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Introduction: Innovative energy startups are expediting the energy transition
through the adoption of emerging technologies, including blockchain, fintech,
artificial intelligence, and crowdfunding. However, existing research primarily
focuses on technological capabilities at the startup level and macro-level
national applications to explore the current state of innovative energy adoption.
In contrast, limited attention has been paid to analyzing the role attributes
of innovative energy startups and their correlations with potential success,
which are critical for understanding their development trajectories within the
energy market.

Methods: This study develops a temporal investment information network for
global energy startups, drawing on data from energy enterprises worldwide
between 2005 and 2024. The research examines the role attributes of startups
and explores the temporal topological characteristics of the network. We
propose a success evaluationmodel based on the features of successful startups
to assess the potential of innovative energy startups.

Results and Discussion: The findings indicate that, despite their relatively small
market share, innovative energy startups exert significant influence. Notably,
successful startups typically exhibit higher betweenness centrality and lower
closeness centrality. Moreover, factors such as network degree, centrality,
and government administrative capacity play crucial roles in determining the
success of innovative energy startups. In the evaluationmodel constructed using
these factors, network structural characteristics contribute the most, achieving
an evaluation accuracy of 0.984. This study provides valuable insights for
policymakers evaluating innovative energy development trends and for investors
assessing the potential of startups.

KEYWORDS

innovative energy startups, temporal networks, investment information, success
relevance, development direction

1 Introduction

Innovative energy has become a forefront issue on the global economic and
environmental agenda due to its ability to ensure economic competitiveness [1, 2],
improve energy efficiency [3], reduce environmental pollution, and mitigate climate
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change [4]. Among them, innovative energy startups serve as a new
perspective for studying energy market development by analyzing
their market return effects and connectivity [5], risk spillover effects
[6], extreme uncertainty connectedness [7], and environmental
sustainability and its development [8, 9] in comparison to other
types of startups.The individual roles and topological characteristics
of startups can reflect system structure and interaction patterns [10],
thereby revealing interconnections, dependencies, and interactions
among startups. However, existing literature primarily examines
innovative energy startups from a national perspective [11] and a
technological perspective [12–14], neglecting the individual roles
and interrelationships of these startups. Therefore, depicting the
roles and positions of innovative energy startups within the business
ecosystem is of significant importance.

One of the goals of startup development is business success.
Existing research analyzes whether a startup can succeed from two
main perspectives. First, from a micro-level perspective focusing on
individual startups, studies have identified success factors such as
innovative business models and collaborations, while failure factors
include strong incumbent industries and unfavorable investor
sentiment [15, 16]. Second, from amacro-level systemic perspective,
research explores investment information on innovative energy
startups [17, 18], characterizes static network capital through the
final network structure [19], examines communication patterns
among startups [20, 21], and uncovers potential dependencies,
such as knowledge linkages [22], to assess the likelihood of future
success [23–25]. In the energy market, traditional social network
analysis (SNA) is suitable for examining stable structural patterns,
such as the relationship between energy and capabilities [26]
and the fixed spatial distribution of energy consumption [27].
However, due to the rapid environmental changes and increasing
competitive pressures driven by technological innovations [28], the
success of innovative energy startups increasingly depends on the
ability to capture and analyze the dynamic characteristics of the
energy market. Temporal networks have demonstrated advantages
in capturing dynamic network changes, whether in studying startup
growth [29] or optimizing stock market investment portfolios [30].
Therefore, by depicting the dynamic topological characteristics
of innovative energy startups through the network structure of
temporal networks and leveraging network features to analyze
successful energy startups and their connections with innovative
energy startups, it is possible to explore the future development
directions of innovative energy startups.

To address the existing gaps in understanding the market
dynamics and success mechanisms of energy startups, this study
introduces an innovative framework that integrates both static
and temporal network perspectives. Drawing on a comprehensive
dataset of 26,188 investment records, we construct global static
and temporal investment networks encompassing 3,592 energy
startups connected through shared investors.This network approach
reveals both the market structure of innovative energy startups
and their evolving connections with successful startups over time,
using key metrics such as betweenness and closeness centrality.
Building on structural positioning in the networks, we evaluate
the role attributes of startups and examine the correlation between
network properties and startup success. Furthermore, we develop
a novel correlation analysis model to assess success potential
in the energy startup. Finally, we apply this model to explore

the future development paths of innovative energy startups,
providing new insights into the dynamic evolution of the energy
startup landscape.

The research work of this paper is as follows. In Section 2, we
briefly review the relevant literature and emphasize the necessity
of incorporating dynamic network attributes into the analysis of
the success correlation of innovative energy startups. Section 3
presents the data. In Section 4, we outline the construction of the
networkmodel and the evaluationmodel, along with their analytical
methods. Section 5 discusses the results. Finally, in Section 6,
we provide a summary and propose directions for
future research.

2 Literature review

The role of innovative energy in the global energy market is
increasingly recognized [31, 32]. As one of the key subjects in
innovative energy research, startups are studied across various
dimensions, including technology types [33, 34], real-world
applications [35], investment [36], regional distribution [37], and
policy design [38]. Among these factors, the role of government
in promoting innovative energy startups is crucial. Governments
support these startups by implementing proactive regulatory
policies, funding private enterprises, offering innovation awards,
and relaxing market constraints [39, 40]. This support plays a
significant role in fostering their growth [41]. However, despite the
supportive role of government in advancing energy technologies,
a significant commercialization gap in energy innovation remains
[40, [42]]. In practice, the successful deployment and diffusion of
energy innovation rely heavily on the implementation capabilities
of startups, and the effectiveness of policy measures often varies
depending on firm-specific characteristics. Yet, existing research
tends to overlook the individual roles and features of innovative
energy startups, which are crucial for driving the development of
energy innovation.

Investment activities play a pivotal role in the growth trajectory
of startups. However, the absence of historical benchmarks, the
volatility of entrepreneurial ecosystems, and the rapid movement
of capital continue to pose significant challenges to successful
investment outcomes [43, 44]. Existing literature primarily
focuses on assessing entrepreneurial success through financial
and operational indicators [82], with funding capacity often
used as a proxy—reflected in outcomes such as initial public
offerings [45], financing rounds [46], and acquisitions [47, 48].
From the perspective of founding teams, factors such as prior
experience, educational background, skills, and even personality
traits have been shown to influence startup performance [49,
50]. From the investor’s standpoint, although startup investment
entails high risk, investors often play a central role in critical
strategic decisions [51, 52]. However, despite the pivotal role
of investment in startup success, existing research has paid
relatively limited attention to the mechanisms through which
investment-related information functions, particularly in the
context of innovative energy startups [53, 54]. The impact of
investment information on the developmental trajectories of
such startups remains an underexplored area worthy of further
investigation.
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There are complex interactions among innovative energy
startups. Through network analysis based on investment
information, we can characterize the role attributes and topological
features of innovative energy startups from a macro perspective.
Role attributes refer to the relational assets generated by an
individual’s interactions within a complex external network [55].
Establishing network connections with external resources plays a
crucial role in facilitating information exchange [56], which helps
explore the development of individuals within the network [19]. In
practice, the network effects generated by role attributes facilitate
information transmission between indirectly connected individuals
through intermediaries [19]. For example, although Startup A
and Startup C may not have a direct connection, technology [57],
knowledge [58], and information [22] can be exchanged through
an intermediary, Startup B. Increasingly, network-based technology
diffusion models have explored how information spreads across
different network configurations, highlighting the importance of
role attributes in information acquisition [59–62]. The theory
of preferential attachment [63] further explains this mechanism
by suggesting that firms with stronger role attributes are more
likely to attract new connections. As a result, these firms become
increasingly central within the network structure. Moreover, some
studies explore energy startups through the topological features of
networks. For example, [19] constructed a global diffusion network
for climate change mitigation technologies using patent data,
company relationships, and business scale in their study of energy
startups. By calculating network attributes such as degree, closeness
centrality, and betweenness centrality, they found significant
network effects in link quantity and structural positioning.
Similarly, [64] analyzed the Chinese energy industry and energy
startup market using network metrics such as degree, closeness
centrality, and betweenness centrality, uncovering spillover effects
in the stock market and the role of carbon markets in network
benefits. However, these studies analyze energy startups solely
based on the final static network structure and overlook the impact
of market dynamics such as changes in investment information
on the network role attributes and topological features of
individual startups.

Temporal networks enable the dynamic characterization of
network roles by continuously tracking key nodes [65, 66] and their
associated nodes over time [67]. Therefore, this study introduces
an analytical framework that integrates both static and temporal
network perspectives, using investment information to construct
a dynamically evolving investment network that captures the
individual attributes of innovative energy startups across different
time periods. By analyzing the topological features of successful
startups, we further identify key structural characteristics that
influence the growth of energy startups. This approach not only
overcomes the limitations of traditional static analyses by capturing
the impact of market dynamics on startup roles, but also provides a
novel tool for exploring the developmental trajectories of innovative
energy startups.

3 Data

This study constructs an investment information network for
energy startups using global corporate data sourced from the

Crunchbase database (https://www.crunchbase.com/), covering
the period from January 2005 to July 2024. The dataset
includes critical information such as announcement dates,
investor names, funding status, organization industries, country-
level geographic data, and administrative capacity data of
energy startups.

We categorize energy market startups into three types:
traditional energy startups, renewable energy startups, and
innovative energy startups. Innovative energy startups refer to
those that integrate technologies such as blockchain, fintech,
artificial intelligence, and crowdfunding into their organizational
structures and industrial domains to drive the transformation of
the energy sector [68–70]. Renewable energy startups are defined
as those whose organizational industries include the renewable
energy sector, while all other startups are classified as traditional
energy startups by default. Furthermore, we classify energy market
startups based on their success status. Unlike previous studies
that measure success using economic indicators such as corporate
performance [71], we define a successful energy startup as one that
has achieved either an initial public offering (IPO) or has been
acquired through a merger or acquisition (M&A). This binary
classification is widely used in innovation and entrepreneurship
literature as a practical proxy for success, due to the clear and
observable nature of these outcomes [72]. Ultimately, our dataset
comprises 295 innovative energy startups (3.3%), 3,488 renewable
energy startups (39.2%), and 5,117 traditional energy startups
(57.5%). Among them, only 1,507 startups (16.9%) are classified
as successful, highlighting the considerable challenges startups face
in achieving success.

Government administrative capacity is measured by
government effectiveness and regulatory quality. This variable
reflects the government’s ability to regulate the local energy startup
market and the easewithwhich investors can conduct business in the
country [19]. Data on national administrative capacity are sourced
from the Worldwide Governance Indicators provided by the World
Bank (https://www.worldbank.org/). Government effectiveness
captures the credibility of the government’s commitment to policies
and the quality of their implementation, while regulatory quality
reflects the government’s ability to formulate laws and regulations
that enable and promote private sector development [73]. We take
the average of the estimated governance values for each country
from 1996 to 2022 as a measure of its government effectiveness and
regulatory quality.

4 Methods

The methodological framework of this study consists of three
components. In Section 4.1, we construct a static network of
global energy startup investment information and employ network
statistical analysis to examine the overall market characteristics of
energy startups. In Section 4.2, we build a temporal network of
investment information between startups to analyze the dynamic
market characteristics of innovative and successful energy startups.
In Section 4.3, we develop an evaluationmodel based on the network
variables from Section 4.2, exploring the relationship between these
variables and startup success while assessing the accuracy of the
evaluation model.
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FIGURE 1
Energy startups market distribution.

TABLE 1 Scale of energy startups and distribution of government capacity in the top six countries.

Country Innovative
energy

Renewable
energy

Traditional
energy

Success Government
effectiveness

Regulatory
quality

USA 56 652 918 343 1.521 1.474

Canada 11 117 207 147 1.769 1.646

UK 11 110 139 30 1.601 1.722

Germany 11 61 65 22 1.553 1.572

Spain 1 36 102 138 1.175 1.066

China 1 25 78 14 1.010 1.014

4.1 Static investment information network
analysis

Weconstruct a static investment informationnetwork for energy
startups, where startups are represented as nodes, and edges indicate
the presence of shared investors between startups. In this section, we
treat the network as an outcome rather than a process and analyze
the global distribution of investment resources in the energy market
by characterizing the static features of startups.

We construct static network where startups are represented
as nodes, and edges indicate the presence of shared investors
between startups. Startups without shared investors are removed,
resulting in a final network comprising 3,592 energy startup nodes
and 26,188 edges. Among these, there are 138 innovative energy
startups, 1,520 renewable energy startups, 1,936 traditional energy
startups, and 711 successful startups, as shown in Figure 1. Ranking
countries by the number of energy startups, we find that the top six
countries account for 70% of the market’s startups, with over 90% of
successful startups located in these countries. Detailed information
is presented in Table 1.

Edges reflect the interactions between startups through
investment information. We measure edges using investment data
between startups, including in-degree, out-degree, weighted in-
degree, and weighted out-degree. Specifically, in-degree represents
the number of investments received from investors of other
startups, indicating a startup’s attractiveness to investors. Out-
degree represents the number of investments made by a startup’s
investors in other startups, reflecting the extent of capital
spillover. The weight of an edge represents the frequency of
investment transactions, capturing the intensity of investment
activity. Mathematically, following [74], we define a network
G(V,E), where V = {v1,v2,…,vn} denotes the set of nodes,
vn representing different startups, and E represents the set
of edges, which can be expressed in matrix form, as shown
in Equation 1:

E =
[[[[

[

e11 ⋯ e1n
⋮ ⋱ ⋮

em1 ⋯ emn

]]]]

]

(1)
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where emn is the link from startups vm to vn,which can be defined
as shown in Equation 2:

emn =
{
{
{

0 i f there is no common investor between vm and vn 

wmn i f investor in vm invest in vn
(2)

Furthermore, structural positionalities assess the importance
of startups in the network by considering their connections. We
measure structural positionalities using betweenness centrality,
which captures intermediation capacity, and closeness centrality,
which reflects the average distance to other nodes. Specifically,
betweenness centrality quantifies the frequency with which a startup
appears on the shortest paths between indirectly connected startups,
indicating its ability to control information flow within the network.
This can be calculated by Equation 3:

B(u) = ∑
j≠i∈V

δij(u)
δij

(3)

where V represents the set of nodes, δij denotes the total number of
shortest paths between nodes i and j, and δij(u) signifies the shortest
path from node i to node j that passes through node u.

Closeness centrality quantifies a startup’s proximity to all other
startups in the network by measuring the average length of the
shortest paths from the startup to all other startups. It reflects the
relative position of a node within the network, indicating how close
the startup is to other startups on average. The closeness centrality
measure C(u) of startup u is written as Equation 4:

C(u) = n− 1
∑

v∈V\{u}
d(u,v)

(4)

where V represents the set of nodes, n = |V| is the total number of
nodes, and d(u,v) denotes the shortest path distance between nodes
u and v.

4.2 Temporal investment information
network analysis

In the static analysis, the dynamic characteristics of the network
are ignored, and only the final structure of the network is considered.
However, the frequent occurrence of investment activities leads to
continuously changing potential connections between startups, and
these changes have a significant impact on the startups. Therefore,
we construct a temporal investment information network for energy
startups, maintaining the same node and edge definitions as in
the static network but incorporating time information labels. In
this section, we analyze the dynamic process of the network to
capture the changes in investment information of startups across
different periods. Network topology features are measured based
on the volume of connections and structural positions [19]. We
consider the relationship between a startup’s access to investment
and its connections with other startups as well as its position within
the network structure, through temporal betweenness centrality and
temporal closeness centrality.

Figure 2 visualizes the global energy startups investment
information network, where each node represents a startup, and
the connection between nodes represents that two startups have a

common investor. When an investor invests in different startups
successively, then the network has a directed edge from the former
startup to the latter startup.

Mathematically, following [75],the temporal network G(V,E,T)
is defined at time T = {1,2, ..., t}, where the edges are represented by
E = {e1,e2, ...,et}.At time i, if an investor first invests in startupm and
then in startup n, a directed edge eimn is created from m to n. The
weight of the edge represents the number of investors who meet this
condition. For example, if investors a, b, c, and d invest in startups A
and B at time i, with A being invested in before B, then the directed
edge eiAB = 4 , specifically expressed as Equations 5, 6:

et =
t

∑
i=1
∑

m≠n∈V
eimn (5)

eimn =
{
{
{

0 i f there is no investor between vm and vn at time i

wi
mn i f investor in vm invest in vn at time i 

(6)

Both temporal betweenness centrality and temporal closeness
centrality require the definition of shortest paths over time. We first
identify the shortest paths at each time point and then count the
number of shortest paths within a specified time period.The process
is described as follows in Equation 7:

δtij =
t

∑
i=1

mini distij (7)

Where minidistij represents the shortest path between nodes i
and j at time t, and δtij represents the count of the shortest paths
from node i to node j at each time point up to time t. Thus, temporal
betweenness centrality and temporal closeness centrality can be
expressed as Equations 8, 9:

tB(u) = ∑
i≠j∈V

δtij(u)

δtij
(8)

tC(u) = 1
∑

v≠u∈V
δtuv

(9)

Where δtij(u) represents the number of shortest paths passing
through node u between nodes i and j at time t, and δtuv represents
the number of shortest paths between nodes u and v at time t.

4.3 Construction of the success evaluation
model

To explore the relationship between the network variables
formed by the flow of investment information among startups and
the success of energy startups, we introduce Pearson correlation into
our study (43) to measure the correlation of the network variables.
The matrix of the Pearson correlation coefficient, P, is defined as
follows in Equations 10, 11:

P =
[[[[

[

p11 ⋯ p1n

⋮ ⋱ ⋮

pm1 ⋯ pmn

]]]]

]

(10)

pmn =
∑t

i=1
(xmi − xm)(y

n
i − yn)

√∑t
i=1
(xmi − xm)

2√∑t
i=1
(yni − yn)

2
(11)
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FIGURE 2
Schematic representation of global energy startups investment information network. (a) Static investment information network. (b) Temporal
investment information network. Note: ABCD represent different startups, abcd denote different investors, and 1234 represent the time. The
connecting edges between two startups suggest that they have a common investor, and the arrow direction represents the sequential order of the
investor's investments, with the earlier-invested startup pointing to the later-invested one. The temporal network can depict the dynamics of market
changes, such as the static network failing to display the investment changes of investor b due to the absence of its duration, and such changes have
an impact on startups ABC.

where m and n are the length of two data series, pmn is the
pearson correlation coefficient between m and n, t is the number
of spot data for each variable. xm is the average percentage value
of m, yn is the average percentage value of n. We then estimate
the following Equation 12 based on the relationship between the
network variables and startup success:

Yi = αDi + βBi + γXi + ε (12)

Where Yi measures the success potential of startup i. α, β and γ
are the weight of different scores, and ε is an adjustment factor. Di
represents the linkage volumes of startup i in the network, consisting
of in-degree, out-degree, weighted in-degree, and weighted out-
degree. Bi denotes the structural position of startup i in the network,
including temporal betweenness centrality and temporal closeness
centrality. Additionally, Xi represents control variables that may
influence startup success, including government effectiveness and
regulatory quality.

Finally, we evaluate the performance of the prediction model
using the Area Under the Receiver Operating Characteristic Curve
(AUC). Specifically, we adopt the roc_auc_score function from the
Scikit-learn library [76], which is based on the Wilcoxon-Mann-
Whitney statistic. This method measures the model’s ability to
distinguish between positive and negative samples by comparing
the ranking of predicted scores. We randomly select 80% of the
innovative energy startups as the training set and the remaining
20% as the testing set. The model’s predictive accuracy is assessed
by evaluating its ability to correctly predict the success of startups in
the testing set, as shown in Equation 13:

AUC = 1
mn
∑

i∈Positive
∑

j∈Negative
I(pi > pj) (13)

Where m is the number of positive samples, n is the number of
negative samples, pi and pj are the predicted scores for positive and
negative samples respectively, and I(pi > pj) = 1, 0.5 if pi = pj, and 0
otherwise.

5 Results and discussion

5.1 Statistic topology on investment
information network

The investment information network of energy startups
exhibits complex statistical topological characteristics, with
varying positions and influence of different types of startups
within the network. Based on static topological analysis methods,
we conduct an empirical study of the investment information
networks of innovative energy, renewable energy, and traditional
energy startups.

Table 2 provides the basic characteristics of energy market
startups in the static network. Market share indicates the percentage
of the total investment funds accounted for by the startups.
Closeness centrality and betweenness centrality are calculated based
on the results of the centrality experiments [77].

Innovative energy startups account for less than 1% of the
market, while traditional energy startups, with a market share
of over 60%, remain the main force in the energy investment
and financing market. However, for the three types of energy
startups—innovative energy, renewable energy, and traditional
energy—both the in-degree and out-degree have gradually
decreased, while the weighted degree has gradually increased.
Although innovative energy startups have fewer connections with
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TABLE 2 Static network characteristics.

Type Market
occupancy

Average
in-degree

Average
out-degree

Average
weighted
in-degree

Average
weighted
out-degree

Static
closeness
centrality

Static
betweenness
centrality

Innovative
Energy

0.9351% 1.715 1.701 5.365 5.350 0.118 3.040

Renewable
Energy

30.855% 1.662 1.664 6.718 6.716 0.130 2.942

Traditional
Energy

68.209% 1.564 1.564 7.576 7.577 0.133 2.564

Note: Bold values indicate the best performance in each column.

other startups, the weight of these connections in the network is
larger. This indicates that compared to traditional and renewable
energy startups, innovative energy startups may be more inclined to
select specific and strategically significant partners for in-depth
cooperation, such as preferring to collaborate with institutions
like venture capital and private equity, which typically provide
larger amounts of investment. The betweenness centrality further
reflects this, as innovative energy startups in the network are more
reflective of the flow trend of investment information, and startups
influence the direction and speed of the dissemination of investment
information. However, the closeness centrality of innovative
energy startups is the lowest among the three types of startups,
possibly due to their low market share, which prevents startups
from reaching more startups quickly and slows access to market
information.

Although innovative energy startups have a small market share,
as indicated by centrality, their influence is not insignificant. Startups
with high centrality are highly connected nodes in the investment
and financing network, and the resulting market influence cannot
be solely determined by market share. These innovative energy
startups with high centrality have a huge market influence that
can have a wide impact on the investment trends of the whole
investment and financing and thus dominate the development
of the energy industry. In addition, markets are sensitive to
volatile information, and technological innovations in the energy
industry and uncertainties in economic policies can exacerbate
the volatility of investment and financing in the energy market,
which may in turn affect investment behavior. Therefore, analyzing
the investment and financing patterns of the energy market solely
based on market share and the static network is restrictive. It is
necessary to conduct a dynamic analysis of the investment and
financing network.

5.2 Dynamic roles of innovative energy
startups

Weobserve the development of the energymarket in recent years
from a dynamic perspective. Innovative energy startups entered
the market in 2010. Figure 3 shows the temporal betweenness and
closeness centrality values of innovative energy startups in the
temporal network from 2010 to 2024. We can observe that the

distribution of betweenness centrality values is relatively uniform,
with the majority being 0.000356 and 0.000178. While the closeness
centrality values are relatively dispersed but concentrated within
the range of 0.0006–0.001. Figure 4 separately presents the temporal
betweenness and closeness centrality of the three types of startups
- innovative energy, renewable energy, and traditional energy -
from 2005 to 2024. In Figure 4a, the peak of connectivity in
2010 represents that innovative energy startups received significant
attention immediately upon entering the market. Due to political
unrest in the Middle East and the shale gas revolution in the
United States, the energy market declined continuously until the
Paris Climate Agreement in 2015 revitalized the energy market
and maintained a relatively stable development in the subsequent
years, especially with innovative energy startups becoming a key
center for investment. However, both the COVID-19 pandemic
in 2019 and the Russia-Ukraine war in 2022 affected the global
financial market, and the energy investment and financing market
was also impacted due to the interrelationships of investments
among startups.

We found that temporal closeness centrality differs from
the traditional closeness centrality observed in static networks.
Notably, with the exception of the initial phase when innovative
energy startups enter the market, the three categories of startups
exhibit near-total synchronization in subsequent years. As
illustrated in Figure 4b, innovative energy startups displayed
elevated closeness centrality during their market entry phase, a
phenomenon that can be attributed to robust governmental and
startup support, policy incentives, and significant capital investment.
These factors collectively facilitated the rapid advancement of
innovative energy technologies, bolstered investor confidence,
and reinforced the startups’ prominence within the network.
While traditional energy sources continue to dominate global
energy supply and renewable energy sectors experience rapid
growth, innovative energy startups have secured a distinct strategic
position within the energy network, driven by their potential for
technological disruption and their capacity to shape future industry
developments.

Moreover, our analysis reveals a high degree of consistency in
the changes of betweenness centrality between innovative energy
startups and renewable energy startups, although innovative energy
startups exhibit greater volatility. This consistency can be attributed
to the shared focus of both types of startups on sustainability,
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FIGURE 3
Temporal centrality values of innovative energy startups. (a) Temporal betweenness centrality of innovative energy startups. (b) Temporal closeness
centrality of innovative energy startups.

FIGURE 4
Temporal centrality of energy startups divided by industries. (a) Temporal betweenness centrality of startups. (b) Temporal closeness centrality of
startups. Note: We depict the changing trends of centrality for startups classified by business type. The vertical axis of (a) represents the average
temporal betweenness centrality, and the vertical axis of (b) represents the average temporal closeness centrality. Innovative energy startups are
represented by red circles, renewable energy startups by blue crosses, and traditional energy startups by green squares.

their commitment to developing environmentally friendly solutions,
reducing reliance on traditional energy sources such as fossil fuels,
and fostering the green economy. Additionally, both categories
benefit from supportive policies enacted by governments and
international organizations aimed at advancing the application
of and investment in clean energy technologies. However, while
both innovative and renewable energy startups must remain agile
in response to market dynamics, adjusting business models and

technological innovations to satisfy consumer demands, innovative
energy startups face heightened demands in terms of technological
advancements and real-time market responsiveness. Consequently,
they are more sensitive to market fluctuations. This increased
sensitivity is further compounded by the fact that innovative energy
startups span innovations across both traditional and renewable
energy sectors, meaning that shifts in either domain can affect
their market positioning. Given that innovative energy startups
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FIGURE 5
Temporal centrality values of successful startups. (a) Temporal betweenness centrality of successful startups. (b) Temporal closeness centrality of
successful startups.

are still in the development phase, with technologies and markets
continuing to evolve, the risks associated with investment returns
are more pronounced. These factors collectively contribute to the
heightened volatility observed in the betweenness centrality of
innovative energy startups.

5.3 Dynamic roles of success energy
startups

Through both static and dynamic analyses of the energy market,
we have elucidated the characteristics of the overall energy market
landscape. To investigate the relationship between successful energy
startups and the energy market, we employed a temporal network
framework to capture the structural positions of successful energy
startups within the network, as illustrated in Figures 5, 6. Figure 5
presents the temporal trends of betweenness and closeness centrality
for successful energy startups from2005 to 2024. Our findings reveal
that the distribution patterns of successful startups exhibit a notable
consistency with those of innovative energy startups with regard
to the distribution of betweenness centrality, which demonstrates
a more uniform spread compared to closeness centrality. In the
subsequent analysis, we compared the centrality values of successful
startups against those of unsuccessful startups, with the results
presented in Figure 6.

Through Figure 6, we find that successful startups generally
have higher betweenness centrality than unsuccessful startups, while
closeness centrality shows the opposite. Successful startups, as
“bridge” nodes, play an important intermediary role in the flow of
investment information between different startups, acting as links
connecting multiple startups through shared investors. The high
betweenness centrality of successful startups indicates their ability
to attract a large number of investors and foster strong connections
between investors, demonstrating high ‘investment accessibility’.
High betweenness centrality also suggests that successful startups
occupy a strategic position in the energy network, holding influence
and power within the entire investment ecosystem. When a

startup is involved in multiple investment paths, it can control
the speed of information flow or selectively distribute information
and opportunities to other startups. Thus, successful startups can
obtain important resources through their investment information
networks and may even influence the choice of cooperation
partners by investors. Low closeness centrality indicates that
successful startups are more distantly connected to other startups
in the network, located at relatively peripheral positions, and
cannot quickly access investment resources. Although successful
startups play an important bridging role in the investment
network, they are not located in the core areas. This could
mean that successful startups are more involved in decentralized
investment fields or maintain connections with specific investment
circles that are not at the center of the entire investment
network. Their low closeness centrality might reflect their focus
on specific fields or markets rather than broad participation in all
investors’ views.

Successful startups have strong cross-domain resource
integration capabilities. Due to fewer direct connections with other
startups, successful startups may rely on other startups to transmit
information and resources, potentially affecting the timeliness
of information acquisition. However, successful startups have a
diverse group of investors who invest in various fields and startups,
enabling them to establish extensive indirect connections through
investors and access resources and information from different areas.
Therefore, successful startups can acquire diverse resources and
opportunities, promoting cross-domain collaboration. We find that
for energy startups, although the lack of direct connections with
other startups reduces the timeliness of information acquisition,
increasing competition in specific fields, the diversified investment
structure and indirect connections between startups may offer more
flexibility and opportunities. Startups should focus on developing
diversified investment portfolios to attract a broad range of investors
and increase indirect connections with other startups, rather than
relying solely on core investors or mainstream investment circles in
the market.
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FIGURE 6
Temporal centrality of energy startups divided by success. (a) Temporal betweenness centrality. (b) Temporal closeness centrality. Note: The evolving
trends in centrality for startups, categorized by success and unsuccess, are presented from 2005 to 2024. The vertical axis of (a) corresponds to the
average temporal betweenness centrality of the startups, while the vertical axis of (b) reflects the average temporal closeness centrality. Successful
startups are denoted by red circles, unsuccessful startups by blue crosses, and all startups are represented by green squares.

5.4 Evaluation on success potential of
innovative energy startups

5.4.1 Connection between startups role
characteristics and success

Table 3 presents the estimated results of the relationship between
startups’ combined characteristics, including their own attributes
and network topological features, and startups success. Given
that different network indicators conceptually capture different
aspects of network role attributes, we introduce them separately
into the econometric model. This mitigates issues of over-
identification and multicollinearity [78]. Therefore, we estimate six
independent econometric regression models, each focusing on a
single network variable.

For network variables, both in-degree and weighted out-
degree are statistically significantly positively correlated with
successful startups at the 10% level. Additionally, out-degree,
temporal betweenness centrality, and temporal closeness centrality
show significance at the 5% level. These results suggest that
network structure characteristics can be used to describe the
characteristics of investment information in successful energy
startups.

Model 1 and model 4 demonstrate relatively higher
adjusted R-squared values (0.411 and 0.417, respectively),
suggesting that in-degree and weighted in-degree can explain
variations in startup success. This implies that the sheer number
and the strength of incoming investment links may reflect
external recognition or trust, which is important for startup
credibility.

Regulatory quality exhibits a consistent and statistically
significant positive association with startup success in five of six
models, highlighting the importance of institutional environment.
Government effectiveness also shows marginal significance in
models, further emphasizing the role of governance in enabling
entrepreneurial success.

Although model 5 and model 6 have relatively low adjusted
R-squared values, the individual coefficients remain informative,
suggesting that betweenness centrality and closeness centrality,
while not sufficient alone, may still exert meaningful influence when
considered jointly with others.

5.4.2 Accuracy of the success evaluation model
Based on the connections in 5.4.1, we design the success

evaluation model, assign weights to the indicators, and evaluate
its performance. Since a higher AUC indicates greater evaluation
accuracy for successful startups, Table 4 confirms the validity of the
proposed model. We adjusted the weights of different subsections,
and notably, considering any subsection alone did not provide the
best representation of the success evaluation score for successful
startups. To maximize the AUC value, we exhaustively search all
combinations of the weights α, β, γ, under the constraint that
α+ β+ γ = 1, where α,β,γ ∈ [0,1] with a step size of 0.1. A higher
weight indicates a greater contribution of the corresponding factor
to the AUC, and thus a stronger influence on the evaluation of
startup success. A weight of 0 implies that the factor has no
impact on the success evaluation, while a weight of 1 indicates
that the evaluation is solely determined by that single factor.
When considering the network in combination with government
control capacity as additional information, the AUC reaches its
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TABLE 3 Regression results of startups role characteristics.

Characteristic 1 2 3 4 5 6

Indegree (log) 0.411∗∗∗

(0.531)

Outdegree (log) 0.349∗∗

(0.547)

Weight Indegree (log) 0.417∗

(0.733)

Weight Outdegree (log) 0.633∗∗∗

(0.749)

Betweenness centrality (log) 0.484∗∗

(0.627)

Closeness centrality (log) 0.249∗∗

(0.168)

Country (log) 0.111
(0.542)

0.204
(0.385)

0.221
(1.568)

0.371∗

(0.644)
0.437∗∗∗

(0.436)
0.382∗∗

(0.182)

Government effectiveness (log) 0.312∗

(1.382)
0.005
(0.843)

0.381∗

(1.568)
0.213
(0.919)

0.061
(2.955)

0.165∗

(0.745)

Regulatory quality (log) 0.752∗∗∗

(1.372)
0.377∗∗

(0.843)
0.822∗∗

(1.568)
0.631∗∗∗

(0.919)
0.667∗∗∗

(2.954)
0.166
(0.745)

Adjusted R-squared 0.411 0.035 0.417 0.063 0.0085 0.025

Note: Standard errors are in parentheses.∗∗∗p < 0.01,∗∗p < 0.05,∗p < 0.1. We log-transform all variables to produce normally distributed model residuals. Additionally, before the
log transformation, we add the mean to variables with zero values to address the issue of zeros in the dataset.

TABLE 4 Model precision measured by AUC.

α β γ Success AUC

1 0 0 0.916

0 1 0 0.967

0 0 1 0.889

0.3 0.6 0.1 0.984

Note: α, β, and γ are the coefficients measuring enterprise degree, centrality, and
government administrative capacity. Bold values indicate the best performance.

maximum, and the network structure characteristics contribute the
most to the success evaluation of startups (with high β values when
maximum AUC is achieved). Therefore, considering each startup’s
role and dynamic trends in the network helps achieve a higher
and more stable AUC (0.984), indicating better potential to assess
future success.

To mitigate the risk of overfitting caused by the relatively small
sample size of innovative energy startups, this study incorporated a
larger dataset. Specifically, we used data from 8,900 energy startups,
including 1,507 successful and 7,393 unsuccessful cases. A stratified
random sampling approach was employed, allocating 80% of the
data for training and 20%. When the weight parameters satisfied

TABLE 5 Five-fold cross-validation results of AUC.

α β γ mean_AUC Std

0.3 0.6 0.1 0.9839 0.0052

0.4 0.6 0.0 0.9837 0.0051

0.4 0.5 0.1 0.9829 0.0056

0.2 0.7 0.1 0.9819 0.0053

0.2 0.6 0.2 0.9815 0.0060

the condition α = 0.3,β = 0.6,γ = 0.1, the model achieved an AUC
of 0.875 on the test set, indicating a certain level of robustness.

To validate the robustness of our experiments, we employ
a five-fold cross-validation approach. For each parameter
combination (α, β, γ), the data is divided into five parts: in
each iteration, one part is used for validation and the remaining
four for training. We then compute the average AUC and its
standard deviation for each combination. The top five AUC
results obtained from the experiments are shown in Table 5.
The standard deviation for each group is around 0.005,
indicating the experiment demonstrates reasonable stability and
robustness.
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FIGURE 7
Comparison of successful energy startups and innovative energy startups. Note: We compared the values of various indicators for successful and
innovative startups, as well as their national distribution. (a) shows the relative value (sum equal to 1) of each indicator for the startups. (b) shows the
frequency distribution of startups in the top 20 countries where successful startups appear most frequently. Red represents innovative energy startups,
and blue represents successful startups.

5.5 Estimation on success potentials of
innovative energy startups

We used the success evaluation model to evaluate innovative
energy startups, comparing the top 20 innovative energy startups
with successful startups, as shown in Figure 7.

We found that innovative startups have higher in-degree,
weighted in-degree, and betweenness centrality than successful
startups, with the largest difference being in betweenness centrality.
However, innovative startups lag behind successful startups
in terms of closeness centrality, government efficiency, and
regulatory quality.

The higher in-degree and weighted in-degree of innovative
startups indicate they can attract more investment but are less
effective in preventing investment outflow. The narrowing gap
in weighted in-degree suggests that the strength of connections
between startups plays a balancing role. Among the structural
positions, betweenness centrality shows the greatest deviation
between innovative and successful startups. Innovative startups have
high betweenness centrality because they act as intermediaries for
investment information, attracting a lot of investment. However,
due to the high demands for technological updates and the high
volatility of technology, compared to other startups, innovative
startups’ risks are greater and cannot stabilize the investment. The
lower closeness centrality means innovative startups are relatively
distant fromothers in the network, while they play an important role
in connecting different startups, they are not located in the network’s
central area and cannot quickly reach other startups, possibly being
far from the core decision-making circle of investments. Energy

startups can play a controlling role in the flow of information, but
their efficiency in actively acquiring and disseminating information
is relatively low. They rely more on other startups to obtain
investment information, and sending investment information to
other parts of the network takes more time. Innovative energy
startups play key roles in certain paths or network branches,
ensuring the connectivity of different sub-networks or startup
groups, but their influence or efficiency is more localized in
specific sub-networks and not in the information center of the
entire network.

Innovative startups perform worse than successful startups
in terms of government efficiency and regulatory quality,
indicating that government administrative capacity has a
positive impact on promoting startup development. This
emphasizes the critical role of high-quality, efficient services
and a supportive regulatory environment in driving startup
progress [19]. Innovative startups and successful startups show
similarities in the countries they are located in, especially
in developed countries like the U.S. and the U.K. On the
one hand, emerging startups have the advantage of catching
up by rapidly adopting innovative technologies in their
industrial structure, and developed countries typically have
more advanced technologies that startups can learn from
to gain advantages [79]. On the other hand, governments
in developed economies have been actively implementing
policies to accelerate emerging technologies like AI and
blockchain, and startups use effective policies to speed up
technological innovation and follow or even lead market
trends. For example, the Inflation Reduction Act enacted in
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the United States in 2022 (https://www.govinfo.gov/content/
pkg/PLAW-117publ169/html/PLAW-117publ169.htm) provides
targeted tax incentives for energy-related enterprises, including
renewable energy development, electric vehicle adoption, and
energy efficiency improvements. This policy significantly lowers
the financing barriers for relevant startups and enhances their
survivability and competitiveness during the early stages of
development. Therefore, the country and its administrative capacity
have a positive impact on energy startups, playing a key role in
promoting their investment.

6 Conclusion

To achieve the energy development goals, the future
development of innovative energy startups has attracted active
exploration from global businesses and governments. In this paper,
we contribute to this discussion by analyzing the positioning of
innovative energy startups in the market through the construction
of an investment information network among energy startups and
by evaluating the future development directions of these startups
based on assessments of their success. We argue that, in addition
to the influence of domestic government administrative capabilities
and policies, the development of innovative energy startups is also
shaped by various forms of role attributes within the investment
information network.

Firstly, although innovative energy startups account for only
0.9351% of the global energy market, their high centrality
in the network suggests that they serve as highly connected
nodes within the investment information network. Thus, market
influence does not solely depend on market share; these highly
central innovative energy startups, possessing significant market
influence, can exert widespread effects on the investment trends
in financing, thus shaping the development of the energy industry.
From the perspectives of in-degree and weighted in-degree,
innovative energy startups are more likely to engage in deep
collaborations with specific, strategically important partners, and
these deep collaborators typically provide significant amounts
of investment.

Secondly, when innovative energy startups first enter the
market, they attract substantial attention, aided by policy
incentives and significant capital inflows. The connectivity of
these startups fluctuates frequently, which can be explained by
recent social and extreme economic events. The volatility of
innovative energy startups is consistent with that of renewable
energy startups during the same period, likely due to their shared
focus on sustainability and benefit from green economy policies.
However, innovative energy startups are more pronounced than
renewable energy startups, being more sensitive to technology
and market potential, and tend to react more strongly to market
fluctuations.

Thirdly, successful energy startups exhibit high betweenness
centrality and low closeness centrality within the network compared
to other startups. High betweenness centrality indicates the
ability to control the speed of information flow or selectively
allocate information or opportunities to other startups, while low
closeness centrality suggests that these startups are more inclined

to participate in decentralized investment areas or non-network-
centered investment circles. Thus, successful startups possess strong
cross-domain resource integration capabilities, with a diversified
investor base leading to extensive indirect connections between
startups. As a result, these startups can access a wide range of
resources and opportunities despite having fewer direct links with
other startups.

Subsequent quantitative analysis of various indicators of
successful startups reveals that network degree, network centrality,
and government administrative capacity all have an impact on
startup success. To further quantify the contribution of each
indicator, we conducted an in-depth analysis using the success
evaluation model, which has been proven to be reliable. The
results indicate that network structural characteristics contribute
the most to the evaluation of successful startups, with the
model achieving an AUC of 0.967 when the weight is set to
1. Further optimization of weight allocation shows that when
network degree, network centrality, and government administrative
capacity are assigned weights of 0.3, 0.6, and 0.1, respectively,
the AUC of the model improves to 0.984, demonstrating that
this weighting scheme more effectively assesses startup success
potential.

Finally, through the analysis of successful startups, we find
that innovative energy startups can enhance their competitiveness
and attractiveness by improving their market layout, business
models, and strategies, gaining more capital favor and improving
their potential for success and development opportunities.
First, a high in-degree indicates that innovative startups have
the ability to attract investment, but it is more important to
stabilize existing investments. Secondly, the high betweenness
centrality and low closeness centrality of innovative energy startups
indicate they have the ability to control the flow of investment
information, but their information dissemination efficiency is
low. Therefore, startups need to expand their influence beyond
localized or specific sub-networks and enhance their ability
to actively acquire and disseminate investment information,
thereby positioning themselves in the network’s center. Central
positioning in capital flows provides startups with opportunities
to access diverse resources, capabilities, and markets [80], creating
excellent opportunities for knowledge sharing and learning [81],
which have strategic value, allowing startups to acquire new
technologies before widespread adoption, creating a virtuous cycle
in technological innovation. Finally, in addition to developed
countries, startups should also consider countries with proactive
policies and clear development directions. For example, the Chinese
government released the “Energy Production and Consumption
Revolution Strategy (2016-2030)” in 2016 (https://www.gov.
cn/xinwen/2017-04/25/content_5230568.htm), clearly stating the
need to promote the deep integration of the internet with distributed
energy technology, advanced grid technology, and energy storage
technology, and to vigorously develop smart energy technologies.
In 2020, the “Energy Development in the New Era” (http://www.
scio.gov.cn/gxzt/dtzt/2020/xsddzgnyfzbps/) further transformed
the government’s functions, supporting the development of new
technologies, models, and industries, and promoting the deep
integration of energy technology with modern information,
materials, and advanced manufacturing technologies. China is
advancing the energy industry toward intelligence and greening
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through policy support, market opening, innovative applications,
digital transformation, and achieving carbon emission goals.

Therefore, based on the results of this study, governments should
support high-potential innovative energy startups, particularly in
their early stages, through instruments such as guidance funds and
investment subsidies. These measures can help stabilize existing
investor relationships and reduce financing uncertainty. In addition,
for startups that serve as bridging nodes in the network, governments
may consider designating them as key channels for technology
diffusion by offering targeted support through technology pilot
programs and public service platforms, thereby enhancing the overall
efficiency of industry innovation. From the startup perspective,
startups should actively improve their capabilities in acquiring and
disseminating information. This can be achieved by participating in
industry alliances and advancing digital infrastructure to strengthen
their learning and communication capacities. Furthermore, they
should seek to connect with diverse investor groups to expand their
influence within the network. In the context of globalization, startups
are also encouraged to explore emerging markets with strong policy
orientationand substantial support, suchasChina, inorder to leverage
policy incentives and reinforce their central positioning in global
capital and innovation networks.

Our study has some limitations. First, we focus on the
investment information flow between startups, without considering
intra-startup relationships. Future research could integrate the
internal dynamics of startups and their impact on development.
Second, we use IPO and M&A status as indicators of startup
success. While this approach offers clear and observable outcomes,
it does not capture other important dimensions of success, such as
revenue growth, market influence, or long-term sustainability. We
plan to explore alternative success metrics in future work as more
comprehensive data become available. Furthermore, the proportion
of innovative energy startups in our sample is relatively low. This
distribution reflects the actual scarcity of such startups within
the broader energy startup ecosystem, but it may also limit the
generalizability of our findings regarding innovative energy startups.
Future research should incorporate larger and more representative
samples of innovative energy startups to further validate the
conclusions drawn in this study. Finally, this study finds a significant
association between high centrality and startup success, but does
not establish a causal relationship. Future research may adopt
longitudinal approaches such as panel data models, which track the
characteristics of multiple entities over time, to examine the causal
mechanisms implied by our findings.
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