parameters for state space reconstruction. J Complex
Syst (2015) 2015:1–12. doi:10.1155/2015/932750

50. Wu T, Gao X, An F, Sun X, An H, Su Z, et al. Predicting multiple observations in
complex systems through low-dimensional embeddings. Nat Commun (2024) 15:2242.
doi:10.1038/s41467-024-46598-w

Frontiers in Physics 12 frontiersin.org

https://doi.org/10.3389/fphy.2025.1609866
https://doi.org/10.1016/j.ecolecon.2018.05.011
https://doi.org/10.1016/j.jenvman.2024.123760
https://doi.org/10.1016/j.irfa.2023.102613
https://doi.org/10.1016/j.eneco.2024.107975
https://doi.org/10.1016/j.frl.2024.105690
https://doi.org/10.1016/j.energy.2024.130502
https://doi.org/10.1371/journal.pone.0269165
https://doi.org/10.1016/j.enpol.2013.07.094
https://doi.org/10.1016/j.enpol.2018.04.028
https://doi.org/10.1016/j.irfa.2021.101746
https://doi.org/10.1016/j.ribaf.2020.101357
https://doi.org/10.1016/j.renene.2021.07.092
https://doi.org/10.1016/j.eneco.2021.105686
https://doi.org/10.1108/caer-11-2018-0224
https://doi.org/10.1016/j.energy.2024.132683
https://doi.org/10.1080/13547860.2021.1962643
https://doi.org/10.1016/j.jbankfin.2019.105698
https://doi.org/10.1016/j.chieco.2019.02.007
https://doi.org/10.1016/j.energy.2024.133305
https://doi.org/10.1016/j.najef.2022.101777
https://doi.org/10.1016/j.eneco.2021.105193
https://doi.org/10.1002/smj.2969
https://doi.org/10.1016/j.heliyon.2024.e26533
https://doi.org/10.1016/j.esr.2022.100858
https://doi.org/10.1016/j.esr.2018.05.002
https://doi.org/10.1016/j.eneco.2024.108056
https://doi.org/10.1016/j.jclepro.2020.121494
https://doi.org/10.3389/fenrg.2022.973557
https://doi.org/10.1371/journal.pone.0308097
https://doi.org/10.1016/j.econmod.2022.105941
https://doi.org/10.1103/physreve.84.026108
https://doi.org/10.1016/j.energy.2021.121383
https://doi.org/10.1016/j.frl.2023.103693
https://doi.org/10.1016/j.physa.2017.12.133
https://doi.org/10.1016/j.chaos.2017.03.039
https://doi.org/10.1016/j.eap.2020.12.001
https://doi.org/10.1142/s021812742150070x
https://doi.org/10.1016/j.physa.2015.02.017
https://doi.org/10.1016/j.qref.2021.06.012
https://doi.org/10.1103/physrevlett.103.238701
https://doi.org/10.1126/science.1227079
https://doi.org/10.1126/science.1227079
https://doi.org/10.1073/pnas.1819449116
https://doi.org/10.1016/j.physrep.2016.06.004
https://doi.org/10.1007/s11071-023-08360-7
https://doi.org/10.1155/2015/932750
https://doi.org/10.1038/s41467-024-46598-w
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org

	1 Introduction
	2 Methods
	3 Data
	4 Results
	4.1 Parameter selections and dynamics reconstructions
	4.2 The positive causal impacts of economic policy on listed oil companies
	4.3 The negative causal impacts of economic policy on listed oil companies
	4.4 The dark causal impacts of economic policy on listed oil companies
	4.5 The dominant causal impacts of the economic policy on listed oil companies

	5 Conclusion and discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References

