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The CBM experiment at FAIR (GSI, Germany) is among the most significant
upcoming projects in heavy-ion physics. It is designed to investigate the
properties of dense baryonic matter under extreme conditions. A key feature
of the experiment is the high interaction rate, reaching up to 107 collisions per
second, resulting in the production of substantial volumes of experimental data
that must be processed and analyzed in real time. To meet this computational
challenge, the CBM experiment employs a high-performance tracking algorithm
based on the Cellular Automaton for track finding and the Kalman Filter
for track fitting. The algorithm is designed for efficient parallel execution
on modern multicore and GPU architectures. We evaluate the performance
and energy efficiency of the Kalman Filter-based fitting algorithm on both
CPUs and GPUs. The GPU implementation demonstrates up to a threefold
improvement in energy efficiency, resulting in a proportional reduction in power
consumption and associated CO2 emissions during data processing. These
results highlight the significance of energy-efficient computing in high-rate
heavy-ion experiments. The analysis provides a quantitative estimate of the
carbon footprint associated with track reconstruction and demonstrates how
hardware choices influence overall emissions in large-scale data processing
workflows.

KEYWORDS

Kalman filter, heavy-ion, CBM experiment, energy efficiency, carbon footprint, parallel
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1 Introduction

Heavy-ion physics central a pivotal role in advancing our understanding of the
fundamental properties of matter under extreme conditions. By studying collisions of heavy
ions at high energies, researchers probe the behavior of quark-gluon plasma, a state ofmatter
believed to have existed just moments after the Big Bang. These experiments help uncover
the forces and interactions between the most basic constituents of matter, providing insight
into the early evolution of the universe and guiding our understanding of phase transitions
in nuclear matter at unprecedented energy densities.

Experimental facilities, such as particle accelerators and complex detector systems,
provide unique opportunities to study the properties of elementary particles and
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their interactions at extreme energies, conditions that cannot be
replicated in low-energy laboratory environments.

Research on particle collisions began with relatively simple
tasks that could be handled manually, such as reconstructing
particle trajectories in bubble chambers. However, as knowledge and
understanding of the complex aspects ofmatter and interactions grew,
the need for more in-depth analysis and investigation of increasingly
intricate systems arose. As the volume of experimental data expanded
and the complexity of the questions to be addressed increased, the
demands on data processing and analysis methods grew significantly.

Modern research in heavy-ion physics is associated with the
need to process vast volumes of data generated from high-energy
nuclearcollisions.Thisrequiresnotonlyhigh-performancecomputing
systems but also advanced analysis methods and algorithms capable
of efficiently processing data and extracting meaningful information.
As the complexity of the tasks and the volume of data increase, the
demands for speed and quality of computational processing become
critically important for the successful execution of research and the
achievement of new scientific discoveries.

The results of modern experiments in heavy-ion physics can no
longer be efficiently processed on individual computers and require
the resources of large computational centers.Data analysis necessitates
dozens or evenhundreds of high-performance processors (CPUs) and
graphics accelerators (GPUs), integrated into computing clusters and
equippedwithpowerfulcoolingsystems.Thesecomputationalsystems
are major consumers of electrical energy.

On the other hand, the issue of global warming presents the
scientific community and industry with the significant challenge
of conserving energy and reducing greenhouse gas emissions. The
growing energy demands associated with large-scale computing
systems are in conflict with the need to reduce the carbon footprint.
In the context of global efforts to minimize climate impact, it
is essential to explore and implement innovative approaches to
improving the energy efficiency of computational infrastructures. In
addition, attentionmust be paid to the efficient use of computational
resources, both in terms of task distribution and optimization of the
programs and algorithms themselves.

One of the key experiments in heavy-ion physics is the CBM
(Compressed Baryonic Matter) [1] experiment, planned to take
place at the FAIR accelerator (Facility for Antiproton and Ion
Research). Its primary objective is to study the properties of strongly
interacting matter at high net-baryon densities, aiming to explore
the QCD phase diagram and the possible existence of a first-order
phase transition and a critical point.

New experiments at FAIR are being developed with the latest
trends in energy efficiency in mind. As part of this initiative, the
Green IT Cube [2], an innovative computing infrastructure, was
built specifically to minimize energy consumption and reduce the
carbon footprint. Furthermore, the Goethe HLR (now upgraded
to Goethe NHR) [3], a high-performance computing cluster, is
available to support research projects. In the latest Green500 ranking
from June 2024 [4], Goethe NHR holds the 17th position globally in
terms of energy efficiency.

This work is dedicated to the study of the energy efficiency
of an algorithm that plays a crucial role in particle collision
reconstruction, the Kalman filter-based trajectory fitting algorithm
[5]. It is interesting to note that this optimized algorithmhas reduced
the runtime of the original scalar algorithm by a significant factor

of 120.000. Currently, this algorithm is actively used in large-scale
heavy-ion physics experiments, such as ALICE at CERN and STAR
at BNL, as well as in the track searching and analysis procedures of
the future CBM experiment. The high efficiency of the algorithm
for track fitting has previously been studied in Kisel and for CBM
Collaboration [6], also investigating the scaling of the number of
tracks fitted per time for different computing architectures.

2 Research

2.1 Algorithm

Charged particle trajectories reconstruction is one of the most
important and complex stages of experimental data processing in
heavy-ion physics. The reconstruction result is a set of measurements
(hits) that form a curve line that corresponds to the track. At the same
time, the physical analysis is based not on a set of hits, but on the
trajectory parameters within the accepted track model (Figure 1a).

The process of parameterizing the particle’s trajectory over a
set of discrete measurements is called fitting. Depending on the
specific task and the track model used, various algorithms can carry
fitting from the simplest (approximation by a line, parabola, circle)
to complex multistage algorithms, such as the Kalman Filter (KF).
At present, KF is the most popular and frequently used recursive
algorithm for estimating track parameters whichmakes it possible to
efficiently calculate the track state vector even in the case of a small
number of erroneously attached hits, as well as to make a decision
about the correctness of finding the tracks as a whole.

The basic element of the algorithm is the state vector, which
includes the track parameters determined by the selected track
model. The covariance matrix corresponds to uncertainties and
correlations related to the state vector.

After initialization of the parameters and elements of the
covariance matrix, the further operation of the algorithm consists
of subsequent extrapolation and filtering of the state vector. The
extrapolation process is the transport of the state vector to the point
of the next measurement, i.e., to the next detector station. Filtering
or updating allows us to correct the state vector taking into account
the added measurement and recalculate the covariance matrix,
considering the predicted and real parameters of the trajectory at
the current point (Figure 1b).

The KF track fitter under consideration makes it possible to fit
three-dimensional tracks, taking into account additional physical
effects that determine the trajectory of a charged particle, such
as multiple scattering and a magnetic field. Thus, the algorithm
allows one to parameterize a smooth line, which corresponds to the
measured particle trajectory.

The KF offers a wide range of possibilities for the parallelization
of computations, both on the data level and on the task level.
The set of operations performed is the same for each track, but
does not depend on third-party cross conditions or the results of
processing other tracks. Computing scalability is limited only by the
capabilities of the hardware.

One of the key requirements of the CBM experiment is the real-
time data processing. This step is essential due to the vast volumes
of raw data, which cannot be stored, and the filtering of interesting
events requires their full reconstruction. The expected heavy-ion
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FIGURE 1
Illustration of the concept of track fitting (a) and an example of a straight track fitting (b). (a) Illustration of the concept of track fitting in a detector with
forward geometry. (b) An example of a sequential workflow for fitting a simple straight [7].

collision rate reaches 10 MHz, with preliminary estimates indicating
up to 1,000 particles per event [8]. Therefore, to successfully carry
out the experiment, the speed of the algorithms and the available
computational power must be sufficient to reconstruct and fit up to
1010 particle trajectories per second.

Kalman Filter plays an important role in the process of track
reconstruction and parameterization. Therefore, the speed of the fit
has a significant impact on the overall event processing time, while
its energy efficiency directly affects the overall energy consumption
of the computations.

2.2 Setup and input data

The SIMD KF Track Fitter package was developed as a
benchmark for evaluating the speed of the upgraded KF when
using various computing equipment.While the standardKF requires
double-precision calculations, the optimized algorithm [9] shows
stable and correct results when working in the single-precision
mode. This allows us to take full advantage of the built-in SIMD
capabilities of modern CPUs. At the same time, the mutual
independence of individual tasks provides almost unlimited scaling
of calculations, effectively using the maximum available CPU or
GPU threads.

SIMD intrinsics utilization is provided by using special header
files or theVector classes (Vc) [10] package.Any of the options allows
one to quickly switch between different versions of instructions and
perform calculations on registers of any length available on the
device. Parallelization on the CPU is organized using the OpenMP
API and Pthread to provide CPU affinity. Finally, GPU computing is
done by using the OpenCL framework.

The test configuration corresponds to the STS detector [8] of the
CBM experiment. The setup includes 7 planes of detecting stations
installed one after another to operate in the fixed target mode. The
test data is a set of individual tracks selected from central Au+Au
collisions simulated with CbmRoot at the energy of 25 GeV per
nucleon. A suitable track must be reconstructable and have one hit
on each of the detecting stations.

The benchmark evaluates only the time of calculations related
directly to the track fitting procedure. Time and overhead costs in

preparing input data and saving results are not taken into account.
Measuring the speed of computing on the CPU using OpenMP
is carried out using the standard ROOT class TStopwatch, which
makes it possible to get the difference in time between the start and
end of calculations. The total execution time of the task is measured,
which corresponds to the completion of the slowest thread. It is
worth noting that the test data is prepared in such a way that each
thread receives a full and equal load. When computing on the GPU,
the OpenCL framework profiling methods are used, which allow us
to get the start and end times of kernel calculations.

2.3 Computational resources

The study was conducted on the hybrid computing cluster
Goethe NHR at Goethe University in Frankfurt, which is involved
in the preparation work for the CBM experiment. Goethe NHR
boasts a very good data center energy efficiency ratio, with
a Power Usage Effectiveness (PUE, the ratio of total energy
consumption to the energy consumption of the computational
resources) of 1.076 at the time of the research, compared to
traditional values for similarly sized data centers, which are typically
around ∼1.56 [11]. Later, Goethe-NHR computing equipment
was transferred to the GSI Green IT Cube with even higher
energy efficiency PUE<1.07. Additionally, when calculating energy
efficiency, the carbon intensity factor CI was considered, which for
Germany is approximately 380 gCO2/kWh according to data from
Statista.com [12].

As part of the study, benchmarking was performed on both
CPUs and GPUs. The CPU benchmarks were conducted on paired
AMD EPYC 7742 processors, built on the Zen 2 architecture, each
with 64 cores (128 threads) and a TDP (Thermal Design Power) of
approximately 3.52 W per core. The GPU benchmarks were run on
AMD MI210 graphics accelerators, which have a TDP of 300 W.

2.4 Methodology

As the foundation for our study, we selected the methodology
for assessing the carbon footprint and energy efficiency of
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computational tasks presented in the article Green Algorithms:
Quantifying the Carbon Emissions of Computation [13]. This
methodology enables the calculation of the carbon footprint
of computational operations based on parameters such as task
execution time, the number of computational cores used (CPU or
GPU), the amount of memory involved, and the energy efficiency of
the data center where the computations are performed. The method
offers a simple and universal approach to estimating the carbon
emissions caused by computations, making it applicable to a wide
range of tasks and hardware architectures.

For the calculation of energy consumption, the following
formula is used:

E = t× (nc × Pc × uc + nm × Pm) × PUE× 0.001 (1)

where:

• E — energy consumption (kWh),
• t — task execution time (hours),
• nc — number of computational cores,
• Pc — power consumed by one computational core (W),
• uc — core utilization factor (from 0 to 1),
• nm — amount of memory used (GB),
• Pm — power consumed by 1 gigabyte of memory (W),
• PUE — Power Usage Effectiveness of the data center.

After calculating the energy consumption, the carbon footprint
of the task is determined. For this, the carbon intensity factor
CI, which depends on the location and the methods of energy
production, is used. The total carbon footprint C (in grams of
CO2-equivalent) is calculated using the following formula:

C = E×CI (2)

This methodology has several strengths. First, it is universal and
applicable to many types of computations, from local servers to
cloud solutions, making it useful for a wide range of users. Second,
it accounts for important parameters, such as the energy efficiency
of data centers and the carbon intensity of energy sources, allowing
accurate and context-specific calculations.

When using this method for energy efficiency analysis, it
is important to keep in mind certain assumptions. Energy
consumption during CPU computations is calculated as the product
of the number of cores used and the TDP of each core, in other
words, Pc from Equation 1 is taken as TDPcore = TDP/Ncores. This
approach does not account for modern processor technologies that
optimize core performance based on overall device load, which can
lead to a slight underestimation of energy consumption when many
cores are idle. Additionally, hyper-threading is not considered, and
its energy impact can vary significantly depending on the task. On
the other hand, if we assume that the processor is already using all
available cores and has reached its maximum TDP, adding virtual
threads should not affect energy consumption.

As for GPUs, the method assumes that the full TDP is used in
the calculations, regardless of the device’s actual load. Consequently,
the total energy consumption may be overestimated, except in cases
where the GPU is operating under maximum load.

In Figure 2, the graphs illustrate the dependence of energy
consumption on the utilization levels of both the AMD EPYC 7742
CPU and AMD MI210 GPU, used in this study. To evaluate the

CPU power consumption characteristics (Figure 2a), we used both
a theoretical estimate based on the number of cores (blue) used and
real-world power consumption measurements (red) taken using a
1-phase power analyzer ZES Zimmer LMG95, which collects server
power consumption information in real time.The results considered
were obtained as the difference between the power consumption
under load and the power consumption in idle mode.

The actual power consumption of the CPU increases non-
linearly with higher workloads. The observed behavior is largely
determined by the specific characteristics of the processor and the
server configuration. In the hardware setup under consideration,
the power consumption curve for each CPU exhibits a distinctly
convex structure, with a noticeable decline in the incremental
power increase after utilizing half of the available cores (Figure 2).
At the same time, performance gains remain at a high level,
as shown in Figure 3a.

Since the measurements are conducted with CPU affinity
enabled, the observed power consumption is not influenced by the
use of virtual threads but is instead a characteristic of the CPU itself.
Themaximumpower consumption of each processor does not reach
the specified TDP value. Furthermore, it is worth mentioning that
power consumption under low workloads is approximately 50 W
higher than expected.This discrepancy is likely attributable to server
settings that configure the CPUs and cooling system to maintain
minimal energy usage during idle states.

GPU energy consumption was monitored directly during
algorithm execution using the rocm-smi utility, part of the AMD
ROCm software platform. The graph shown in Figure 2b illustrates
the dependence of GPU energy consumption during computations
on the selected local item size, which corresponds to the device’s
load level. Even when using only one thread per block on the
GPU, the device’s power consumption approaches almost half of its
full TDP, amounting to 136 W. Idle unused threads still consume
energy despite the absence of actual computations. Peak power
consumption is reached at an incomplete but sufficiently high level
of device utilization and eventually plateaus.

The authors of Green Algorithm offer an energy efficiency
assessment of algorithms through either a dedicated website or a
console application, which runs on a server and directly interacts
with the task scheduler. This approach is primarily aimed at
analyzing large-scale tasks with execution times measured in hours.
In contrast, the KF Track Fitter is an ultra-fast algorithm, where
its speed is defined not by the execution time of a single task,
but by the number of tasks completed per unit of time. For this
reason, modifications were made to the measurement methodology
to evaluate the energy consumption for fitting a specific number
of tracks. Additionally, due to the algorithm’s wide range of
parallelization settings, the effect of these configurations on the final
performance metrics was assessed. To account for this, a new factor,
k/N, is introduced into Equation 1, where k is the number of tracks
for energy consumption evaluation, and N is the total number of
tracks processed per unit of time.

3 Results and discussion

The Kalman Filter Track Fitter benchmark provides numerous
options for launching parallel computations, allowing researchers
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FIGURE 2
Power consumption of the (a) CPUs (2x AMD EPYC 7742) and (b) GPU (AMD MI210) depending on the model of the device utilization.

FIGURE 3
KF Track Fitter scalability measured on the (a) CPUs (2x AMD EPYC 7742) and (b) GPU (AMD MI210).

to explore the algorithm’s performance on various hardware
configurations. Vectorized computations are available using all
major instruction sets of modern Intel processors: scalar (32-bit,
1 floating point variable), SSE (128-bit, 4 floating point variables),
AVX2 (256-bit, 8 floating point variables), and AVX512 (512-
bit, 16 floating point variables). Each instruction set has its own
characteristics in terms of its impact on CPU energy consumption.

However, in our study the testing was primarily conducted using
the AVX2 instruction set, as it is the most advanced in terms of
vectorization efficiency available on the AMD EPYC CPUs.

Parallel computations are implemented using the OpenMP
standard. The program is executed sequentially with varying
numbers of threads, ranging from 1 up to 2 CPUs × 64 cores ×
2 threads = 256 threads. Computational threads are pinned to
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cores according to the CPU topology, ensuring that the primary and
hyper-threading threads of each core are utilized sequentially. Task
distribution is done statically with a step size of 1,000 tracks, while
the total number of tracks is a multiple of 1,000. This eliminates
overhead associated with task distribution in the given context. As
a result, we obtain the algorithm’s performance, expressed as the
number of tracks fitted per unit of time.

The computations on the GPU are implemented using the
OpenCL framework, with optimization for local memory utilization
for the most frequently accessed variables. The program is executed
with various local item size values, ranging from 1 to 256.
Using more threads per block is considered impractical, as the
optimal block size for AMD GPUs is 64 elements, and the
chosen configurations will allow a full assessment of the relevant
patterns. Additionally, an excessive number of threads would
lead to local memory overflow and a corresponding decrease in
computational speed.

The scalability of the fitting algorithm’s computation speed
is shown in Figure 3. The graph of computation speed growth
depending on the number of threads used on the CPU (Figure 3a)
exhibits a nearly linear shape with some deviations and changes
in slope. The independence of threads and the equivalence of
computations in each thread result in a proportional increase in
overall performance. The slightly convex shape of the histogram
segments reflects the characteristics of the processor’s power supply
depending on the load.

At low loads, with up to 64 threads in use, we can clearly see the
effect of hyperthreading in Figure 3a. This is reflected in the ladder-
like structure of the graph, in which the performance gain for every
second thread that uses a virtual core is no more than 20%–30%.
At higher loads, some artifacts caused by CPU power optimization
are noticeable, which also affects the efficiency of hyperthreading,
making the results difficult to interpret.

The utilization of AVX2 instructions for data-level
parallelization ensures high performance of the algorithm by fully
populating SIMD vectors with 8 single-precision floating-point
elements. The resulting track fitting speed in the context of this
study varies from 10.5 tracks/μs when using a single core, to 1071.3
tracks/μs at maximum CPU load.

The AMD MI210 graphics card features 104 compute units
(CUs), each supporting 64 threads. This GPU structure defines the
scalability characteristics of parallel computations (Figure 3b). The
histogram clearly shows a stepwise pattern with increments of 64
elements. Using an incomplete set of threads within a CU results
in idle computations and a proportional decrease in the overall
performance of the algorithm.

The minimum computation speed is 48.4 tracks/μs with an
energy consumption of approximately 135 Wh, which significantly
surpasses the CPU’s performance under similar load conditions due
to the structural differences between the devices. As the number of
active threads increases, performance grows at a rate of about 48
tracks/μs per thread. Peak performance reaches 2553.5 tracks/μs
when utilizing all 64 threads. With further increases in the local
item size, the algorithm’s performance decreases in proportion to the
ratio of active to idle threads. Subsequent performance peaks show
similar, though slightly lower, results. As the number of tasks per CU
increases, the amount of both global and local memory used grows,
leading to minor additional overhead costs.

The final energy consumption values (Figure 4) were calculated
for each pair of total energy consumption per unit of time
(Figure 2) and computation speed (Figure 3) using Equation 1, with
an estimation for fitting k = 1010 tracks. In addition to the energy
spent directly on the calculations, the equation takes into account
the memory energy consumption at the rate of Pm = 0.3725 W/GB.

The Kalman Filter track fitter does not require significant
amounts of additional memory for calculations and storing
intermediate results. The main memory consumption is for storing
information about the detector geometry, as well as directly
processed data: tracks and hits they consist of.

In the benchmark under consideration, information about
each of the 7 detector stations takes up 156 bytes. In real-
world applications, this value can increase to several tens of KB,
mainly due to a more detailed map of the station material. This
amount of memory use has almost no effect on overall energy
consumption.

The main memory consumption is for tracks that are being
fitted, primarily due to their number. In the benchmark, this value
is 240 bytes per track. Since the fitting process occurs in batches,
the amount of memory used nm was determined based on the
simultaneous storage of up to 106 tracks. If this parameter is
significantly increased, energy costs for temporary data storage start
to outweigh the computation costs, which does not align with the
algorithm’s usage model. Thus, the results provide insight into the
approximate energy cost of track fitting that can be expected in
the CBM experiment over the course of 1 s, under conditions of
maximum particle interaction rates with high collision centrality,
when the largest number of fragments is produced.

It should be noted that many of the conditions considered for
the upcoming CBM experiment are estimates based on theoretical
models and tend to result in inflated numbers. For this reason, the
results of the study cannot be regarded as precise values but rather as
approximate estimates of the algorithm’s energy consumption.These
estimates, however, provide valuable insights into the main trends
and allow for a rough assessment of the algorithm’s energy efficiency.

According to theoretical estimates (Figure 2a, blue markers),
fitting 1010 particle trajectories using the Kalman filter on modern
CPUs required between 0.83 and 1.25 Wh of electricity (Figure 4a,
blue markers). The wavelike structure of the histogram is caused by
the uneven growth in computation speed with linear increases in
energy consumption.

Actual power consumption measurements (Figure 4a, red
markers) show clear differences from the estimates in areas of high or
low CPU utilization, whereas they are rather close to the estimates
for medium CPU utilization. Computations on a small number of
threads lead to relatively low power efficiency, which is an obvious
effect of the jump and a sharp further growth of power consumption
with a more uniform increase in the speed of calculations. At the
same time, the power efficiency at maximum CPU load looks better
than theoretical. Fitting 1010 tracks in this case requires about
1.00 Wh of electricity.

Now, knowing the energy cost for fitting 1010

tracks—representing the hypothetical peak track output per
second—we can calculate the carbon footprint for 1 day of algorithm
operation using Equation 2, as outlined in the Green Algorithms
methodology. The choice of a 24-h time interval is made for clarity
and ease of further extrapolation, as the experiment and data
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FIGURE 4
Energy consumption of the Kalman Filter Track Fitter for processing 1010 tracks, measured on (a) CPUs (2x AMD EPYC 7742) and (b) GPU (AMD MI210).

TABLE 1 Comparison of energy consumption across different computing setups under optimal resource utilization.

Hardware
platform

Energy
consumption

(Wh per
1010tracks)

CO2 emission
kgCO2

Driving distance
(km)

Carbon
sequestration
(Tree-mounts)

CPU (AMD EPYC 7742) 1.00 32.8 321 35.8

GPU (AMD MI210) 0.35 11.5 112 11.5

processing will be conducted continuously around the clock.

C = E×CI = 24h× 60min× 60sec× 0.0010kWh× 380 gCO2/kWh

= 32,832 gCO2

Thus, particle trajectory fitting in the CBM experiment using
CPUs at maximum load could result in up to 32.8 kg of CO2
emissions per day. To make this more relatable, these emissions
can be expressed in terms of driving distance and carbon
sequestration (Table 1).

According to open data from the European Environment
Agency [14], the average CO2 emissions for new cars in Europe
are 102.2 gCO2/km. Therefore, the CO2 emissions in the scenario
considered would correspond to:

32,832 gCO2

102.2 gCO2/km
≈ 321 km

Consistent with studies [15], a tree absorbs 10—12 kgCO2
per year, depending on growth conditions, or approximately
1 kg/month. Thus, the daily CO2 emissions from the fitting of the
experimental data would be equivalent to about 3 tree-year. These

comparisons give a clearer sense of the environmental impact of the
computational tasks involved in the CBM experiment.

By comparison, processing 1010 tracks at minimum CPU load
requires approximately 17 times more electricity, resulting in a
corresponding increase in carbon dioxide production.

As a means of self-validation, we also compared the calculated
results with the output data from the online calculator Green
Algorithms (Figure 5), whose operation served as the foundation for
developing the research methodology. The calculations performed
by the online calculator were based on the use of 1,195 CPU
cores over 24 h. This setup is expected to enable the fitting of 1010

tracks per second, according to previously obtained estimates of
the algorithm’s performance (Figure 3a). It should also be noted
that the measured peak energy consumption of the system under
consideration was 20% lower than the maximum values used by the
authors of Green Algorithms by default.

Daily electricity consumption, according to our calculations,
amounted to 86.4 kWh, which is approximately 20% lower than
the result provided by the online calculator and therefore fully
aligns with the expected values. The difference in the mass of
the emitted CO2 is only about 10%. This discrepancy arises from
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FIGURE 5
The estimated results for electricity consumption and carbon footprint of fitting 1010 tracks per second in real time over 24 h, determined using the
Green Algorithms online calculator.

the use of different values for the carbon intensity factor in the
calculations. Specifically, Green Algorithms uses data from 2020
(338.66 gCO2/kWh), while our research is based on more recent
figures from 2023 (380 gCO2/kWh). Accounting for this difference
reconciles the results. An even more pronounced discrepancy in
the driving distance metric reflects not only the influence of prior
carbon emission calculations, but also a significant difference in the
averageCO2 emissions per 100 km for vehicles: 175 gCO2/km (2019)
inGreenAlgorithms compared to 102.2 gCO2/km (2024) in our study.

Thus, it can be concluded that the results of our study align
with the stated methodology and correlate well with the estimates
provided by the Green Algorithms online calculator. However, it
is equally important to note that indirect estimations are highly
dependent on the coefficients used, which may vary over time
or differ depending on the source. Such estimates can be utilized
to enhance the interpretability of the results, but they are not
sufficiently precise on their own.

The dependence of GPU energy consumption on the device load
ismuchmore pronounced (Figure 4b).Wewill examine two extreme
cases in terms of carbon footprint and compare the obtained results
with the data from the CPU.

The worst energy efficiency occurs when only one thread per
compute unit is used. Low computational performance combined
with high energy consumption results in a requirement of
approximately 8.34 Wh to process 1010 tracks. These computations
result in up to 273.8 kgCO2 per day.This is equivalent to driving a car
for a distance of 2,679 km. Compensation for such emissions would
require around 274 tree-months of CO2 sequestration.

Optimal GPU energy efficiency is largely determined by the
proper utilization of computational resources to achieve maximum
fitting speed. This corresponds to configurations where all threads

are utilized, that is, when the local item size is a multiple of 64.
The peak efficiency is similar across settings, but the best value
is achieved with a local item size of 64, resulting in an energy
consumption of 0.35 Wh per 1010 tracks.

Converting this result similarly to the previously obtained data,
we arrive at the following values. Daily CO2 emissions amount to
approximately 11.5 kg, which is 3 times less than in the case of
CPU usage. This is equivalent to a trip by car of 112.4 km. Such
environmental impact would be compensated for by approximately
12.6 tree-months of CO2 sequestration.

4 Conclusion

In this work, an analysis of the efficiency of the Kalman Filter-
based fitting algorithm, which plays a key role in particle trajectory
reconstruction in heavy-ion physics experiments such as the CBM
experiment at FAIR,was conducted.Thestudy includedanassessment
ofcomputationalresources,energyconsumption,andcarbonfootprint
when executing the algorithm on modern processors and graphics
accelerators.The results show that the algorithm, optimized for SIMD
instructions and multithreading, provides high performance and
efficiency in the reconstruction and analysis of particle trajectories.

Further analysis reveals that CPU energy efficiency improves
with increasing thread count, but power management mechanisms
lead to nonuniform efficiency gains. At low CPU loads, baseline
power consumption reduces efficiency, whereas at peak loads, real
energy usage remains below theoretical estimates. GPU efficiency
depends on optimal resource utilization—under low occupancy,
energy costs rise sharply, while full utilization achieves up to three
times lowerenergyconsumptionperfitted trackcompared to theCPU.
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This reduction in energy consumption leads to a threefold
decrease in CO2 emissions and, consequently, in the amount of
carbon sequestration needed. Therefore, optimizing the algorithm
for GPU execution not only enhances computational efficiency but
also significantly reduces the carbon footprint of experimental data
processing in heavy-ion physics.

The data obtained highlight the importance of further
optimizing algorithms and computational systems to achieve a
balance between performance and energy efficiency, especially in
the context of increasing data volumes and heightened demands for
computational power. In the face of global efforts to reduce carbon
footprints, the development of “green” computing algorithms and
infrastructures is becoming an integral part of the modern scientific
process, particularly in the field of heavy-ion physics.
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