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Editorial on the Research Topic

Advances of synchrotron radiation-based X-ray imaging in biomedical
research
s

Synchrotron radiation-based X-ray imaging, particularly X-ray phase-contrast
microtomography (PC-µCT), is of interest in biomedical research thanks to its non-
destructive 3D hierarchical visualization power [1, 2]. Unlike laboratory microCT, PC-µCT
enables high spatial resolution imaging with intense throughput [3]; thus, aiding the
development of artificial intelligence (AI) algorithms for image analysis. Phase contrast
enhances the discernment of soft tissue structures, making morphological characterization
effective even without additional stainings [4–6].

These aspects allow PC-µCT to supplement traditional histology with 3D data,
leading to the emergence of “virtual histology” as a complementary approach in the
synchrotron imaging community [7–9]. However, sample preparation for multiscale and
multi-techniques studies still remains a challenge.

The study by Young Lee et al. presents a step-by-step protocol for 3D virtual histology
of unstained human brain tissue [10]. Initially designed for the SYRMEP beamline
in Trieste, the protocol is also adaptable to other µCT imaging beamlines. It includes
tissue preparation, µCT acquisition, reconstruction, post-processing, and validation against
histology. The authors demonstrate how blood vessels and neurons appear in images
acquired with isotropic voxel sizes of 5 μm3 and 1 μm3. Additionally, it facilitates the
investigation of biological substrates such as neuromelanin and corpora amylacea, enabling
the study of their spatial distribution using tailored segmentation tools validated by classical
histology methods. This approach provides a means to explore the intricate architecture
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of brain tissue, offering valuable insights into its organization and
potential pathological alterations.

The Research Topic also received contributions regarding the
optimization of novel sample preparation methods: in one case for
producing enhanced contrast in the visualization of specific sample
features; in the other for boosting multi-modal investigations.

The paper by Fratini et al. focuses on optimizing sample
preparation protocols to improve contrast-to-noise ratio (CNR) in
PC-µCT imaging of white matter (WM) in the central nervous
system (CNS) [11]. The study emphasizes the critical role of
tissue fixation and dehydration in enhancing CNR for XPCT,
which is essential for visualizing delicate WM structures like
fibers. Key methodological optimizations include the selection
of a fixative protocol involving ethanol perfusion followed by
xylene dehydration. This approach preserves tissue architecture
while effectively removing water, thereby enhancing phase contrast
without the need for exogenous contrast agents. Additionally,
structural alterations are minimized through the ethanol-xylene
treatment, which helps prevent shrinkage or distortion commonly
observed with other fixatives, thus preserving fine gray matter
(GM) and WM details. The method improved the visibility of
pathological features relevant to neurodegenerative diseases, such
as demyelination or axonal damage. It enables high-resolution 3D
imaging of WM microstructures, supporting preclinical research
into conditions like multiple sclerosis or Alzheimer’s disease.
By improving CNR, the technique enhances the detection of
subtle pathological changes while preserving tissue for downstream
analyses (e.g., histology).

Sagar et al. demonstrate that optical clearing improves
propagation-based PC-μCT imaging by reducing artifacts like air
bubbles and cracks found in traditional formalin-fixed paraffin
embedding (FFPE) methods [12]. Using Phytagel embedding, they
achieved high-quality imaging of colon cancer specimens while
preserving compatibility with standard histology. This method
enhances PC-μCT by providing clearer, artifact-free imaging for
better analysis.

Subsequently, to the optimal technical choices improving image
acquisition, the processing of tomographic datasets always plays
a crucial role. In the post-processing step, the application of AI
tools for object detection and sample feature segmentation can be
extremely advantageous in order to perform quantitative volumetric
analysis on large datasets.

Lopes Marinho et al. evaluated various convolutional neural
networks (CNNs) for segmenting PC-µCT images of magnesium-
based biodegradable bone implants in sheep tibiae [13]. Accurate
segmentation is crucial for assessing implant degradation and
osseointegration. The study compared models like U-Net, HR-
Net, U2-Net, and both 2D and 3D versions of nnU-Net, using
the intersection over union (IoU) metric to assess performance.
Findings revealed that the 2D nnU-Net exhibited superior
generalization capabilities, though all models faced challenges in
accurately segmenting the degradation layer.

The study from Furlani et al. explores the biomechanical
properties of collagenous tissues using PC-µCT combinedwith deep
learning techniques to enhance the analysis of collagen bundles [14].
The paper demonstrates the ability to visualize collagen bundles
in three dimensions across various body regions, applicable in
both pre-clinical and clinical settings. The authors propose that

deep learning-based semantic image segmentation can more
effectively identify and classify collagen bundles compared to
traditional thresholding methods. By employing neural networks,
the study achieves quantification of structures in synchrotron phase-
contrast images that were previously indistinguishable. Notably, this
approach allows for the identification of collagen bundles based on
their orientation, moving beyond the limitations of conventional
techniques that rely solely on physical densities.

In conclusion, the Research Topic covers both the description of
experimental approaches for image acquisition and computational
post-processing segmentation pipelines. In addition, in the Research
Topic an innovative approach is introduced that explores the
feasibility of a dual-modal on-board imaging system combining
spectral-CT and cone-beam CT (CBCT) using a cadmium zinc
telluride (CZT) photon-counting detector (PCD) integrated
into a linear accelerator (Linac) by Monte Carlo simulations.
This approach, presented in the paper of Ye et al., aims to
address limitations in conventional CBCT imaging, such as metal
artifacts, insufficient soft-tissue contrast, and lack of functional
or molecular imaging capabilities, which can hinder the precision
and effectiveness of image-guided radiation therapy (IGRT) [15].
The study uses the Geant4 Application for Tomography Emission
(GATE) software to design and validate the proposed system. The
CZT detector’s pixel size was optimized for a balance between
photon detection efficiency and spatial resolution. Imaging
performance was evaluated using a PMMA phantom containing
calcium and contrast agents (iodine, gadolinium, gold), leveraging
K-edge spectral imaging to differentiate materials. In conclusion,
this novel approach could enhance IGRT by improving target
delineation, treatment monitoring, and differentiation between
tumor recurrence and treatment-related changes.

This Research Topic displays key advancements in PC-µCT
imaging, from refined sample preparation to AI-powered analysis.
Together, these studies reinforce PC-µCT as a powerful, non-
destructive tool for virtual histology, offering deeper insights into
tissue structure and disease.
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