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Obtaining a solution of a given SDE is essential in neuroscience, especially,
in modeling transmission of nerve impulses between neurons through myelin
substance. This paper analyzes a particular scalar differential equation (SDE). The
current scalarmodel involves two categories of differential equations–advanced
and delayed–based on the domain of the independent variable. The results are
consistent with existing literature as the advance/delay parameter approaches
unity. Theoretical and graphical analyses of the solution’s properties are
presented. To the best of our knowledge, this is the first study to analyze this
form of SDE.
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1 Introduction

In ordinary differential equations (ODEs), the equation y′(t) = αy(t) + βy(t− τ) is
typically classified as a delay differential equation (DDE) in the domain t > 0, since t− τ <
t for any τ > 0, with τ serving as the delay parameter. Conversely, the equation y′(t) =
αy(t) + βy(t+ τ) is considered an advanced differential equation (ADE) in the domain t >
0, as t+ τ > t for all t,τ > 0, with τ interpreted as the advance parameter. However, if an
ODE involves both delay and advance terms in distinct but connected domains, it is more
appropriately classified as a scalar differential equation (SDE). In the examples above, the
terms y(t− τ) and y(t+ τ) involve positive coefficients of the independent variable t, allowing
straightforward classification of the respective equations as DDE and ADE.

A question arises here: what is the type of the second ODE if y(t+ τ) is changed
to y(−t+ τ)? Answering this question requires two steps to determine the domains of t
for which −t+ τ < t (delay) and −t+ τ > t (advance). The first step, −t+ τ < t implies t >
τ/2, while the second step, −t+ τ > t leads to t < τ/2. Based on this, the ODE y′(t) =
αy(t) + βy(−t+ τ) can be classified as an ADE in the domain 0 < t < τ/2, and as a DDE
in the domain τ/2 < t <∞. Hence, we may refer to the ODE y′(t) = αy(t) + βy(−t+ τ) as
an SDE because it involves both types of advance and delay equations, as pointed out
in Refs. [1, 2]. Another important observation concerns the central point connecting the
two domains, which is t = τ/2. This central point plays a fundamental role in deriving
the analytical solutions of a given SDE, as will be demonstrated later. It is also useful to
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distinguish between proportional delay parameters and pure delay
parameters. In the DDE y′(t) = αy(t) + βy(t− τ), the parameter τ is
referred to as a pure delay parameter. However, other types of DDEs
involve proportional delay parameters, such as in the pantograph
equation (PE) y′(t) = αy(t) + βy(γt), 0 < γ < 1 [3, 4]. The PE has
applications in modeling the behavior of overhead catenary systems
for railway electrification [5–7], the dynamic response of trolley
wire overhead contact systems for electric railways [8], and current
collection systems in electric locomotives [9]. Several authors have
analyzed the PE in detail [10–12]. Another notable example is
the Ambartsumian equation (AE), given by y′(t) = − y(t) + 1

q
y( t

q
),

where q > 1. This equation has practical significance in astronomy,
particularly in studies of surface brightness in the Milky Way
[13–16]. In these models, γ and 1/q are considered proportional
delay parameters. For the pantograph model, 0 < γ < 1 implies γt <
t indicating a delay for all t > 0. Similarly, the Ambartsumian model
t
q
< t also represents a delay.
In this paper, we consider the following general form of the SDE:

y′ (t) = αy (t) + βy (−ct+ τ) , y (t) = 0∀ t < 0, y (0) = λ, 0 < c ≤ 1, τ > 0, (1)

where α, β, and λ are real constants. It can be readily shown that
Equation 1 represents an advanced equation in the domain 0 <
t < τ

c+1
, while it becomes a delayed equation for t > τ

c+1
. Finding a

solution to Equation 1 poses a significant challenge and, to the best
of our knowledge, may be considered for the first time. Moreover,
standard methods such as the Adomian decomposition method
(ADM) [17–20], the homotopy perturbation method [21, 22], and
the Laplace transform (LT) [23–26] may encounter difficulties when
applied to such problems.

To address this, a direct series approach is developed to solve
the advanced equation. A closed-form expression of the series is
obtained, and its convergence is established theoretically. These
results are then used to construct the solution for the delayed
equation. Several existing results in the literature can be recovered as
special cases of the present findings. In addition, the properties of the
obtained solutions are analyzed both theoretically and graphically.
Finding a solution for a SDE is helpful for understanding the
transmission of nerve impulses between neurons through myelin
substance which covers all the nerves in the brain and nervous
system in humans [27]. Other areas of applications can be further
extended to involve some recent dynamical systems [28–30] and
relatively new physical phenomena [31, 32].

2 Advanced equation 0 < t < τ
c+1

In the domain 0 < t < τ
c+1

, SDE (1) becomes an advanced
equation since −ct+ τ > t ∀ t ∈ (0, τ

c+1
), 0 < c ≤ 1. Moreover, in the

advanced equation domain, τ
c+1
< − ct+ τ < τ, see Refs. [1, 2] for

details. Accordingly, the value of the function y (−ct+ τ) is unknown,
which prevents the application of the step method to solve the
advanced equation:

y′ ⁢ (t) = αy (t) + βy (−ct+ τ), y (t) = 0 ∀ t < 0,

y (0) = λ, 0 < c ≤ 1, τ > 0, 0 < t < τ
c+ 1
. (2)

Before discussing the main objective of this section, it is important
to note that the condition:

y′( τ
c+ 1
) = (α+ β)y( τ

c+ 1
), (3)

must be satisfied by any solution to Equation 2 in addition to the
initial condition (IC) y(0) = λ.

2.1 Closed-form series solution

An effective solution for a given model can be derived as a
closed-form series solution. The solution in such a form facilitates
numerical calculations and also leads to easier analysis to study the
properties/behavior of the physical system. Let us attempt a series of
solutions in the form of:

y (t) =
∞

∑
n=0

an(t−
τ

c+ 1
)
n
. (4)

This assumption yields:

y′ (t) =
∞

∑
n=0
(n+ 1)an+1(t−

τ
c+ 1
)
n
, (5)

and

y (−ct+ τ) =
∞

∑
n=0
(−c)nan(t−

τ
c+ 1
)
n
. (6)

Substituting Equations 4–6 into Equation 2 leads to:

an+1 =
an

n+ 1
(α+ (−c)nβ) , n ≥ 0. (7)

Hence,

an+1 =
a0

(n+ 1)!

n

∏
k=0
(α+ (−c)kβ) , n ≥ 0. (8)

From (4), we can write:

y (t) = a0 +
∞

∑
n=0

an+1(t−
τ

c+ 1
)
n+1
. (9)

Employing (8), we obtain:

y (t) = a0[1+
∞

∑
n=0

1
(n+ 1)!

n

∏
k=0
(α+ (−c)kβ)(t− τ

c+ 1
)
n+1
], (10)

or

y (t) = a0[1+
∞

∑
n=0

hn(t−
τ

c+ 1
)
n+1
], (11)

where

hn =
1
(n+ 1)!

n

∏
k=0
(α+ (−c)kβ) , n ≥ 0. (12)

By applying IC y(0) = λ to Equation 11, we get:

a0 =
λ

1+∑∞
n=0

hn(−
τ

c+1
)n+1
. (13)

Substituting (13) into (11) yields:

y (t) = λ[

[

1+∑∞
n=0

hn(t−
τ

c+1
)n+1

1+∑∞
n=0

hn(−
τ

c+1
)n+1
]

]
. (14)
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Equation 14 declares that IC y(0) = λ is satisfied automatically. Let us
now check the satisfaction of condition (3). For this purpose, from
the solution (14), we obtain:

y( τ
c+ 1
) = λ

1+∑∞
n=0

hn(−
τ

c+1
)n+1
= a0, (15)

and

y′( τ
c+ 1
) =

λh0

1+∑∞
n=0

hn(−
τ

c+1
)n+1
= (α+ β)a0, (16)

where Equation 12 is implemented to calculate h0 = α+ β. The last
two equations show that condition (3) is also satisfied. The next step
is to examine the convergence of the obtained series solution, which
is discussed in the following subsection.

2.2 Convergence analysis

To provide a theoretical proof of the convergence of the series
solution (14), it is sufficient to prove the convergence of the series
∑∞n=0hn(t−

τ
c+1
)n+1 in the domain 0 < t < τ

c+1
.

Theorem 1: For 0 < c ≤ 1, the series:
∞

∑
n=0

hn(t−
τ

c+ 1
)
n+1
, (17)

converge in the domain 0 < t < τ
c+1

.
Proof.Let us define,

ρn (t) = hn(t−
τ

c+ 1
)
n+1
. (18)

Applying the ratio test:

lim
n→∞
|
ρn+1 (t)
ρn (t)
| = lim

n→∞
|
hn+1
hn
(t− τ

c+ 1
)| . (19)

Hence,

lim
n→∞
|
ρn+1 (t)
ρn (t)
| = |t− τ

c+ 1
| lim
n→∞
|
α+ (−c)n+1β

n+ 2
| . (20)

The limit on the right-hand side of the last equation tends toward
zero as n→∞ for every 0 < c < 1 and 0 < t < τ

c+1
. At c = 1, the value

(−c)n+1 = ± 1 according to n. In this case, Equation 20 becomes:

lim
n→∞
|
ρn+1 (t)
ρn (t)
| = |t− τ

c+ 1
| lim
n→∞
|
α± β
n+ 2
| , (21)

which also tends toward zero, thereby completing the proof.

Remark 1: Through a similar analysis, we can easily prove that the
series ∑∞n=0hn(−

τ
c+1
)n+1 is convergent for all c ∈ (0,1].

2.3 Special case and exact solution

In this section, we show that the obtained series solution in
Section 2.1 converges to the exact hyperbolic and trigonometric
forms when c = 1 under the conditions α > β and β > α, respectively.

We consider c = 1 in Equation 2 and then extract the solution of the
corresponding advanced equation:

y′ (t) = αy (t) + βy (−t+ τ) , y (t) = 0∀ t < 0, y (0) = λ, τ > 0, 0 < t < τ
2
.

(22)

In this case, the solution given by Equation 14 reads:

y (t) = λ[

[

1+∑∞
n=0

hn(t−
τ
2
)n+1

1+∑∞
n=0

hn(−
τ
2
)n+1
]

]
, (23)

where hn in Equation 12 becomes:

hn =
1
(n+ 1)!

n

∏
k=0
(α+ (−1)kβ) , n ≥ 0. (24)

This equation can be used to generate the following equations
for the even-order coefficients h2n and odd-order coefficients
h2n+1 as follows:

h2n =
ω2n

(2n+ 1)!
⁢ (α+ β) , h2n+1 =

ω2n+2

(2n+ 2)!
,

ω = √α2 − β2, α > β, n ≥ 0. (25)

The numerator of solution (23) can be written as follows:

1+
∞

∑
n=0

hn(t−
τ
2
)
n+1
= 1+

∞

∑
n=0

h2n(t−
τ
2
)
2n+1
+
∞

∑
n=0

h2n+1(t−
τ
2
)
2n+2
,

= 1+
α+ β
ω

∞

∑
n=0

(ω(t− τ
2 ))

2n+1

(2n+ 1)!
+
∞

∑
n=0

(ω(t− τ
2 ))

2n+2

(2n+ 2)!
,

=
α+ β
ω

sinh[ω(t− τ
2
)]+ cosh[ω(t− τ

2
)].

(26)

Similarly, the denominator of solution (23) can be
written as follows:

1+
∞

∑
n=0

hn(−
τ
2
)
n+1
= cosh(ωτ

2
)−

α+ β
ω

sinh(ωτ
2
). (27)

Substituting (26) and (27) into (23), we obtain the exact
hyperbolic solution:

y (t) = λ[

[

ω cosh[ω(t− τ
2
)] + (α+ β) sinh[ω(t− τ

2
)]

ω cosh(ωτ
2
) − (α+ β) sinh(ωτ

2
)
]

]
. (28)

Moreover, if we rewrite the coefficients h2n and h2n+1 as follows:

h2n =
(−1)nΩ2n

(2n+ 1)!
(α+ β) , h2n+1 =

(−1)n+1Ω2n+2

(2n+ 2)!
,

Ω = √β2 − α2, β > α, n ≥ 0, (29)

then, we can arrive at the exact periodic solution:

y (t) = λ[

[

Ω cos[ω(t− τ
2
)] + (α+ β) sin[Ω(t− τ

2
)]

Ω cos(Ωτ
2
) − (α+ β) sin(Ωτ

2
)
]

]
. (30)

Solution (30) agrees with the corresponding values obtained in Ref.
[1] for the advanced Equation 22.
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3 Delay equation t > τ
c+1

It may be useful to divide the domain t > τ
c+1

into two intervals,
τ

c+1
< t < τ

c
and t > τ

c
. This is simply because the value of y(−ct+ τ)

in each of the above two intervals can be assigned a certain value,
as described in the next subsections. To achieve our target, we first
denote y1(t) as the solution in the interval 0 < t < τ

c+1
; hence,

y (t) = y1 (t) = a0[1+
∞

∑
n=0

hn(t−
τ

c+ 1
)
n+1
], 0 < t < τ

c+ 1
, (31)

where a0 is given by Equation 11.

3.1 Solution in interval τ
c+1
< t < τ

c

In the interval τ
c+1
< t < τ

c
we find that 0 < − ct+ τ < τ

c+1
and

accordingly Equation 31 gives:

y (−ct+ τ) = y1 (−ct+ τ) = a0[1+
∞

∑
n=0
(−c)n+1hn(t−

τ
c+ 1
)
n+1
].

(32)

The advanced equation in this interval takes the form:

y′ (t) = αy (t) + βy1 (−ct+ τ) , y (t) = y1 (t) ∀ t ∈ (0,
τ

c+ 1
), τ

c+ 1
< t < τ

c
,

(33)

subject to

y( τ
c+ 1
) = y1(

τ
c+ 1
) = a0. (34)

Substituting (32) into (33) results in the following ODE:

y′ (t) − αy (t) = βa0[1+
∞

∑
n=0
(−c)n+1hn(t−

τ
c+ 1
)
n+1
], τ

c+ 1
< t < τ

c
.

(35)

Solving this ODE under Condition (34) yields

y (t) = a0e
α(t− τ

c+1
) +

a0β
α
[eα(t−

τ
c+1
) − 1] + a0βe

αt
∞

∑
n=0
(−c)n+1hnIn (t) ,

(36)

where

In (t) = ∫
t

τ
c+1

e−αt(t− τ
c+ 1
)
n+1

dt. (37)

This integral appears complex; however, it can be evaluated
analytically in terms of the generalized incomplete gamma function
Γ(m,z1,z2) defined by:

Γ (m,z1,z2) = ∫
z2

z1
e−ttm−1dt. (38)

The integral (37) can be determined by:

In (t) = α−(n+2)e
− ατ

c+1 Γ(n+ 2,0,α(t− τ
c+ 1
)). (39)

Therefore, the solution (36) takes the following form:

y (t) = −
a0β
α
+ eα(t−

τ
c+1
) ⁢ [a0 ⁢ (1+

β
α
)−

a0β
α

∞

∑
n=0
(− c

α
)
n+1

⁢hn ⁢Γ (n+ 2,0,α (t−
τ

c+ 1
))]. (40)

The series on the right-hand side of this equation must also be
checked for convergence, which is discussed in the next theorem.

Theorem 2: For 0 < c ≤ 1, the series

∞

∑
n=0
(− c

α
)
n+1

hnΓ(n+ 2,0,α(t−
τ

c+ 1
)), (41)

converges in the domain τ
c+1
< t < τ

c
.

Proof.Assume that,

σn (t) = hn(t−
τ

c+ 1
)
n+1
. (42)

Applying the ratio test:

lim
n→∞
|
σn+1 (t)
σn (t)
| = lim

n→∞
|

|
− c
α
hn+1
hn

Γ(n+ 3,0,α(t− τ
c+1
))

Γ(n+ 2,0,α(t− τ
c+1
))
|

|
, (43)

i.e.,

lim
n→∞
|
ρn+1 (t)
ρn (t)
| = | c

α
| lim
n→∞
|
hn+1
hn
| × lim

n→∞
|

|

Γ(n+ 3,0,α(t− τ
c+1
))

Γ(n+ 2,0,α(t− τ
c+1
))
|

|
.

(44)

We obtain:

lim
n→∞
|

|

Γ(n+ 3,0,α(t− τ
c+1
))

Γ(n+ 2,0,α(t− τ
c+1
))
|

|
= α(t− τ

c+ 1
). (45)

Therefore,

lim
n→∞
|
ρn+1 (t)
ρn (t)
| = c |t− τ

c+ 1
| lim
n→∞
|
α+ (−c)n+1β

n+ 2
| . (46)

The limit on the right-hand side tends to zero as n→∞ for every
0 < c ≤ 1, thus completing the proof.

3.2 Solution in interval t > τ
c

Let us define y(t) = y2(t) as the solution in the previous interval
τ

c+1
< t < τ

c
. At t = τ

c
, we get y( τ

c
) = y2 (

τ
c
) = δ, where

δ = −
a0β
α
+ e

ατ
c(c+1) ⁢ [a0 ⁢ (1+

β
α
)−

a0β
α

∞

∑
n=0
(− c

α
)
n+1

⁢hn ⁢Γ (n+ 2,0,
ατ

c (c+ 1)
)]. (47)

In the interval t > τ/c, we have −ct+ τ < 0 which yields y(−ct+ τ) =
0. Therefore, the delay equation is reduced to:

y′ (t) − αy (t) = 0, y (t) = y2 (t) ∀ t ∈ (
τ

c+ 1
, τ
c
), t > τ

c
. (48)

The solution to this ODE is as follows:

y (t) = δeα(t−
τ
c
), t > τ

c
. (49)
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FIGURE 1
Convergence of approximations ϕm(t) for advanced equation in
interval (0,τ/(c+ 1)) at m = 2,3,4,5 when λ = 1, α = − 1, β = 3, c = 1/2,
and τ = 3.

4 Results

Theobjective of this section is to extract the numerical results for
the convergence of the obtained series solutions for the advanced
equation in the interval 0 < t < τ

c+1
and for the delay equation in

the intervals τ
c+1
< t < τ

c
and t > τ

c
. Since the obtained solutions

are expressed in terms of an infinite series, which was proven
theoretically for convergence, one may replace infinity with a finite
number. Let us denote ϕm(t), ψm(t), and χm(t) as the m-term
approximate solutions for the obtained solutions in the intervals 0 <
t < τ

c+1
, τ
c+1
< t < τ

c
, and t > τ

c
, respectively. Accordingly, we obtain:

ϕm ⁢ (t) = a0 ⁢ [1+
m−1

∑
n=0

hn ⁢(t−
τ

c+ 1
)
n+1
],

a0 = λ/(1+
m−1

∑
n=0

hn ⁢(−
τ

c+ 1
)
n+1
), (50)

and

ψm ⁢ (t) = −
a0β
α
+ eα(t−

τ
c+1
) ⁢ [a0 ⁢ (1+

β
α
)−

a0β
α

m−1

∑
n=0
(− c

α
)
n+1

⁢hn ⁢Γ (n+ 2,0,α (t−
τ

c+ 1
))], (51)

while χm(t) can be written as follows:

χm ⁢ (t) = e
α(t− τ

c
)/(−

a0β
α
+ e

ατ
c(c+1) ⁢ [a0 ⁢ (1+

β
α
)

−
a0β
α

m−1

∑
n=0
(− c

α
)
n+1
⁢hn ⁢Γ (n+ 2,0,

ατ
c (c+ 1)
)]). (52)

Figures 1–3 show the curves of the approximations ϕm(t), ψm(t), and
χm(t) atm = 2,3,4,5 when λ = 1, α = − 1, β = 3, c = 1/2, and τ = 3. It
can be seen in these figures that the convergence of the solutions
in the above three intervals is achieved using few terms. The same
conclusion applies to the curves shown in Figures 4–6 when λ = 1,
α = − 5, β = − 2, c = 1/2, and τ = 3/2.

The behavior of the solution in the full domain is depicted
in Figures 7, 8 for the same set of values of the constants used

FIGURE 2
Convergence of approximations ψm(t) for delay equation in interval
(τ/(c+ 1),τ/c) at m = 2,3,4,5 when λ = 1, α = − 1, β = 3, c = 1/2, and τ = 3.

FIGURE 3
Convergence of approximations χm(t) for delay equation in interval
(τ/c,∞) at m = 2,3,4,5 when λ = 1, α = − 1, β = 3, c = 1/2, and τ = 3.

to generate Figures 1, 4, respectively. It should be noted that the
solutions plotted in Figures 7, 8 are produced using the terms in
series (50)–(52).

The two black dots shown in Figures 7, 8 represent the
three intervals 0 < t < τ

c+1
, τ
c+1
< t < τ

c
and t > τ

c
. In addition, these

dots represent the approximate values of y1 (
τ

c+1
) ≈ ϕ10 (

τ
c+1
) and

y2 (
τ
c
) ≈ ψ10 (

τ
c
). However, Figures 7, 8 indicate that the solution

is continuous at the joint points, where ϕ10 (
τ

c+1
) = ψ10 (

τ
c+1
) and

ψ10 (
τ
c
) = χ10 (

τ
c
).

Regarding the continuity of the derivative y′(t), we can prove
that y′(t) is continuous at t = τ

c+1
but discontinuous at t = τ

c
.

This conclusion can be explained theoretically as follows. At
t = τ

c+1
, we obtain Equation 2. The left derivative is y′1 (

τ
c+1
) =

(α+ β)y1 (
τ

c+1
), and the right derivative is derived from Equation 33

as y′2 (
τ

c+1
) = (α+ β)y2 (

τ
c+1
). Since y1 (

τ
c+1
) = y2 (

τ
c+1
), then

y′1 (
τ

c+1
) = y′2 (

τ
c+1
); hence, y′(t) is always continuous at t = τ

c+1
.

At t = τ
c
, Equation 33 gives the left derivative as y′2 (

τ
c
) =

αy2 (
τ
c
) + βy1(0), i.e., y′2 (

τ
c
) = αy2 (

τ
c
) + βλ. Equation 48 yields the

right derivative at t = τ
c
as y′3 (

τ
c
) = αy3 (

τ
c
).
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FIGURE 4
Convergence of approximations ϕm(t) for advanced equation in
interval (0,τ/(c+ 1)) at m = 5,6,7,8 when λ = 1, α = − 5, β = −2, c = 1/2,
and τ = 3/2.

FIGURE 5
Convergence of approximations ψm(t) for delay equation in interval
(τ/(c+ 1),τ/c) at m = 5,6,7,8 when λ = 1, α = − 5, β = −2, c = 1/2, and τ =
3/2.

FIGURE 6
Convergence of approximations χm(t) for delay equation in interval
(τ/c,∞) at m = 1,2,3,4 when λ = 1, α = − 5, β = −2, c = 1/2, and τ = 3/2.

FIGURE 7
Plot of y(t) at λ = 1, α = − 1, β = 3, and c = 1/2 when τ = 3.

FIGURE 8
Plot of y(t) at λ = 1, α = − 5, β = −2, and c = 1/2 when τ = 3/2.

Since y2 (
τ
c
) = y3 (

τ
c
), then y′2 (

τ
c
) − y′3 (

τ
c
) = βλ, which leads to

y′2 (
τ
c
) ≠ y′3 (

τ
c
), where λ ≠ 0 and β ≠ 0 are assumed.

5 Conclusion

A new type of differential equation was addressed and
solved in this study. The model took the form of SDE, y′(t) =
αy(t) + βy (−ct+ τ), where 0 < c ≤ 1 and τ > 0. The SDE splits into
an advanced equation and delay equation in the domains 0 <
t < τ/(c+ 1) and t > τ/(c+ 1), respectively. The solution of the
advanced equation was obtained in a closed series form, for
which convergence was theoretically proven. As c tended toward
unity, the series solution for the advanced equation transformed
into exact hyperbolic and trigonometric forms for α > β and β >
α, respectively. The solution of the delay equation was explicitly
determined in terms of the incomplete gamma function using a
stepwise method. The results agreed with those in the literature
when c tended toward unity. The properties of the solutions were
analyzed both theoretically and graphically. The results showed that
the solution y(t)was continuous over the full domain of the problem.
Additionally, the derivative y′(t) remained continuous at the point
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t = τ/(c+ 1). It was also indicated that y′(t) is discontinuous at t =
τ/c provided that λ or β did not vanish. The proposed approach is
promising and can be further extended to include additional SDEs
ofmore complex types.Thus, it maybe interested to extend this work
to the domain of distributed parameter systems as in Refs. [33–35].
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