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Global geopolitical risk (GPR) has increasingly become a pivotal driver of
financial market volatility, understanding the impact of GPR on market tail risk is
crucial, particularly as traditional models often overlook the complex, nonlinear
dynamics exacerbated by geopolitical shocks. This study offers an in-depth
examination of the quantile-dependent spillover connectedness between GPR
and the tail risk of 18 industries in the Chinese stock market. By using a quantile-
on-quantile (QQ) connectedness approach, we investigate how shocks at
varying quantiles propagate through the system, thereby uncovering nonlinear
dynamics often obscured by traditional mean-variance models. Our findings
reveal a distinct “U-shaped” quantile dependence, where extreme quantiles
(5% and 95%) exhibit significantly heightened sensitivity to GPR compared to
mid-range quantiles. Additionally, a net directional analysis demonstrates that
industries with global integration or resource intensity (such as Manufacturing,
Mining, and IT) typically serve as net risk receivers during geopolitical turbulence,
while certain sectors (notably Finance) may act as net risk senders under
specific conditions. A dynamic connectedness analysis further indicates that
pivotal geopolitical events, including the 2018 China-U.S. trade war, the
COVID-19 pandemic and the 2022 Russia-Ukraine conflict, act as junctures
that intensify tail risk transmission. Collectively, these insights emphasize the
necessity of quantile-specific risk monitoring and underscore the value of
tailored policy interventions to mitigate severe downside risks amid escalating
global uncertainties.

KEYWORDS

global geopolitical risk, tail risk, quantile-on-quantile connectedness, Chinese stock
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1 Introduction

Global geopolitical risk (GPR) has emerged as a pivotal force driving financial market
volatility, encompassing events such as wars, significant political tensions, economic
sanctions, and trade barriers [1, 2]. Such disruptions profoundly influence investor
sentiment and capital flows, triggering cross-market spillovers and amplifying uncertainty
[3]. Amid escalating military conflicts, prolonged trade disputes, and pandemic-induced
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shocks, policy uncertainty has surged to unprecedented levels,
heightening systemic vulnerabilities across both developed and
emerging equity markets [4]. Consequently, the World Economic
Forum has identified GPR as a foremost global threat, advocating
for strengthened market oversight to curb downside risks [1].

Concurrently, tail risk—defined as the likelihood of extreme
losses stemming from rare, high-impact events—has gained
increasing prominence in risk management and academic research
[5, 6]. Traditional financial models, based on mean-variance
frameworks, often fail to capture the heavy-tailed, nonlinear patterns
that intensify during disruptive geopolitical events [7, 8]. When
“black swan” or “gray rhino” events—such as wars or sweeping
sanctions—unfold, stock returns exhibit heightened asymmetry,
fostering widespread spillovers that exacerbate systemic risk [1].
This dynamic is particularly salient in emerging markets like China,
where retail investors’ herding behavior tends to amplify extreme
selloffs amid informational uncertainty [9].

Despite growing scholarly attention to GPR [2, 10], most studies
focus on average returns or aggregate volatility, overlooking the
quantile-specificmechanisms throughwhichGPR amplifies tail risk.
While some researchers note that cross-industry and cross-regional
linkages surge during severe market downturns, evidence on the
underlying non-linear pathways remains limited [11, 12]. This gap
prompts a critical question: how can we effectively quantify the
impact of global geopolitical shocks on the lower tails of the return
distribution? Addressing this is vital for policymakers seeking to
safeguard systemic stability amid rising global tensions.

To bridge this gap, we employ a quantile-on-quantile (QQ)
connectedness approach to explore spillovers between GPR and
the tail risks of 18 Chinese stock market industries. The QQ
connectedness approach systematically traces how shocks at
specific GPR quantiles transmit to corresponding industrial tail
risk quantiles [13–15], thereby revealing nonlinear dynamics and
asymmetries in risk transmission. By accounting for both lower-
and upper-tail conditions, it reveals nuanced patterns and U-
shaped dependencies often overlooked by simpler linear or single-
quantile methodology [16]. Notably, our approach highlights key
scenarios—such as the 2018 China–U.S. trade war, COVID-
19 pandemic, and the 2022 Russia–Ukraine conflict—where
geopolitical shocks disproportionately affect the left tails of China’s
stock market [14, 17].

Using monthly data from 2010 to 2023, we derive three
principal findings. First, a pronounced “U-shaped” dependence
emerges between GPR and Chinese industrial tail risk, with
extreme quantiles (5% and 95%) exhibiting markedly stronger
connectedness than mid-quantiles. Second, net directional analysis
reveals that globally integrated, resource-intensive sectors—such
as Manufacturing, Mining, and IT—consistently act as net risk
receivers under geopolitical stress, while Finance occasionally
emerges as a net risk sender, amplifying shocks under certain
conditions. Third, dynamic connectedness peaks during major
geopolitical events, confirming that incidents like the 2018 tradewar,
the COVID-19 pandemic, and the 2022 Russia–Ukraine conflict
serve as pivotal moments that heighten tail risk transmission.
These findings highlight the critical need for quantile-specific
risk monitoring and advocate for targeted policy measures to
address heightened geopolitical risk periods, aligning with calls for
macroprudential strategies to manage financial turbulence [18].

Our study offers three major contributions. First, it broadens
the scope of research on GPR by exploring its dynamic interplay
with tail risks across 18 diverse industries in the Chinese stock
market, uncovering how the connectedness evolves across different
quantiles and over time. This enriches the understanding of how
geopolitical uncertainties shape extreme risk profiles in a major
emerging market. Second, while prior studies [18–23] often limit
their analysis to spillovers within uniform quantiles, overlooking
cross-quantile dynamics, this paper employs the cutting-edge QQ
connectedness approach to provide a detailed and precise depiction
of risk transmission between GPR and industrial tail risks under
varying market conditions. Third, unlike earlier research that
typically examines broad market indices or isolated sectors, we
develop an innovative framework that categorizes 18 industries into
dominant, basic support, and modern service groups, enabling a
granular analysis of how geopolitical shocks differentially propagate
across distinct economic segments.

The paper is structured as follows: Section 2 reviews the
theoretical background and literature. Section 3 details the
methodology and data. Section 4 presents empirical findings on tail
risk connectedness under geopolitical shocks. Section 5 concludes
with policy implications and future research directions.

2 Theoretical background and
literature review

2.1 Theoretical background

The global financial landscape has grown increasingly volatile
due to escalating geopolitical tensions, including wars, terrorist
attacks, and diplomatic crises [10, 24]. GPR, characterized as the
volatility and uncertainty stemming from such events, profoundly
influences policy frameworks and economic stability, thereby
reshaping the risk profiles of financial markets worldwide. Within
this context, tail risk—defined as the probability of extreme negative
returns at the distribution’s far end—emerges as a critical concern,
particularly susceptible to GPR’s disruptive effects.

Theoretically, GPR impacts tail risk through three primary
channels: uncertainty, risk aversion, and spillover or contagion. First,
the uncertainty channel suggests that GPR amplifies ambiguity in
policy and macroeconomic environments, elevating risk premia.
Pástor and Veronesi [24] argue that heightened policy uncertainty
increases expected returns, while Baker et al. [10] find that the
Economic Policy Uncertainty (EPU) Index is positively associated
with stock market volatility and reduced investment. Geopolitical
events, by intensifying uncertainty,may prompt investors to demand
higher risk premia or adopt a cautious ‘wait-and-see’ stance,
heightening the potential for tail events [25].

Second, the risk aversion channel posits that rising GPR
diminishes investors’ willingness to bear risk. During periods of
geopolitical upheaval, investors often shift from equities to safe-
haven assets like gold [26], triggering a flight-to-safety effect. This
shift results in equity sell-offs, reduced liquidity, and amplified
price declines, thereby increasing the likelihood of extreme tail
losses. Intriguingly, in markets like China, GPR can attract capital
inflows, reducing firms’ financing costs and spurring investment

Frontiers in Physics 02 frontiersin.org

https://doi.org/10.3389/fphy.2025.1612695
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Li et al. 10.3389/fphy.2025.1612695

[27, 28]. These results challenge conventional ‘risk-off ’ assumptions
and underscore GPR’s multifaceted influence.

Third, the spillover and contagion channel highlights GPR’s
capacity to propagate systemic risk, particularly during large-scale
events such as wars. Lai et al. [29] emphasize that financial market
interconnectedness exacerbates risk contagion, with geopolitical
shocks intensifying tail-risk spillovers across globalmarkets [30, 31].
Collectively, these mechanisms suggest that GPR skews the
risk distribution of financial markets, rendering extreme adverse
outcomes more probable, especially in emerging economies like
China, where market dynamics and investor behavior amplify
such effects.

2.2 Literature review

Extensive research has explored the relationship between GPR
and financial market dynamics, focusing on uncertainty, market
responses, and firm-level impacts. This body of work can be
categorized intomacro-level analyses of market risk andmicro-level
studies of firm behavior, offering a foundation for understanding
GPR’s role in tail risk escalation.

2.2.1 Uncertainty and market outcomes
Early research has established that policy uncertainty

significantly shapes financial markets by influencing asset pricing,
economic behavior, and investor strategies. Pástor and Veronesi [24]
demonstrate that policy uncertainty elevates required risk premia,
driving up expected returns. Building on this, Baker et al. [10]
deepen the analysis by linking uncertainty to greater stock market
volatility and economic downturns, highlighting how it amplifies
risk across financial systems. At the firm level, Gulen and Ion
[32] found that companies respond by scaling back investment,
a reaction that deepens economic slowdowns and further pressures
asset prices. Meanwhile, in derivative markets, Kelly et al. [33]
observed that investors, facing political upheavals, turn to options
for tail risk insurance, reflecting efforts to shield themselves from
uncertainty’s extreme outcomes. Though these studies primarily
address policy uncertainty rather than GPR specifically, they
underscore uncertainty’s pivotal role in shaping financial market
behavior during crises.

2.2.2 Global geopolitical risk research
The influence of GPR on financial markets has gained significant

attention in recent research, as global tensions increasingly shape
economic stability and investor behavior. A key development in
this field is the GPR Index, introduced by Caldara and Iacoviello
[2], which offers a precise tool to quantify geopolitical tensions and
supports deeper empirical analysis. Research shows that GPR has a
profound impact, often exceeding that of traditional economic risks.
For instance, Triki and Ben Maatoug [26] highlight how elevated
GPR triggers a flight-to-safety effect, driving investors away from
equities toward safe-haven assets like gold, which depresses stock
prices and heightens market instability. This effect is compounded
by findings from Balcilar et al. [34], who demonstrate that GPR
not only increases stock market volatility but also extends its
duration, adding a persistent layer of uncertainty that conventional
risk models struggle to capture. Demirer et al. [35] also emphasize

GPR’s broader role in shaping global stock market dynamics and
influencing asset pricing, pointing to its systemic importance
across markets. Together, these insights reveal that GPR is not
just a temporary disruption but a fundamental force that reshapes
financial ecosystems, with lasting effects on asset classes and market
behavior worldwide.

2.2.3 Evidence from China
In emerging markets like China, GPR interacts with local

dynamics to shape financial outcomes in complex ways. Research
shows that GPR significantly increases the downside tail risk of
Chinese equities, raising the likelihood of extreme losses during
periods of heightened tension [36]. This elevated risk environment
may explain the ‘low-exposure premium’ identified by Zhang
et al. [3], where firms with limited GPR exposure achieve higher
returns amid geopolitical stress. Additionally, Pan et al. [4] find that
GPR amplifies inter-sectoral volatility spillovers, highlighting the
nonlinear and interconnected nature of market responses. Together,
these studies underscore GPR’s multifaceted influence on Chinese
markets, offering critical insights for risk management.

2.2.4 Tail-risk measurement
Traditional systemic risk metrics, such as CoVaR [5] and

the spillover index [37, 38], typically focus on mean-variance
relationships, overlooking tail dependencies. Recent studies leverage
quantile-based methods to address this gap. Zhao et al. [31]
show that inter-market contagion varies significantly between
normal and extreme conditions, validating the use of quantile
approaches for extreme risk analysis. Compared to standard vector
autoregression, the QVAR-based framework excels at capturing
asymmetric and dynamic tail transmissions, particularly during
large-scale disruptions [18, 19]. These developments enhance our
understanding of GPR’s impact on extreme financial outcomes [13].

In summary, the literature confirms that GPR exacerbates
tail risk by amplifying uncertainty, curbing risk tolerance, and
intensifying contagion effects. Yet, a comprehensive quantile-based
exploration of China’s equity market remains scarce, particularly
regarding variations in extreme risk transmission. While CoVaR
and mean-variance frameworks provide value, they fall short
in elucidating the specific mechanisms of tail events triggered
by geopolitical shocks. Addressing this gap, our study employs
a QQ connectedness approach to precisely delineate how GPR
influences the tail-risk distribution of Chinese stocks, enriching
theoretical insights and offering practical guidance for mitigating
downside risks.

3 Methodology and data

3.1 Methodology

Building upon the quantile connectedness framework by
Chatziantoniou et al. [39] and extending the quantile-on-quantile
advancement introduced by Gabauer and Stenfors [13], this study
employs a QQ connectedness approach to investigate the dynamic
interplay between GPR and the tail risks of 18 industries in China’s
stock market. Such a model is particularly well-suited for capturing
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TABLE 1 Summary statistics.

Risks Mean Variance Skewness Ex.Kurtosis JB ERS Q (20) Q2 (20)

GPR 4.567 0.06 1.277 3.245 119.371
∗∗∗

−3.310
∗∗∗

177.322
∗∗∗

171.473
∗∗∗

AFAHF 0.312 0.003 −0.060 −1.138 9.167
∗∗∗

−1.375 662.695
∗∗∗

643.407
∗∗∗

MIN 0.401 0.005 −0.546 −0.758 12.382
∗∗∗

−1.345 783.940
∗∗∗

745.486
∗∗∗

MFG 0.361 0.001 −0.373 −0.460 5.385
∗

−2.197
∗∗

577.546
∗∗∗

577.802
∗∗∗

EHGW 0.364 0.003 −0.575 −0.012 9.247
∗∗∗

−0.884 787.932
∗∗∗

761.179
∗∗∗

CON 0.387 0.003 −0.596 −0.521 11.859
∗∗∗

−2.146
∗∗

498.655
∗∗∗

482.672
∗∗∗

WRT 0.356 0.002 −0.408 −0.587 7.079
∗∗

−2.044
∗∗

648.066
∗∗∗

657.844
∗∗∗

TSPS 0.397 0.003 −0.370 −0.782 8.122
∗∗

−1.478 848.859
∗∗∗

855.853
∗∗∗

A&C 0.377 0.004 −0.033 −1.247 10.911
∗∗∗

−2.209
∗∗

722.205
∗∗∗

721.914
∗∗∗

ITSI 0.326 0.002 −0.228 −0.803 5.980
∗∗

−2.104
∗∗

613.204
∗∗∗

630.915
∗∗∗

FIN 0.408 0.001 −0.467 −0.185 6.349
∗∗

−1.497 302.118
∗∗∗

295.460
∗∗∗

RE 0.385 0.002 −0.840 0.107 19.844
∗∗∗

−2.158
∗∗

652.161
∗∗∗

618.874
∗∗∗

LBS 0.343 0.002 −0.132 −0.555 2.639 −3.029
∗∗∗

280.138
∗∗∗

291.049
∗∗∗

SRTS 0.293 0.001 −0.116 −0.004 0.374 −3.603
∗∗∗

89.062
∗∗∗

91.488
∗∗∗

WEPFM 0.324 0.002 −0.360 0.090 3.694 −1.735
∗

489.351
∗∗∗

519.898
∗∗∗

EDU 0.314 0.004 0.663 −0.064 12.336
∗∗∗

−0.594 559.048
∗∗∗

543.886
∗∗∗

HSW 0.338 0.002 −0.253 −0.204 2.079 −2.866
∗∗∗

221.898
∗∗∗

221.571
∗∗∗

CSE 0.320 0.003 −0.208 −0.513 3.053 −2.460
∗∗

394.130
∗∗∗

414.666
∗∗∗

COM 0.379 0.003 −0.420 −0.648 7.882
∗∗

−2.431
∗∗

417.847
∗∗∗

412.428
∗∗∗

Notes: *, **, and *** represent significance levels of 10%, 5%, and 1%, respectively.

quantile-specific interdependencies and nonlinear spillovers among
GPR and industrial tail risks across different market conditions.

We consider a k-dimensional vector xt of endogenous variables
that includes the GPR index and tail risk measures for 18 industry
sectors in the Chinese stock market (hence k = 19). At a given
quantile level τ in [0,1], the QVAR(p) model can be written as
Equation 1:

xt = μ(τ) +
p

∑
j=1

Bj(τ)xt−j + ut(τ) (1)

where p is the lag order of the VAR, μ(τ) is a k× 1 vector of quantile-
specific intercepts (conditional means), Bj(τ) are k× k coefficient
matrices at lag j, and ut(τ) is a k× 1 vector of residuals at quantile
τ. In our setup, all components of xt (GPR and the 18 industrial
tail risk variables) are treated as endogenous. The QVAR framework
thus enables modeling of the dynamic interactions between GPR
and industrial tail risks at the τ-th quantile of their joint distribution.
Following the Wold decomposition theorem, the above QVAR can
be transformed into an equivalent quantile vector moving average
(QVMA) representation in Equation 2:

xt = μ(τ) +
p

∑
j=1

Bj(τ)xt−j + ut(τ) = μ(τ) +
∞

∑
i=0

Ai(τ)ut−1(τ) (2)

where Ai(τ) are k× k coefficient matrices in the moving-average
form. These Ai(τ) matrices describe how a unit shock at the
τ quantile propagates through the system over time. The Wold
expansion thus converts the QVAR into an (infinite-order) QVMA
form, which facilitates analysis of the dynamic effects of shocks
across different quantile conditions and forms the basis for
measuring spillover effects and connectedness among the variables.

Next, to quantify how shocks emanating from one variable affect
the forecast error variance of another, the present study applies
the generalized forecast error variance decomposition (GFEVD).
Specifically, for a forecast horizon of F periods, the fraction of the
forecast error variance in variable i attributable to shocks in variable
j at quantile τ is given by Equation 3:

ϕgi←j,τ(F) =
∑F‐1

f=0
(e′iA f(τ)H(τ)ej)

2

Hii(τ)∑
F‐1
f=0
(e′iA f(τ)H(τ)A f(τ)′ei)

(3)
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FIGURE 1
Time-varying of GPR and the eighteen industrial tail risks.

where ϕgi←j,τ(F) denotes the fraction of variable i’s F-period ahead
forecast error variance that is attributable to shocks in variable j (at
quantile level τ). HereH(τ) = Cov[ut(τ),] is the covariance matrix of
the shock vector ut(τ), with Hii(τ) being the variance of the shock
to variable i. ei and ej are k-dimensional selection unit vectors (with
a one in the i-th or j-th position and 0 elsewhere) that pick out the
respective elements.The use of a generalized FEVD [40] ensures that
the variance decomposition is invariant to the ordering of variables
in the system.

Based on the above variance decomposition, we proceed to
construct the pairwise and system-wide connectedness measures.
We first normalize the GFEVD contributions to obtain a relative
influence of each shock. The normalized (or “scaled”) variance
share of shocks from j in explaining the variance of i is
defined in Equation 4:

gSOTi←j,τ(F) =
ϕgi←j,τ(F)

∑k
j=1

ϕgi←j,τ(F)
(4)

which represents the proportion of i’s forecast error variance (at
horizon F and quantile τ) contributed by shocks originating from
variable j. By construction, we have ∑kj=1gSOTi←j,τ(F) = 1 for each i,
meaning the contributions of all k variables (including i itself) to the
variance of i sum up to 100%. Using these normalized contributions,
we then calculate the directional connectedness indices, which
characterize each variable’s influence on others and its vulnerability
to shocks from others.

The “TO” directional connectedness of variable i measures
the overall impact of shocks in i on all other variables. It is
computed as Equation 5:

Sgen,toi→·,τ =
k

∑
k=1,i≠j

gSOTk←i,τ (5)

which sums the normalized contributions of i’s shocks to the
variance of every other variable j (i ≠ j).

Conversely, the “FROM” directional connectedness of variable i
captures the total influence of shocks from all other variables on i’s
variance, as shown in Equation 6:

Sgen, fromi←·,τ =
k

∑
k=1,i≠j

gSOTk→i,τ (6)

which is the aggregated portion of the forecast error variance
explained by shocks from all other k− 1 variables. These two
metrics Sgen,toi→·,τ and Sgen, fromi←·,τ indicate, respectively, how much variable
i contributes to volatility in the system and how susceptible i is to
spillovers from the rest of the system.

Finally, we derive the Total Connectedness Index (TCI) to
gauge the overall interconnectedness of the system at quantile
level τ. The TCI is defined as the average of the off-diagonal
spillover contributions (with an adjustment factor to account for
self-contributions), given by Equation 7:

TCIτ(F) =
k

k− 1

k

∑
k=1

Sgen, fromi←·,τ ≡
k

k− 1

k

∑
k=1

Sgen,toi→·,τ (7)
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FIGURE 2
Correlation matrix between GPR and the eighteen industrial tail risks.

This adjusted TCI measures the proportion of the total forecast
error variance in the system that is due to cross-variable shocks (i.e.,
spillovers), as opposed to idiosyncratic (own) effects. A higher TCIτ
indicates a more strongly connected system at the τ quantile. By
evaluating the TCI at tail quantiles, we can capture how extreme
market conditions affect the overall spillover intensity.

For the empirical implementation, we calculate the above
connectedness measures within a rolling-window framework to
uncover their evolution over time. In practice, we re-estimate
the QVAR model on a moving sample window of fixed length,
and compute the GFEVD for a forecast horizon of F periods at
each window. The window size and the lag order p of the QVAR
are chosen using the Bayesian Information Criterion (BIC) to
ensure a balance between model fit and parsimony. This procedure
generates time-varying connectednessmeasures, encompassing TCI
and directional connectedness, that reveal how linkages between
GPR and Chinese industries’ tail risk evolve over time.

3.2 Data

3.2.1 Global geopolitical risk
The data comprises the GPR index and eighteen industry-

specific tail systemic risk indicators as the principal variables. The
GPR index, developed by Caldara and Iacoviello [2], measures
geopolitical tensions by surveying the frequency of newspaper
articles reporting disruptive geopolitical events, such as wars,
terrorist threats, and heightened military conflict, and weighting
them against the total number of news reports. Higher GPR values
imply higher degrees of geopolitical tension. The sample spans
2010–2023, a period marked by multiple significant geopolitical
disruptions.

3.2.2 Tail risk
To capture extreme downside linkages between each industry

and the market, the study constructs eighteen industry-level tail
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FIGURE 3
Average quantile-on-quantile connectedness between GPR and the tail risk of the dominant industries.

risk indicators. Specifically, for each of the 18 major industries in
China’s A-share market, the lower-tail dependence (λL) between
that industry’s returns and the broad market is estimated via the
Symmetrized Joe–Clayton (SJC) copula model [41]. This model
efficiently handles asymmetric dependence in the upper and lower
tails, focusing on downside co-movements for systemic risk analysis.
A higher λL implies an industry is more susceptible to market
crashes, reflecting heightened systemic vulnerability. Each λL series
is obtained using rolling windows of daily returns, permitting
time variation in tail dependence. The daily stock price data are
sourced fromWind and CSMAR databases, with the Shanghai Stock
Exchange Composite Index serving as the market proxy. Each tail
risk indicator lies between 0 and 1, where larger values signal greater
systemic risk in the left tail.

3.2.3 Summary statistics
Table 1 presents key descriptive statistics for the GPR index

and the 18 industrial tail risk measures from 2010 to 2023,
including means, variances, skewness, kurtosis, the Jarque–Bera
(JB) normality test, and the Elliott–Rothenberg–Stock (ERS) test
for unit roots. On average, the GPR index stands at 4.567 with a
variance of 0.060, reflecting substantial volatility relative to the tail
risk variables, whose variances range from 0.001 to 0.005. Mean tail
risk coefficients typically lie between 0.293 and 0.408, suggesting that

roughly 30%–40% of an industry’s downside losses coincide with
market downturns.

Statistical tests confirm that the GPR distribution is highly non-
normal, with a right skew of 1.277 and kurtosis of 3.245. By contrast,
the tail risk indicators generally exhibit mild negative skewness
and somewhat lower kurtosis, often indicating flatter distributions
compared to the normal benchmark. Moreover, Jarque–Bera tests
overwhelmingly reject normality for both GPR and most tail risk
series. ERS unit root tests suggest that GPR and a majority of the
industrial tail risk measures are stationary, allowing the study to
proceed without marked concerns over non-stationarity.

3.2.4 Temporal patterns in GPR and industrial tail
risk

Figure 1 plots the normalized time series of GPR alongside the
eighteen industrial tail risks. Notably, in mid-2015, a significant
domestic equity market crash in China drove sharp spikes in
industry-wide tail risk, but GPR remained relatively subdued,
implying a primarily domestic rather than geopolitical event. In early
2020, the COVID-19 pandemic triggered a generalized increase in
tail risk and a moderate uptick in GPR. The Russia–Ukraine conflict
in early 2022 propelled GPR to its highest level, again elevating
industrial tail risk. These episodes demonstrate that geopolitical
shocks typically coincide with concurrent increases in GPR and
tail risk. In contrast, episodes driven by internal market factors
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FIGURE 4
Average quantile-on-quantile connectedness between GPR and the tail risk of the basic support industries.

exert a stronger effect on tail risks without substantially altering
geopolitical risk.

3.2.5 Pearson correlation
Figure 2 presents a Pearson correlation heatmap for GPR and

the tail risks. Correlations among the tail risks are predominantly
high and positive, approaching 1, suggesting a common driver
of systemic risk across sectors. By contrast, correlations between
the GPR index and each tail risk remain low, mostly near zero
or mildly positive, signifying a minimal linear relationship. This
low correlation underscores the necessity of employing the QQ
connectedness approach to detect non-linear and asymmetric
linkages, especially under severe market or geopolitical conditions.

4 Empirical analysis

This section presents the empirical findings on the
interconnectedness between GPR and the tail risk of 18 industries
within the Chinese stock market across various quantiles. First,
we examine the Quantile-on-Quantile Total Connectedness (TCI)
to evaluate the connectedness of GPR and tail risk across all
industries under different quantiles. Second, we employ the Net
Quantile-on-Quantile Total Directional Connectedness (NET) to
identify whether each industry acts as a net risk sender or receiver.

Third, we focus on the Dynamic Correlation Total Connectedness
(DYNAMIC) to highlight how these interdependencies evolve
in response to major geopolitical events. Robustness checks are
discussed at the end.

In this study, the 18 industries are categorized into three distinct
groups to reveal the paths of risk transmission and potential
tail interlinkages under geopolitical shocks. This classification is
based on each industry’s functional positioning, upstream and
downstream linkages, and overall contribution to the economy,
aligning with official standards such as the Guidelines for
Industry Classification of Listed Companies (2012 Revision)
issued by the China Securities Regulatory Commission and
the three-sector classification framework in GB/T 4754-2017
by the National Bureau of Statistics. Specifically, the dominant
industries encompass Manufacturing (MFG), Mining (MIN),
Comprehensive (COM), Information Transmission, Software, and
Information Technology Services (ITSI), and Scientific Research
and Technical Services (SRTS). The basic support industries
include Agriculture, Forestry, Animal Husbandry, and Fishery
(AFAHF), Culture, Sports, and Entertainment (CSE), Finance (FIN),
Transportation, Storage, and Postal Services (TSPS), Leasing and
Business Services (LBS), and Real Estate (RE). Modern service
industries comprise Electricity, Heat, Gas, and Water Production
and Supply (EHGW), Construction (CON), Wholesale and Retail
Trade (WRT), Accommodation and Catering (A&C), Water
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FIGURE 5
Average quantile-on-quantile connectedness between GPR and the tail risk of the modern service industries.

Conservancy, Environment, and Public Facilities Management
(WEPFM), Education (EDU), and Health and Social Work (HSW).
This structured classification not only clarifies how different
industries interact within the economy but also strengthens the
analysis of how geopolitical shocks propagate through these
interconnected sectors.

We use a QQ connectedness model with a 24-month rolling
window, a lag length of one based on the Bayesian Information
Criterion, and 20-step-ahead forecasts. In each heat map, the
left and right vertical axes represent quantile distribution levels,
while the color bar shows total or net spillover intensity.
Warmer shades signal stronger connectedness among variables.

By examining diverse quantiles, we detect asymmetric spillover
effects. Concurrently, time-series plots position time on the
horizontal axis, unveiling the temporal evolution of spillovers
and distinguishing behaviors in both positive and negative
tail risks.

4.1 Quantile-on-quantile total
connectedness analysis (TCI)

The TCI measures the connectedness between GPR and
the tail risk of 18 industries in the Chinese stock market
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FIGURE 6
Net quantile-on-quantile connectedness between GPR and the tail risk of the dominant industries.

under varying quantile conditions. By examining TCI at multiple
quantile levels, we gain deeper insights into how geopolitical
risk shapes extreme market outcomes under both mild and
acute stress scenarios. Specifically, we focus on the extreme
quantiles (τ = 5% and τ = 95%) to capture the upper and lower
bounds where geopolitical shocks may induce pronounced tail
interdependencies.

Within the dominant industries group (MFG,MIN, COM, ITSI,
and SRTS), as depicted in Figure 3, we observe notably elevated TCI
values at extreme quantiles. MFG exhibits TCI values of 87.9 and
78.9 at τ = 5% and τ = 95%, respectively, surpassing other industries
due to its profound integration with global supply chains. Once
geopolitical factors exert negative impacts on international trade
via tariffs or export embargoes, manufacturing typically experiences
amplified tail volatility. MIN follows a comparable pattern, with
TCI values of 83 and 77.9 under extreme conditions, aligning
with the notion that mineral and energy resources are strategically
sensitive to global political turmoil. Meanwhile, COM sometimes
surpasses MFG at specific extreme quantiles, such as 90.2 and
83.3, reflecting the diversified business structure that allows risks
to accumulate across multiple segments. ITSI and SRTS exhibit
TCI values ranging from 82.8 to 85.3, reflecting their vulnerability
to intensified global IT competition, external blockades, or policy
frictions in critical research areas, thereby heightening their tail
risk exposure. These findings suggest that highly globalized or

resource-dependent industries may benefit from tailored stress-
testing mechanisms to counter trade barriers and sanctions
[18]. Moreover, preempting conflicts by enhancing supply chain
diversification or reducing leverage risk emerges as a prudent
strategy [20].

For the basic support industries group (AFAHF,CSE, FIN, TSPS,
LBS, and RE), as shown in Figure 4, TCI values remain moderately
elevated, typically spanning 75–85 at extreme quantiles. Notably,
AFAHF can reach 85–85.4 at τ = 5% and τ = 95%, underscoring
pronounced tail linkages when agricultural products and trade
policies serve as geopolitical bargaining chips. Similarly, CSE reaches
86.9 and 81.7 in tail scenarios, indicating that policy frictions or
ideological clashes can abruptly impair cultural exports, intellectual
property transactions, and cross-border activities. FIN sustains TCI
values of 80.6 and 77.5, a relatively tempered range, yet demonstrates
capacity for rapid risk repricing via global capital flows. TSPS
occasionally ascends to 86.6 and 77.4, mirroring vulnerabilities
in international shipping routes and sentiment-driven freight rate
volatility. LBS and RE exhibit analogous fluctuations, hovering
between 83 and 88, stemming from their dependence on foreign
investment, cross-border mergers, and financing channels, which
can shift dramatically amid escalating geopolitical tensions. These
observations imply that finance, logistics, and real estate sectorsmay
propagate geopolitical turbulence into broader market volatility.
Regulators might thus prioritize monitoring cross-border capital
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FIGURE 7
Net quantile-on-quantile connectedness between GPR and the tail risk of the basic support industries.

flows and high foreign-investment projects, implementing dynamic
margin or liquidity measures during rapid GPR escalations to curb
shock amplification [19].

Lastly, the modern service industries group (EHGW, CON,
WRT, A&C, WEPFM, EDU, and HSW) generally manifests lower
TCI levels relative to other groups. As illustrated in Figure 5, EHGW
attains 86.7 and 79.7 at τ = 5% and τ = 95%, evidencing downstream
ripple effects from international energy constraints. CON records
TCI values of 84.3 and 76.1 under extreme conditions, partly
influenced by domestic policy cycles and geopolitical uncertainties
in overseas infrastructure ventures. WRT achieves 85.1 and 79.3 at
extreme quantiles, propelled by abrupt supply chain disruptions and
consumer sentiment shifts during exceptional events. Conversely,
A&C, WEPFM, EDU, and HSW typically register TCI values below
75 at median quantiles, suggesting reduced sensitivity to cross-
border shocks. Although less reactive to external perturbations,
these industries can still amplify market volatility under extreme
conditions via demand and cost channels. To mitigate potential tail
risk transmission, regulators could bolster resilience through tax
incentives, liquidity support, or digital transformation initiatives,
while ensuring coordination with traditional sectors to prevent
localized constraints from escalating into systemic spillovers [23].

In summary, we identify a distinctive “U-shaped” quantile
dependence, with the left (τ = 5%) and right (τ = 95%) tails
exhibiting peak sensitivity to GPR, while median quantiles remain

comparatively stable. Additionally, a slight asymmetry arises when
some industries exhibit a more pronounced jump in the left tail than
in the right tail. Consequently, relying solely on average or median
metrics risks underestimating extreme risk vulnerability [21].
Geopolitical risk exerts a significant amplifying effect under extreme
market conditions, with the degree of impact contingent on each
industry’s level of internationalization, resource dependency, and
supply chain geopolitical exposure.

4.2 Net quantile-on-quantile total
directional connectedness analysis (NET)

To elucidate the direction of risk flow between GPR and the
tail risks of 18 industries, we employ net quantile-on-quantile total
directional connectedness (NET), where NET>0 denotes a net “risk
sender” and NET<0 denotes a net “risk receiver.” Empirically, the
largest NET values often appear when one variable is at an extreme
quantile (5% or 95%) and the other is at a median quantile (around
50%), or vice versa.

In the dominant industries group, as illustrated in Figure 6,
MFG can achieve a net value as low as −35.7, whereas MIN
can drop to −36.2. When global political tensions escalate,
MFG and MIN face immediate exposure to sanctions, raw
material supply disruptions, and energy disputes, rendering them
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FIGURE 8
Net quantile-on-quantile connectedness between GPR and the tail risk of the modern service industries.

predominantly net risk receivers due to challenges in reallocating
or transferring such shocks. Most industries in this group exhibit
markedly negative NET values, indicating a strong tendency
to absorb risks. For instance, COM consistently displays values
around −26, reflecting the inherent challenges of mitigating
geopolitical shocks across its multifaceted operations. ITSI and
SRTS record NET values around −27.7 and −29.1, respectively,
illustrating asymmetric global competition in intellectual property,
technology exports, and advanced equipment, which constrains
their ability to offload these shocks. Industries with persistent
negative NET values are vulnerable to geopolitical and supply

chain shocks, warranting proactive regulatory measures—such
as intensified foreign investment scrutiny or strategic resource
reserves in resource-reliant sectors [22]. In IT and R&D industries,
governmental support for research and innovation could reduce
external dependency and enhance resilience.

In the basic support industries group, as shown in Figure 7,
NET values generally range between −15 and −25, although
positive values do appear in certain quantiles. AFAHF, for example,
reaches −22.2 at midrange quantiles, showing its vulnerability when
agricultural products become bargaining chips in trade disputes.
CSE exhibits a pronounced negative value of −25.9, driven in part by
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FIGURE 9
Dynamic quantile-on-quantile connectedness between GPR and the tail risk of the dominant industries.

stalled cross-border cultural exchanges and entertainment exports
during periods of geopolitical tension. Conversely, FIN occasionally
yields positive NET values, such as +22.6, reflecting the leverage and
risk transfer mechanisms embedded within financial markets—e.g.,
heightened speculation or credit contraction can rapidly channel
external risks to the broader market. TSPS, LBS, and RE mostly
range from −15 to −24, as they passively absorb logistic bottlenecks
or capital flow constraints; however, policy support and partial
buffers can mitigate some of the tail effects in RE. These findings
imply that sectors like finance may not only receive but also send
risks under certain stress conditions, emphasizing the need for
vigilant cross-industry regulation of leverage cycles [42]. At the
same time, strengthening transparency in financial reporting helps
prevent systemic spillovers from escalating [43].

Within the modern service industries group, as indicated in
Figure 8, NET values are generally smaller in absolute magnitude,
around −15 or above, indicating comparatively weaker ties to
immediate geopolitical shocks and suggesting that these sectors
primarily encounter risk through second-round demand or policy
effects. EHGW can reach −26.2 in certain extreme scenarios,
but typically remains between −10 and −20, reflecting its passive
absorption of higher input costs when global energy prices
surge. CON and WRT similarly fluctuate between −15 and −25.

Interestingly, A&C sporadically exhibits positive NET values,
e.g., 15.5, indicating that sudden contractions in consumer
demand can propagate upward along supply chains, effectively
making A&C a net sender under specific conditions. Meanwhile,
WEPFM, EDU, and HSW remain within ±15, underscoring the
domestically oriented, public-service nature of these sectors.
This implies that certain modern service industries not only
absorb risks but may also transmit shocks upstream. Regulators
should focus on these sectors’ financing structures and exposures,
using flexible contingency plans to mitigate demand-side shocks
[21, 23].

NET analysis reveals that most industries—especially those
with extensive global exposure, technological barriers, or resource
demands—tend to act as net receivers under geopolitical stress.
However, sectors like FIN and select consumer industries may
becomenet senders in specific contexts, amplifyingmarket volatility.
This pattern intensifies when GPR hits extreme highs or lows
while industry risks remain moderate, introducing abrupt external
shocks that demand heightened firm- and investor-level attention.
Policymakers might thus consider real-time stress tests for globally
exposed sectors and targeted capital constraints in financial
intermediaries to curb net risk transmission and fortify stability
[21, 23].
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FIGURE 10
Dynamic quantile-on-quantile connectedness between GPR and the tail risk of the basic support industries.

4.3 Dynamic correlation total
connectedness analysis (DYNAMIC)

Dynamic Correlation Total Connectedness (DYNAMIC)
analysis traces the temporal interplay between GPR and industrial
tail risks, spotlighting how major geopolitical events reshape risk
network structures and offering deeper insights into connectedness
drivers. We present three dynamic connectedness metrics—reverse
TCI, direct TCI, and their adjusted difference—alongside their
time-varying trajectories.

The dominant industry group exhibits the most striking
dynamic connectedness fluctuations, peaking during pivotal
geopolitical events. As shown in Figure 9, since the 2018 China–U.S.
trade war’s onset, MFG has sustained elevated connectedness,
surging further during the 2020 COVID-19 outbreak and the
2022 Russia–Ukraine conflict. This aligns with pronounced peaks
from 2018 to 2020, followed by a sharp rise circa 2022, fueled
by intensified global supply chain strains and commodity price
volatility. MIN experiences similarly pronounced fluctuations from
2020 to 2022, coinciding with the Russia–Ukraine-triggered global
energy crisis and oil price shocks. COMreacts strongly to key events,
particularly during the 2020 pandemic and 2022 conflict escalation,
reflecting large diversified firms’ exposure to systemic disruptions.
Following the 2018 trade disputes and technical embargoes, ITSI has
maintained persistently elevated levels of volatility, peaking again

in 2020 and 2022, as technology increasingly takes center stage
in geopolitical contention. Similarly, SRTS mirrors ITSI’s trend,
with 2022s global tension spike amplifying tail risk connectedness,
driven by uncertainties in cross-border R&D and technology
export controls. These patterns mirror broader global transitions,
where manufacturing and technology have become focal points in
geopolitical competitions [18]. Consequently, Chinese policymakers
might benefit from reinforcing cooperative frameworks or setting
up cross-border risk-sharing arrangements to mitigate the impact
of supply chain disruptions.

Basic support industries exhibit moderate dynamic
connectedness, yet display significant peaks around major
geopolitical or macroeconomic disruptions. As shown in Figure 10,
AFAHF escalates sharply since 2018, peaking during the 2018–2019
China–U.S. agricultural disputes and 2022s Russia–Ukraine-
induced grain price surges. CSE spikes in 2018–2019 and 2022,
often tied to cross-border copyright tensions or cultural export
restrictions. FIN tracks global financial volatility, cresting during
the 2015 Chinese stock market turmoil, 2018 trade clashes,
2020 pandemic, and 2022 Russia–Ukraine conflict. TSPS shows
heightened connectedness in 2020 lockdowns and 2022 shipping
disruptions, while LBS and RE surge from 2020 to 2022, partly due
to external financial conditions and domestic policy shifts (e.g., real
estate regulations).These peaks suggest that basic support industries’
volatility could amplify systemic contagion under external shocks,
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FIGURE 11
Dynamic quantile-on-quantile connectedness between GPR and the tail risk of the modern service industries.

especially when global supply-demand and financing channels
tighten. Regulators might reinforce resilience via liquidity support
in agriculture, logistics, and utilities, alongside tighter oversight of
overseas-financed sectors to limit spillovers [19].

Though the modern service industries remain relatively stable
compared to other groups, they exhibit sharp, transient peaks.
As depicted in Figure 11, EHGW rises notably from 2021 to
2022, lagging upstream mining but reflecting cost shocks from
international energy prices. CON, sensitive to domestic real estate

cycles, peaks locally in 2022 amid geopolitical shifts and the strict
pandemic measures. WRT, A&C, WEPFM, EDU, and HSW spike
intensely yet briefly in early 2020 due to COVID-19, reverting to
lower volatility by 2021, highlighting reliance on domestic demand
and policy support over international factors. Despite milder
fluctuations, these sectors face disruptive shocks during global or
domestic crises, as seen in early 2020s acute peaks. Temporary
support measures—such as credit lines, tax breaks, and strategic
digital investments—can help offset short-term cost pressures and
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stabilize demand [23]. Coordination with other sectors is critical to
prevent localized disruptions from broadening into systemic risks.

In summary, we have three key findings: First, a “U-shaped”
quantile dependence prevails between GPR and Chinese stock
market tail risks, with TCI surging at τ = 5% and τ = 95% while mid-
quantiles stabilize, underscoring linear correlation’s inadequacy for
tail dynamics. Second, geopolitical shocks manifest asymmetrically,
concentrating impacts during high-risk or stressed periods:
globally integrated, resource-intensive sectors (MFG, MIN, ITSI)
predominantly receive risks, while FIN occasionally sends risks,
heightening market turbulence. Third, dynamic connectedness
peaks during seminal events—the 2018 China–U.S. trade war, 2020
COVID-19 crisis, and 2022 Russia–Ukraine conflict—marking
turning points in the GPR–industry risk network, with rising,
frequent spikes since 2018 signaling growing vulnerability to
geopolitical uncertainty.

4.4 Robustness tests

Inthisstudy,weperformedmultiplerobustnesstests tovalidateour
findings. First, we applied the spillovermeasurement approachwithin
the traditional generalized vector autoregression (VAR) framework
of Diebold and Yilmaz [38], affirming robust connectivity between
GPRand industrial tail risks (Supplementary Table A1). Replacing the
SJC-copula function with the Clayton copula function [44] preserved
stable connectedness (Supplementary Figures A1–A9). When we
substituted the US-centric geopolitical risk index with the Chinese
geopolitical risk index (GPRC_CHN), the results also remained
consistent (Supplementary Figures A10–A18). These methodological
variations reinforce the reliability and consistency of our conclusions
across diverse paradigms.

Second, we adjusted forecasting horizons (n_fore) and
rolling window sizes (window.size), as detailed in the appendix
(Supplementary Figures A19–A63). Horizons shifted from
20 months to 10 and 30 months, and window lengths varied
from 24 months to 12, 18, and 36 months, consistently upholding
the quantile-dependent connectedness of GPR and tail risk
across different time horizons. Meanwhile, quantile partitions
were also altered from (0.05, 0.25, 0.50, 0.75, 0.95) to (0.10,
0.30, 0.50, 0.70, 0.90), with heightened connectivity at extreme
quantiles remaining evident (Supplementary Figures A64–A72).
This sustained non-linear tail dependence further validates our
primary findings under alternative quantile configurations.

Finally, we analyzed the post-March 2020 period to gauge
the pandemic’s influence on QQ connectedness (Supplementary
Figures A73–A81). Early pandemic phases revealed intensified
extreme risk fluctuations, reflecting market actors’ heightened
sensitivity to geopolitical uncertainty amid global instability. As
recovery progressed, tail sensitivity persisted, particularly at higher
risk quantiles, confirming rapid risk escalation under uncertainty.
Collectively, these tests—spanning alternative methodologies
(e.g., copula functions, GVAR), GPR proxies (e.g., GPRC_
CHN), and varying horizons, windows, and quantiles—affirm the
robustness of our core conclusions.

5 Conclusions, policy implications,
limitations and future directions

5.1 Conclusion

The study employs the QQ connectedness approach to
investigate the intricate relationship between GPR and tail risk
across 18 industries of the Chinese stock market, yielding three key
findings. First, the mutual linkage between GPR and tail risk in
China demonstrates a pronounced U-shaped quantile dependence,
with connectedness intensifying sharply at the lower and upper
extremes (τ = 5% and τ = 95%) yet remaining relatively moderate
around the median. This underscores a strong nonlinear pattern
that traditional linear correlation models fail to capture. Second,
the net connectedness analysis reveals significant asymmetry in
risk transmission, particularly under extreme conditions marked by
heightened geopolitical tensions or market stress. In such scenarios,
industries like MFG, MIN, ITSI, and SRTS typically act as “risk
receivers,” while FIN may, under specific circumstances, emerge as a
“risk sender.” Finally, dynamic analysis identifies major geopolitical
events—such as the 2018 China-U.S. trade war, the 2020 COVID-19
pandemic, and the 2022 Russia-Ukraine conflict—as pivotal turning
points in the risk network.

5.2 Policy implications

Based on these empirical findings, the study proposes several
targeted policy implications. First, regulatory bodies should
establish a quantile-specific risk monitoring framework, paying
particular attention to market reactions at the 5% and 95% extremes
of geopolitical risk. Specifically, for dominant sectors—MFG,
MIN, ITSI, and SRTS—authorities should implement preventive
safeguards, for example, timely liquidity injections, before trade
tensions escalate. For basic support industries such as FIN, TSPS,
and RE, it is vital to monitor and mitigate potential spillover effects
in order to avoid amplifying risks during geopolitical conflicts.
Meanwhile, modern service industries warrant comparatively
moderate regulation to encourage their stabilizing role under
conditions of rising domestic demand. Second, investors should
leverage the NET analysis, which suggests steering clear of sectors
with heightened net risk reception, such as MFG and MIN,
during periods of intensifying geopolitical risk, while remaining
vigilant about possible risk spillovers from FIN under specific
scenarios. Portfolio construction should fully account for the time-
varying dynamics highlighted by the DYNAMIC analysis, especially
the generally strengthening connectedness between GPR and
various industries. Finally, government agencies should strengthen
international coordination and communication channels to reduce
information asymmetry and mitigate the detrimental impact of
geopolitical conflicts onmarket sentiment. Concurrently, deepening
multilateral initiatives—such as the Belt and Road—can broaden
access to global markets, thereby bolstering overall economic
resilience and enhancing the capacity to navigate geopolitical risks
effectively.
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5.3 Limitations and future research
directions

Despite the robust findings, this study has several limitations.
First, our analysis relies on monthly data, which may not
fully capture short-term market reactions to sudden geopolitical
events. Second, the SJC-copula approach, while effective for tail
dependence,may not account for all forms of nonlinear interactions.
Third, our focus on China limits the generalizability to other
emerging markets with different institutional structures. Future
research could address these limitations by: (1) incorporating
high-frequency data to capture immediate market responses; (2)
exploring alternative nonlinear methodologies such as wavelet
analysis or machine learning approaches to enhance model
flexibility; (3) extending the framework to compare multiple
emerging economies for cross-country validation; (4) integrating
investor sentiment indicators to disentangle behavioral factors from
fundamental reactions; and (5) developing forward-looking risk
measures that combine GPR with alternative data sources such as
social media sentiment or satellite imagery to improve predictive
capabilities in tail risk management.
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