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Neutrosophic set-based defect
detection method for CSP LED
images

En Fan, Junqi Gong*, Zhenxin Wu, Qinlong Lv and
Changxing Fan

Institute of Artificial Intelligence, Shaoxing University, Shaoxing, China

Chip scale package (CSP) light-emitting diode (LED) is miniaturized light-
emitting diodes designed for automated chip-level packaging. Defect detection
is particularly challenging due to the high density and small size of CSP LED
beads on a strip. This paper presents a neutrosophic set-based defect detection
method (ND) to identify the defective beads on CSP LED images. Firstly, the
proposed NDmethod applies the neutrosophic set to discribe the uncertainty in
CSP LED images, and then converts the CSP LED images into the neutrosophic
images. Moreover, it employs the similarity operation to handle the image noises
and then utilizes an enhancement operation to enhance image contrast to
ultimately generates smoother images. Finally, these smoother images are used
to calculate the pass rates by checking the gray values. Experimental results
demonstrate that the proposed ND method can accurately and reliably detect
defective beads in CSP LED images across various exposure times. Moreover,
it provides a more robust estimate of pass rate compared with five traditional
detection methods.

KEYWORDS

chip scale package, position estimation, neutrosophic set, similarity operations, defect
detection

1 Introduction

The Internet of Things (IoT) is extensively employed across various domains, and its
earliest application is rooted in industrial production [1, 2]. In automatic production lines,
IoT technology enables manufacturers to effectively manage and control machines and
equipment, and this will lead to intelligent, efficient and reliable production processes [3, 4].
Consequently, IoT technology plays a pivotal role in enhancing the intelligence of automatic
production lines and improving production efficiency. To meet the growing demand in the
Chip scale package (CSP) light-emitting diode (LED) market, the design of an automatic
production line for CSP LED as illustrated in Figure 1 becomes imperative. Due to the
advantages of green and environmental protection, LED is widely used in the field of lighting
[5, 6]. CSP LED, one type of LED, are characterized by their compact size, high current, and
exceptional reliability, with the package size not exceeding 20% of the chip’s dimensions [7].
Therefore, it has extensive application prospects, attracting considerable attention from chip
packaging manufacturers.

Defect detection is an essential stage in automated production quality assurance [8, 9].
In the automatic production line, the optical detector is a crucial component for ensuring
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FIGURE 1
CSP LED automatic production line.

FIGURE 2
Main steps of the ND method.

the pass rate of CSP LED strips corresponding to the
equipment in Figure 1. Generally, the number of dead beads is
estimated based on the spacing between beads on trips. However,
due to the small size of CSP-LED beads, there exist distance errors
and angle errors between beads on CSP LED trips when the beads
are packaged. Consequently, it is difficult to estimate the number of
defective beads directly using bead distances in theCSPLED images.

The traditional methods for detecting defects in LED images
primarily utilize image processing technologies, which are widely
applied in many fields [10, 11]. It reconstructs the background of
the LED image, detects the defect edges of beads, and subsequently
segments defect targets. The primary procedures in defect detection
include gathering elements with similar features into a single

category, maximizing the element correlation in the same category,
increasing the dissimilarity between elements from different
categories, and finally dividing an image into several distinct parts
[12]. Based on the above analysis, designing a defect detection
method for CSP LED images is critical. Considering the above
problems, Yang et al. [13] proposed an automatic segmentation
method of thin-film transistor (TFT) liquid crystal display (LCD)
images, focusing on multi-scale spatial information and significant
defects. Jian et al. [14] explored solutions for automatically detecting
surface defects on organic light-emitting diode (OLED) display
screens by using the fuzzy C-means clustering-based defect
detection (FD)method. Furthermore, the FDmethodwas employed
to calculate the membership degree of each element to all cluster
centers by constructing a new function for each cluster element,
classifying the samples based on the membership degree. [15]
presented an effective method to process noisy images, effectively
separating the background and defects. However, itmay not perform
optimally in the presence of image noises [16]. Considering the small
size and large number of beads in a CSP LED strip, direct detection
of defective beads on the strip using traditional the FD method
proves challenging. Although deep learning can achieve satisfactory
detection performance, its high hardware requirements often make
it difficult to meet real-time inspection demands in production lines
[17, 18].

Considering the advantages of neutrosophic theory in handling
uncertain information, it has been introduced to enhance the
accuracy of defect detection in noisy images, which is widely
applied in the field of image processing [18, 19]. [20] applied
neutrosophic in image edge detection, and further developed a
neutrosophic clustering method [21]. Compared with fuzzy theory,
neutrosophic theory offers a more objective approach for actual
applications.Generally, the traditional fuzzy theory assesseswhether
an event meets a certain criterion by relying solely on truth and
falsity as results. In contrast, neutrosophic theory defines a neutral
region between truth and falsity [22, 23]. In recent years, the
neutrosophic theory has also played an important role in the
field of image processing, particularly for its capacity to effectively
describe and process uncertain information in images. Due to
the susceptibility of traditional image segmentation methods to
noises, [24] proposed a neutrosophic image segmentation method
based on local pixel grouping (LPG) and principal component

Frontiers in Physics 02 frontiersin.org

https://doi.org/10.3389/fphy.2025.1613119
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Fan et al. 10.3389/fphy.2025.1613119

FIGURE 3
CSP LED images by six detection methods. (a) Original Image I20 (b) Image L20 by LD method (c) Image G20 by GD method. (d) Image M20 by MD
Method (e) Image F20 by FD Method (f) Image N20 by ND method.

TABLE 1 Exposure times for CSP LED images.

Exposure
times

Original
images

LD method GD method WD method MD method FD method ND method

20 ms Image I20 Image L20 Image L20 Image M20 Image H20 Image F20 Image N20

30 ms Image I30 Image L30 Image L30 Image M30 Image H30 Image F30 Image N30

40 ms Image I40 Image L40 Image L40 Image M40 Image H40 Image F40 Image N40

50 ms Image I50 Image L50 Image L50 Image M50 Image H50 Image F50 Image N50

60 ms Image I60 Image L60 Image L60 Image M60 Image H60 Image F60 Image N60

70 ms Image I70 Image L70 Image L70 Image M70 Image H70 Image F70 Image N70

80 ms Image I80 Image L80 Image L80 Image M80 Image H80 Image F80 Image N80

analysis (PCA). The neutrosophic logic-based image segmentation
method has been studied in [20]. The concept of kernel function
based on neutrosophic theory has been introduced in [15, 25],
extending these applications to fields such as medicine and
remote sensing image processing. The neutrosophic theory has
been adopted to detect dead knots in wood images [25]. A
neutrosophic filtering method has been proposed for uncertain
information fusion [26], effectively resolving the contradiction
between high-density salt-and-pepper noise filtering and detail
protection. In [27], an improved nonlocal prior image dehazing
algorithm is presented by combining the fuzzy C-means clustering

algorithm of neutrosophic theory with a hybrid dark channel prior
transmittance optimization method.

Considered the influence of noises on defect detection, this
paper utilizes the neutrosophic set-based defect detection method
(ND) to detect defective beads on CSP LED images. It incorporates
a similarity operation to handle image noises, and applies an
enhancement operation to enhance image contrast.The effectiveness
of theNDmethod is subsequently verified by a real-data experiment.

The remainder of this paper is organized as follows. Section 2
provides basic principle of neutrosophic theory, and it is employed to
describe the uncertain information inCSPLED images. In Section 3,
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TABLE 2 Image statistical features for each detection method.

Methods Δμ Δσ Δg ΔH ΔSSIM

LD method

0.1245 1.0984 0.1440 6.9829 0.9302

0.1208 1.0741 0.1630 9.0083 0.9096

0.1163 1.1054 0.1961 10.6742 0.8934

0.1166 1.1296 0.2379 11.7016 0.8810

0.1084 1.1102 0.2724 12.4159 0.8712

0.0973 1.0777 0.3035 12.8114 0.8645

0.0831 1.0356 0.3355 12.8512 0.8601

GD method

0.0002 0.1386 0.0525 1.3775 0.9947

0.0002 0.1482 0.0600 1.7568 0.9935

0.0002 0.1624 0.0779 2.0308 0.9926

0.0006 0.1713 0.0957 2.1722 0.9919

0.0007 0.1757 0.1131 2.2797 0.9913

0.0007 0.1772 0.1316 2.3463 0.9908

0.0009 0.1771 0.1548 2.3683 0.9903

MDmethod

0.0906 0.0632 0.0290 3.2415 0.9750

0.1336 0.1157 0.0229 4.0684 0.9673

0.1462 0.1129 0.0175 4.6764 0.9611

0.1487 0.1015 0.0172 5.0313 0.9562

0.1430 0.0989 0.0172 5.2868 0.9516

0.1348 0.0828 0.0128 5.4578 0.9484

0.0831 1.0356 0.3355 12.8512 0.8601

FD method

42.7651 8.1968 3.6361 7.9198 0.1406

56.6713 14.9010 3.3820 6.0275 0.1793

67.5574 22.3482 3.0370 2.5647 0.2135

76.7596 29.4523 2.6795 2.2384 0.2461

83.4236 37.8672 2.2347 8.6497 0.2864

79.4824 46.0462 1.9030 11.6419 0.3366

82.4553 53.0604 1.6638 14.4322 0.3681

ND method

52.8320 28.1905 1.9432 10.5825 0.1538

69.3293 27.6976 1.5746 10.2165 0.1845

78.1309 20.9134 1.0210 5.3751 0.2321

80.6084 11.2941 0.4631 4.2117 0.2832

(Continued on the following page)
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TABLE 2 (Continued) Image statistical features for each detection method.

Methods Δμ Δσ Δg ΔH ΔSSIM

84.1222 5.1311 0.0563 11.3625 0.3184

94.3644 5.9238 0.0580 8.5123 0.3247

89.0382 1.4853 0.4353 12.4547 0.3751

FIGURE 4
Orginal images. (a) I30. (b) I40. (c) I50. (d) I60. (e) I70. (f) I80.

FIGURE 5
Results by the LD method. (a) L30. (b) L40. (c) L50. (d) L60. (e) L70. (f) L80.

FIGURE 6
Results by the GD method. (a) G30. (b) G40. (c) G50. (d) G60. (e) G70. (f) G80.

FIGURE 7
Results by the MD method. (a) M30. (b) M40. (c) M50. (d) M60. (e) M70. (f) M80.
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FIGURE 8
Results by the FD method. (a) F30. (b) F40. (c) F50. (d) F60. (e) F70. (f) F80.

FIGURE 9
Results by the ND method. (a) N30. (b) N40. (c) N50. (d) N60. (e) N70. (f) N80.

FIGURE 10
Two statistical features for each detection method. (a) Standard deviation by each detection method. (b) SSID by each detection method.

the neutrosophic set-based defect detection method is proposed.
Section 4 presents the experimental results and the performance
comparison with other five defect detection methods. Finally, the
conclusions are provided in Section 5.

2 Basic principle of neutrosophic
theory

This section introduces the basic principle of neutrosophic
theory, and it will be used to describe the uncertainty in CSP LED
images in Section 3. Assuming that U denotes a non-empty set, a
neutrosophic set A is a subset of U, a vector x(t, i, f) is an element in
set A, where t, i and f is a variable in T, I and F, respectively [28, 29].

T, I and F are standard or non-standard real subsets of −0,1+ and
then

sup T = tsup, inf T = tinf (1)

sup I = isup, inf I = iinf (2)

sup F = fsup, inf F = finf (3)

nsup = tsup + isup + fsup (4)

ninf = tinf + iinf + finf (5)
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FIGURE 11
Peaks in a row. (a) I30. (b) L30. (c) G30. (d) M30. (e) F30. (f) N30.

FIGURE 12
Peaks in a column. (a) I30. (b) L30. (c) G30. (d) M30. (e) F30. (f) N30.
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TABLE 3 Detection performances of six detection methods under optimal detection thresholds.

Methods Images nd rp rf gd

D2 method

I20 8 0.9834 0.0042 21

I30 8 0.9834 0.0042 30

I40 8 0.9834 0.0042 41

I50 10 0.9792 0.0000 51

I60 9 0.9813 0.0021 59

I70 9 0.9813 0.0021 64

I80 10 0.9792 0.0000 71

LD method

L20 9 0.9813 0.0021 33

L30 8 0.9834 0.0042 50

L40 11 0.9771 0.0021 67

L50 9 0.9813 0.0021 84

L60 11 0.9771 0.0021 108

L70 10 0.9792 0.0000 120

L80 10 0.9792 0.0000 136

GD method

G20 8 0.9834 0.0042 22

G30 11 0.9791 0.0021 33

G40 10 0.9792 0.0000 46

G50 9 0.9813 0.0021 56

G60 10 0.9792 0.0000 64

G70 9 0.9813 0.0021 64

G80 10 0.9792 0.0000 72

MDmethod

M20 11 0.9771 0.0021 28

M30 10 0.9792 0.0000 44

M40 10 0.9792 0.0000 58

M50 10 0.9792 0.0000 89

M60 9 0.9813 0.0021 97

M70 11 0.9771 0.0021 112

M80 10 0.9792 0.0000 136

FD method

F20 10 0.9769 0.0000 2

F30 11 0.9771 0.0021 1

F40 48 0.9002 0.0790 1

F50 61 0.8732 0.1060 1

(Continued on the following page)
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TABLE 3 (Continued) Detection performances of six detection methods under optimal detection thresholds.

Methods Images nd rp rf gd

F60 30 0.9376 0.0416 1

F70 12 0.9751 0.0042 1

F80 13 0.9730 0.0062 1

ND method

N20 11 0.9771 0.0021 1

N30 7 0.9854 0.0062 1

N40 8 0.9834 0.0042 4

N50 10 0.9792 0.0000 5

N60 9 0.9813 0.0021 4

N70 10 0.9792 0.0000 5

N80 11 0.9771 0.0021 9

where T, I and F are the component of set A. xsup (x=t,i, f) denotes
the upper bound element in neutrosophic set A while xinf (x=t,i, f)
denotes the lower bound element. The truth, indeterminacy and
falsity membership of x are denoted by t, i, f, respectively, and they
correspond to the real value of the sets T, I and F, respectively.
The value of t, i, f and their sum n = t+ i+ f are not restricted
[17, 20–32]. Here, −0 = 0− ε, 1+ = 1+ ε, “0” and “1” denote the
standard part, while “ε” represents the non-standard part, −0,1+ is
the non-standard real sub-set.

3 Neutrosophic set-based defect
detection methods

In real applications, there are slight deviations in the CSP
LED beads’ dimensions and alignment, and the exposure time of
detection images are different. Sometimes the boundaries of beads
in images are blurred, and this results in the presence of numerous
noises in CSP LED images. Then, we try to apply the uncertainty
information of CSP LED images in the design of an defect
detection method. Considering the advantages of neutrosophic set
in processing uncertainty information, we have employed the ND
method to detecting defective beads. In the ND method, firstly,
CSP LED images are converted into neutrosophic images by using
neutrosophic theory. Then, considering the presence of image
noises, a similarity operation is applied to filter out noise pixels in
neutrosophic images tomake these imagesmore uniform. Finally, an
enhancement operation is implemented to improve image contrast.
The main steps of the ND method are illustrated in Figure 2.

3.1 Neutrosophic image converting

SupposeU is a non-empty set, and A is a set composed of values
of all pixels in a CSP LED image, which is a subset of U. According

to the neutrosophic theory, a CSP LED image consists of three parts:
the truth part, indeterminacy part, and falsity part. Then, the image
can be converted as a neutrosophic image PNS = {T(i, j), I(i, j),F(i, j)}.
Here, T(i, j), I(i, j), and F(i, j) are a matrix. The main procedures of
constructing the matrix T(i, j), I(i, j) and F(i, j) is given as follows.

Firstly, a CSP LED image is input and converted into a grayscale
image g(i, j). Then, G(i, j) is applied to calculate the regional mean
value of this grayscale image by Equation 6.

G(i, j) = 1
w×w

i+ w
2

∑
m=i− 2

2

j+ w
2

∑
n=j− w

2

g(m,n) (6)

The converting process of the truth degree T(i, j), the
indeterminacy degree I(i, j) and the falsity degree F(i, j) can be
expressed as

T(i, j) =
G(i, j) − gmin

gmax − gmin
(7)

I(i, j) =
D(i, j) −Dmin

Dmax −Dmin
(8)

F(i, j) = 1−T(i, j) (9)

Here, gmax and gmin represent the maximum gray value and
minimum gray value in g(i, j). D(i, j) can be expressed by

D(i, j) = |g(i, j) −G(i, j)| (10)

where, D(i, j) represents the absolute difference between g(i, j) and
G(i, j) with w = 2n, where n is a positive integer. The value of w is
different according to the difference in noise.

Thepseudocode for the above steps can be represented as follows:

1. Let g be the image to be processed. If g is not in grayscale,
convert it go grayscale.

2. Define w as the neighborhood diameter.
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TABLE 4 Detection performances of six detection methods under fixed detection thresholds.

Methods Images nd rp rf gd

D2 method

I20 253 0.4740 0.5052 48

I30 90 0.8129 0.1663 48

I40 51 0.8940 0.0852 48

I50 6 0.9875 0.0083 48

I60 1 0.9979 0.0187 48

I70 0 1.0000 0.0208 48

I80 0 1.0000 0.0208 48

LD method

L20 332 0.3098 0.6694 85

L30 295 0.3867 0.5925 85

L40 295 0.3867 0.5925 85

L50 13 0.9730 0.0062 85

L60 0 1.0000 0.0208 85

L70 0 1.0000 0.0208 85

L80 0 1.0000 0.0208 85

GD method

G20 293 0.3909 0.5884 51

G30 87 0.8191 0.1601 51

G40 21 0.9563 0.0229 51

G50 4 0.9917 0.0125 51

G60 1 0.9979 0.0187 51

G70 0 1.0000 0.0208 51

G80 0 1.0000 0.0208 51

MDmethod

M20 397 0.1746 0.8046 75

M30 270 0.4387 0.5405 75

M40 84 0.8254 0.1538 75

M50 3 0.9938 0.0146 75

M60 3 0.9938 0.0146 75

M70 8 0.9834 0.0042 75

M80 0 1.0000 0.0208 75

FD method

F20 0 1.0000 0.0208 2

F30 11 0.9771 0.0021 1

F40 48 0.9002 0.0790 1

F50 61 0.8732 0.1060 1

(Continued on the following page)
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TABLE 4 (Continued) Detection performances of six detection methods under fixed detection thresholds.

Methods Images nd rp rf gd

F60 30 0.9376 0.0416 1

F70 12 0.9751 0.0042 1

F80 13 0.9730 0.0062 1

ND method

N20 11 0.9771 0.0021 4

N30 9 0.9813 0.0021 4

N40 8 0.9834 0.0042 4

N50 9 0.9813 0.0021 4

N60 9 0.9813 0.0021 4

N70 8 0.9834 0.0042 4

N80 4 0.9917 0.0125 4

FIGURE 13
Fault detection rate by each detection method for different images.

3. Create a matrix G of the same size as g.
4. Iterate over each pixel (i,j) in g as follows:

- If the neighborhood with a radius of w/2 contains points
that belong to the matrix, set G (i,j) to the mean of the w/2
neighborhood around the pixel.

- Otherwise set G (i,j) = g (i,j).
5. CreatematrixT of the same size as g.Normalize it as Equation 7.
6. Generate matrix D of the same size as g. Calculate D as the

absolute distancematrix between g andG at the corresponding
pixel positions.

7. Creatematrix I of the same size as g.Normalize it as Equation 8.
8. Produce matrix F with the same size as g. Define each pixel’s

value in F as 1 minus the value of the corresponding pixel in T.
9. The matrices T, I and F together constitute the collection of

neutrosophic images T, I and F.

FIGURE 14
Optimal detection thresholds by fixed detection gates.

3.2 Similarity operation

In general, similarity operation is utilized to assess the degree of
similarity between two vectors. This is a common statistical model
in the fields of data mining and signal processing. Due to the
constraints in practical applications, there exist multiple methods
for calculating similarity degrees. In this paper, we utilize the α-
similarity operation, and the primary implementation steps are
given as follows.

First, one needs to establish the weight function w(i, j,m,n),
which represents the similarity degree between the gray values of
the pixel g(i, j) and the pixel g(m,n) in an Ω area. The weight
functionw(i, j,m,n) primarily consists of the spatial weight function
c(i, j,m,n) and the domain weight function s(i, j,m,n), which are
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FIGURE 15
Number of defective beads detected by six detection methods under
different thresholds.

employed to describe the spatial similarity degree and the domain
similarity degree, respectively.

To choose the pixel g(i, j) and the Ω area around this pixel, it is
necessary to adjust the values of w according to the input image and
the noises. Here, the value of the spatial weight function c(i, j,m,n)
takes the constant 1, that is

c(i, j,m,n) = 1 (11)

the domain weight function takes the similarity degree of the
pixels, that is

s(i, j,m,n) = exp(−t
‖g(i, j) − g(m,n)‖2

h2
) (12)

according to Equations 11, 12, we can get

w(i, j,m,n) = c(i, j,m,n)s(i, j,m,n) (13)

Then, w(i, j,m,n) can be expressed by

w(i, j,m,n) = exp(−t
‖g(i, j) − g(m,n)‖

h2
) (14)

where

g(i, j) =
∑w

m
∑w

n
g(m,n)w(i, j,m,n)

∑w
m
∑w

n
w(i, j,m,n)

(15)

The process described above is often referred to as similarity
operations. Here, h > 0 is the smoothing parameter used to control
the relative attenuation degree of the weight, while t > 0 is the filter
control parameter. Since the neutrosophic theory cannot eliminate
the influence of pixel uncertainty on the detection result, the
parameter t can be taken as t = 2I(i, j), then the original weight
function can be expressed as:

s(i, j,m,n) = exp(−2I(i, j)
‖g(i, j) − g(m,n)‖2

h2
) (16)

Here, the radius of each pixel neighborhood is w. When
determining the value of the pixel p(i, j) based on the values of its
surrounding pixels, it is essential to account for the possibility that
p(i, j) may be a noise pixel. Therefore, the neutrosophic set I(i, j) is
employed to describe the uncertainty of a pixel. If the values in the
neighborhood of pixel p(i, j) are generally high when assessed with
I(i, j), p(i, j) is likely to be a noisy pixel. In such a case, its impact on
the surrounding pixels should be reduced to a certain extent.

According to the neutrosophic theory, each image inherently
contains a degree of uncertainty. When using the similarity
operation and selecting the uncertainty I(i, j) as the decision
criterion, it is essential to establish a threshold α to prevent
overprocessing and avoid categorizing non-noisy points as noise
points. When I(i, j) ≥ α, the point is processed according to the steps
described above; when I(i, j) < α, it is left unprocessed. The series
of steps is referred to as the α-similarity operation. In this paper,
considering the practical situation, the threshold value α is defined
as 0.85. Consequently, a new neutrosophic set Tba and Iba can be
described as follows:

Iba =
{
{
{

T

Tba2
 
I < α

I ≥ α
(17)

G(i, j) =
∑

i+ w
2

m=i− w
2
∑

j+ w
2

n=j− w
2
T(m,n)w(i, j,m,n)

∑
i+ w

2

m=i− 2
2

∑
j+ w

2
n=j− w

2
w(i, j,m,n)

(18)

Tba2(i, j) = 1
w×w

i+ w
2

∑
m=i− 2

2

j+ w
2

∑
n=j− w

2

Tba(i, j) (19)

Dba(i, j) = |Tba(i, j) −Tba2(i, j)| (20)

Iba(i, j) =
Dba(i, j) −Dbamin

Dbamax −Dbamin
(21)

where, D (i,j) is the absolute difference between g (i,j) and G (i,j), w
= 2n, where n is a positive integer, and the value range of w varies
depending on the level of noises.

The pseudocode for the α-similarity operation is
provided below:

1. Define the following variables:
- g: the original image matrix; T: the neutrosophic image

collection T; I: the neutrosophic image collection I; F:
the neutrosophic image collection F; L: the radius of the
pixel’s neighborhood; h: the smoothing parameter; α: the
threshold; Ta1: a matrix of the same size as the original
image; Ta2: a matrix of the same size as the original image;
Iba: the normalized matrix Dba.

2. Process each pixel (i,j) sequentially in g as follows:
- Check if a pixel’s neighborhood with a radius of L/2

contains only pixels belong to the matrix.
- If does, perform the following calculations for each pixel in

the neighborhood:
- Calculate Ta1 (i,j) using the formula exp
(−2I(m,n)(T(i, j) −T(m,n))2/h2).

- Calculate Ta2 (i,j) using the formula T (m, n) exp
(−2I(m,n)(T(i, j) −T(m,n))2/h2).

- Calculate Ta (i,j) by dividing the corresponding pixel of
Ta2 (i,j) by the pixel of Ta1 (i,j) in the same position.
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- Otherwise, set Ta (i,j) to the corresponding pixel in T.
3. Generate matrix Tba of the same size as the original image.

- If the pixels in I are greater than or equal to the threshold
α, set the pixels in Tba to correspond to the pixels in Ta.

- Otherwise, set the pixels in Tba to correspond to the pixels
in T.

4. Generate a matrix Tba2 as the same size of the original image.
- Process each pixel sequentially in g.
- If the L/2 neighborhood of the pixel contains the pixels that

belong to the matrix, calculate the mean value of the pixels
in the L/2 neighborhood corresponding to T.

- Otherwise, set the pixels in Tba2 to be equal to the
corresponding pixels in T.

5. CalculateDba as the absolute distancematrix betweenTba and
Tba2.

6. Normalize matrix Dba to create Iba by Equation 21.
7. Iba represents the image after the α-similarity operation.

3.3 Enhancement operations

After converting the neutrosophic image and performing the
similarity operation, the outline of CSP LED image may become
blurred. This blurriness is not conducive to subsequent processing.
Therefore, it is necessary to enhance the image through the
enhancement operation method to increase the contrast of images.
This will result in clearer detected edges. The formula for the
enhancement operation is as follows:

Iba′(i, j) =
{
{
{

2Iba2(i, j)

1− 2(1− Iba2(i, j))
 
Iba(i, j) < β

Iba(i, j) ≥ β
(22)

Here, a threshold ß is set to 0.5. Different operations can be
performed based on the pixel values in Iba and compared to ß.

4 Experiment results and analysis

The experiments using actual CSP LED images have been
conducted to verify the effectiveness of the neutrosophic set-based
defect detection (ND) method when compared to the other five
defect detectionmethods as follows: the direct defect detection (D2),
low-pass filter-based defect detection (LD) [33], Gaussian filter-
based defect detection (GD) [34], mean filter-based defect detection
(MD) [35], fuzzy C-means clustering-based defect detection (FD)
[15], and the proposed neutrosophic set-based defect detection
(ND) method. As illustrated in Figure 3, these CSP LED images
with varying exposure times were captured by using an industrial
camera (type: Hikvision MV-CA060-11GM; exposure time range:
27 μs–2.5 s) integrated into the optical detector in automatic
production line as Figure 1. This equipment was sourced from [36].
To illustrate the reliability of the detection results, we employ the
images with six exposure times and compare their detection results.
The experiments were carried out on a computer with a dual-core
CPU of Core Intel(R) Xeon(R) E5-26650 at 2.40 GHz with 32-GB
of RAM. The programs for the above six detection methods were
implemented by using MATLAB R2023a version software.

4.1 Defect detection of CSP LED images

In this section, six detection methods mentioned above have
been applied to detect defective beads in CSP LED images. Figure 3a
displays the original CSP LED image I20, and Figures 3b–f show the
detection results obtained by using the LD method, GD method,
MDmethod, FD method and NDmethod, respectively. Despite the
presence of noises in Image I20, which impact detection results at
certain degrees, it is evident from the detection results by Figure 3e
and f that both the FD method and ND method can accurately
detect the beads. We will illustrate these detection results in the
following sections. However, the distribution of gray values in
Image N20 is more uniform compared to Image F20. This is because
the ND method incorporates the neutrosophic set to describe
the uncertain information in CSP LED images and utilizes the
information effectively. Hence, it can suppress the noises’ impact.

To assess the robustness of the ND method, we can further
apply the other CSP LED images with different contrasts in six
exposure times as shown in Table 1 and Figures 4–9. Generally, the
shorter the exposure time, the darker and the higher the contrast.
In other words, the longer the exposure time, the brighter and
the lower the contrast. In actual applications, if the contrast of
CSP LED images is lower, it is more difficult to detect defective
beads. Based on this fact, we need to select not only CSP images
in the right exposure times, but also conveyor belt speed is an
important factor, which influenced the choice of exposure times.
Here, Figures 4–9 show the original images and the processed
images by the corresponding LD, GD, MD, FD and ND method.
FromFigures 4–9, it is observable fromFigure 9 that theNDmethod
can yield the more robust detection results consistently, even with
extended exposure time. In other words, it is not significantly
affected by the noises. As a result, the ND method can provide
an effective solution to the defect detection challenges in CSP-
LED images.

For quantitative analysis of the proposedNDmethod, we further
list the following five statistical features of filtering images by these
detection methods compared with the original images. Concretely,
these statistical features include the mean, standard deviation,
entropy, gradient magnitude and structural similarity index (SSID)
measure, respectively. As a result, we can obtain the variations of five
features between the filtered images and original images as Table 1,
calculated by the following equations, respectively.

μ(X) = 1
MN

M

∑
i=1

N

∑
j=1

X(i, j) (23)

σ(X) = √ 1
MN

M

∑
i=1

N

∑
j=1
(X(i, j) − μ)2 (24)

H(X) = −
Level

∑
i=0

p(i)logp(i)2 (25)

g(X) = √(∂X
∂x
)
2
+(∂X

∂y
)
2

(26)

s(X,Y) =
(2μ(X)μ(Y) +C1)(2σ(X,Y) +C2)

(μ2(X) + μ2(Y) +C1)(μ2(X) + μ2(Y) +C2)
(27)

Here, μ, σ, H, g and s represent the mean, standard deviation,
entropy, gradientmagnitude and SSIM, respectively.X andY denote
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gray images with dimensions M rows by N columns. To prevent
division by zero, small positive constantsC1 andC2 are incorporated
into the SSIM in Equation 27.The probability of gray level i, denoted
as p(i), is calculated for each gray level from i = 1 to Level = 255 as
defined in Equation 28.

p(i) =
n(i)

M×N
(28)

From Table 2, the proposed NDmethod achieves relatively high
μ, σ values, significant g value, moderateH value, and comparatively
low s value.These results show its enhanced sensitivity and accuracy
in detecting defects. Meanwhile, the ND method exhibits a notable
advantage in balancing detection performance. It is beneficial
for identifying defects within CSP LED images. Based on the
comparison of the variations of five features in Table 1, the variation
in SSID by theNDmethod is close to that by the FD, and their results
in five features are better than other detection methods. However,
the FDmethod makes significant changes overly in gray values, and
it actually leads to a decrease in defect detection capabilities, which
will be analyzed in Section 4.2. For more intuitive illustration, the
above results in standard deviation and SSID are further illustrated
in Figures 10a,b. From Figures 10a,b, we can observe that the curves
corresponding to the two types of image features align the above
results, and follow a consistent pattern of either rising or falling with
the exposure time changes.

4.2 Calculation and analysis of pass rate

Based on Section 4.1, the filtered images and original images can
be obtained using six detection methods. Then, the pixel position
(i,j) of a bead in CSP LED images can be calculated in the following
procedure, and its pass status depends on its gray value g (i,j). Here,
the gray value denotes the color depth of a pixel, ranging from 0 to
255, where 0 indicates black. Generally, the pixel positions of beads
in CSP LED images exhibit uniform and regular patterns, similar to
a chessboard, as shown in Figure 3. Then, the gray values of a CSP
LED image can be summed along its rows and columns, respectively.
Concretely, this procedure identifies peaks with row x by column y
as shown in Figures 11, 12. Finally, the peak establishes the real bead
by (ib,jb). In the procedure, if the gray value of the bead (ib,jb) is less
than the given gate g f , the bead is defective.

From Figures 11, 12, the waveforms of the ND method are
shaper, and its gray values are more concentrated (0–2.5 × 105 for
x, 0–1.0 × 104 for y) than those of other five images. The peak
positions in Image N20 are more accurate than those by other
five detection methods. Moreover, some false peaks are present in
Figure 12a, while some real peaks are not detected in Figures 12c–e.
Consequently, the images filtered by the ND method are more
accurate to detect the defective beads. This is due to the presence of
noises in the CSP LED images, and the ND method can suppress
the noise at certain degree by incorporating the neutrosophic set
to model uncertain information. It will be further analyzed below.
Therefore, the detection performance of the ND method is the best
in six images. Additionally, the numberNb of beads in an image can
be calculated by

Nb = nx × ny (29)

where the numbers nx and ny represent the peaks in a row and a
column, respectively. Here, they can be easily estimated as nx = 13
and ny = 37 by six methods for all images from Figures 11, 15, and
then Nb = 481 estimated.

Tables 3, 4 further summarize the detection performance of
six methods under two optimal and fixed detection thresholds,
respectively. For the purpose of analysis, three metrics are defined:
the estimated pass rate rp, the real pass rate rpo and the fault detection
rate rf . They can be further represented as follows:

rp = (Nb − nd)/Nb (30)

rpo = (Nb − nr)/Nb (31)

r f = |rp − rpo| (32)

where nd is the estimated number of the defective beads in a CSP
LED image, nr is the real number of the defective beads, Nb is
the total number of all beads mentioned in Section 4.1. Here, gd
represents the given gray gate in Tables 3, 4, nr = 10 and nb = 481.
Based on the definitions above, the estimated pass rate rp represents
the ratio of the detected number Nb-nd of pass beads to the total
number Nb of all beads. Similarly, the real pass rate rp is the ratio
of the real number Nb-nr of pass beads to the total number Nb of
all beads.The fault detection rate rf indicates the difference between
the estimated pass rate rp and the real pass rate rpo.

From Table 3, five detection methods except for FD method
yield good detection results for different images with optimal
detection thresholds. Here, the optimal detection thresholds for six
methods are determined by the traversal tests within the threshold
range from 1 to 160. Generally, a smaller fault detection rate
indicates better performance for a detection method. The first
five methods exhibit slightly better detection performance than
the FD method under the optimal detection thresholds, but the
optimal detection thresholds of the ND method are more stable
than those for other five detection methods. The FD method
has the stable detection thresholds but the unsatisfied detection
results for different images. Meanwhile, Figure 13 is applied to
illustrate this fact. Unfortunately, determining the optimal detection
thresholds dynamically in real applications is challenging, generally,
requiring the fixed detection thresholds for each detection. Hence,
we further analyze the detection performance of six methods
under the fixed detection thresholds. In Table 4, the fixed detection
thresholds are determined by multiple experiments to guarantee
the good detection results for different images. Under the fixed
detection thresholds, the ND method obtains the best detection
performance among the sixmethods according to the fault detection
ratio in Table 4. Moreover, Figure 14 provides further clarification
of this fact.

Figure 15 provides an intuitive comparison of the impact of
varying detection thresholds on six methods by illustrating the
number of defective beads using six methods. From Figure 14, we
can identify the optimal detection thresholds for each detection
method, which are consistent with the values presented in
Tables 3, 4. Notably, the number of defective beads detected by the
ND method is very close to the real number of defective beads,
which corresponds to the red line and the black line, respectively.
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The D2, LD, MD and GD method outperform quite closely but not
well from the threshold 30 to 35,while their detection results become
worse after the threshold 30. In addition, if the detected number of
defective beads by a detection method is equal to zero, it illustrates
that the detection method fails to detect the defective beads under
the corresponding threshold. Then, from the threshold 1 to 30, the
D2, LD, MD and GD method fail to detect the defective beads. This
analyzed result is nearly consistent with the preceding analysis.

On the whole, the detection performance of the ND method
surpasses that of other five methods for the images with exposure
time. Its detection performance remains more robust in situations
with both optimal and fixed detection thresholds.

5 Conclusion

In actual applications, the detection of defective beads in
CSP LED trips poses a significant challenge due to various
noises and uncertain factors. This fact increases the complexity of
the traditional defect detection methods, often resulting in fault
detection. Considering the specific characteristics of CSP LED
images, including high precision and small size, we employed
the ND method to detect defective beads in CSP LED images.
This approach is beneficial to improve the robust and accuracy
of defective beads detection on CSP LED strips in automated
production lines. Moreover, the ND method incorporates a
similarity operation to address image noise and utilizes an
enhancement operation to improve image contrast. Experimental
results show the effectiveness of the ND method in detecting
defective beads inCSPLED images, even in the presence of noise and
complex backgrounds. Additionally, it accurately estimates the pass
rate of LED CSP images when compared to five traditional defect
detection methods.

In the following research, we will study the adaptive detection
thresholds to further enhance detection accuracy of the proposed
ND method in pass rate.
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