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The rise of user-generated content on social media is making memes a
prevalent medium for expression. However, some memes convey offensive
information toward individuals or groups on particular aspects. Detecting
such harmful content is essential to mitigate potential conflicts and harm.
This paper proposes a retrieval-augmented prompting network (RAPN) for
hateful meme detection. The proposed model utilizes a retrieval-augmented
selector to identify semantically relevant prompting examples from diverse
sources, enhancing the selection to better match the inference instances. Based
on the prompting framework, attention networks are employed to extract
critical features from input instance and examples. By applying contrastive
learning to label and feature spaces, the model is capable of learning more
discriminative information for classification. Comprehensive evaluations on
benchmark datasets demonstrate that our model outperforms the baseline
methods. Thereby, the proposed model has strong evidence of high accuracy
on the task of hateful meme classification.
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1 Introduction

Advances in the internet era have significantly boosted the widespread popularity
of user-generated social media information. People on social networks are constantly
encouraged to express their opinions to a global audience, which generates a massive
volume of content on virtually anything [1]. A meme is representative content which
conveys underlying meaning in a subtle and implicit manner. Typically, a meme is
the combination of text and image. Despite their appealing, funny, and dramatic
graphics along with confusing, amusing, and caustic sentences, memes can be implicitly
offensive [2]. As an example, the image paired with the text, in Figure 1 ©Getty Images
signifies racial discrimination toward Muslims. Current publications report that various
potentially dangerous textual or visual content carry subjective hatred, including aggression,
insults, and disparagement [3]. The spread of such hateful memes harms not just the
individuals and groups attacked but also deliberately instigates violent conflict [4]. As
one of the largest social media platforms, Facebook removed 9.6 million pieces of
offensive or misleading content in the first quarter of 2020. In such a data-saturated
social network, manually reviewing and preventing all forms of hate speech seems
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impractical. Therefore, the requirement for automatically detecting
hateful memes is firmly emphasized.

The task of hateful meme detection (HMD) thus arises. A
great deal of effort is expended on deep learning-based multimodal
data analysis. In this process, a meme is classified as hateful or
non-hateful. A primary reason for is that both textual and visual
information, together with the relationship between them, need
to be processed to identify the hateful tendency [5, 6]. Cutting-
edge outcomes are obtained by prompting pretrained language
models (PLMs), which focus more on learning ability from given
samples rather than integrating multimodal interaction strategies
[7]. In these methods, the meme text, extracted image captions,
and pretrained masked language models are concatenated for
harmful meme detection [8]. Remarkably, the approach of Pro-Cap
PromptHate has an impressive average accuracy of 91.03 on the real-
world dataset HarM, substantially outperforming state-of-the-art
multimodal-specific models [9]. As a result, prompt-based learning
gives rise to new opportunities to enhance HMD performance.

According to the United Nations Strategy and Plan of Action on
Hate Speech, a hateful meme involves offensive contents concerning
religion, ethnicity, nationality, race, color, descent, gender, or other
identity factors [10]. With such a definition, each meme can be
further categorized into an aspect following a binary classification.
In this context, a comprehensive understanding of memes is
attained, which in turn paves a way of improving HMD methods.
While restricted to hateful meme datasets, the categorization
of hateful memes can be performed using retrieval augmented
schemes. That is, based on pre-training with more-related samples,
a model tends to be more effectively prompted in its detection.
In the context of natural language processing (NLP), retrieval
augmentation is a technique that enhances the capability of a
given model by integrating it with external knowledge sources [11].
Intrinsic knowledge and retrieved information are combined, based
on which the basic model is refined to bemore accurate and reliable.
Following this idea, retrieval augmented methods can further be

employed in providing higher-quality content, especially during the
inference stage [12]. HMD is a task where the literature highlights
not just the learning of multimodal hatefulness but also reasoning
with external knowledge [13–16].

To address HMD challenges, a retrieval-augmented prompting
network (RAPN) is proposed here. Given memes, including the
inference instance and the examples, are initially converted to
unimodal form using ClipCap [17] and encoded via a fine-
tuned BLIP-2 [18]. With the structure of the attention network,
critical features for detection are effectively extracted. Furthermore,
supervised contrastive learning is applied to distinguish the
correlation and difference among diversified meme categories
within example batches. Motivated by the paradigm of retrieval
augmentation, an example selection strategy is established. Random
examples are selected to preserve sample diversity during training
while the most similar hate and non-hate examples are captured as
inference instances during the test. The three contributions of this
study are as follows.

First, retrieval-augmented selection is devised to capture the
prompting examples from extending sources. Thus, the most
relevant samples for the inference instance are taken as examples
during testing, which effectively improves the model’s learning
ability. Second, in line with the framework of prompt-based
methods, both label-based and feature-based contrastive learning
strategies are applied for model optimization. Specifically, feature-
based contrastive learning, which aims to learn critical information
from memes of the same aspects, substantially enhances the
classification accuracy. Third, experiments on benchmark datasets
indicate that our model is capable of detecting the given memes
in the prompting framework. The proposed model produces results
considerably better than the baseline methods.

The rest of this study is organized as follows. In Section 2, we
review the related work of hateful meme detection and retrieval-
augmented methods. The proposed RAPN is described in detail in
Section 3. In Section 4, we evaluate our model on hateful meme

FIGURE 1
Example of a hateful meme. Sourced from https://www.drivendata.org/competitions/64/hateful-memes/. ©Getty Images.
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detection experiments and discuss the results. Concluding remarks
are presented in Section 5.

2 Related work

2.1 Hateful meme detection approaches

Progress in HMD tasks is driven by the generation of
hateful meme datasets [6, 19, 20]. Since memes generally possess
multimodality, most ongoing studies tend to address HMD through
multimodal classification [6, 18, 21]. Both intramodal information
and intermodal integration are employed to detect whether the
image–text pair takes on a hateful meaning or not [22]. In
this context, Zhang et al. devised a complementary visual and
linguistic network, which leverages contextual-level and sensitive
object-level information to make hateful meme predictions [23].
Pramanick et al. developed a novel multimodal deep neural network
that systematically analyzes the local and global perspective of
input memes [5]. With the application of background knowledge,
Kiran et al. effectively fused the semantic understanding from
both modalities [24]. Wu et al. proposed an enhanced multimodal
fusion framework for HMD on a brain-inspired framework.
This architecture jointly combines the main semantics and the
subtle metaphors behind memes, which mitigates cognitive biases
against HMD [3].

More recently, prompting PLMs benefits both unimodal
[25] and multimodal [26] tasks to a certain extent. Cao et al.
designed simple prompts and provided in-context examples to
exploit the implicit knowledge in a pretrained RoBERTa language
model for HMD [7]. Furthermore, a frozen pretrained vision-
language model (PVLM) was utilized to generate captions with
critical information which facilitates detection without increasing
computational costs [9]. Extensive experiments on benchmark
datasets provide strong evidence for the effectiveness of prompting
approaches.

2.2 Retrieval-augmented strategies

Retrieval-based methods show their superiority in a range of
NLP tasks. By retrieving relevant information frommore knowledge
sources, these methods improve model performance and support
the subsequent generation process [27]. For an input query, relevant
documents or passages are fetched from a large corpus.The retrieved
information is then combined with the original input to form an
augmented content. On the task of semantic parsing, Pasupat et al.
controlled the behavior of parsers via retrieval and augmentation
processes across domains [28]. Zhang et al. applied the retrieval
strategy to align knowledge base labels with input contexts for
distantly supervised information extraction [29]. With respect to
large language models (LLMs), Ren et al. investigated the impacts
of retrieval augmentation on pen-domain question answering,
which reduces hallucination and improves accuracy in perceiving
factual knowledge boundary [30]. For low-resource settings, Seo
et al. proposed a retrieval-augmented data augmentation framework
that trains data through retrieval, boosting model performance on
domain-specific tasks [31]. In these applications, information of

greater relevance is retrieved from a broader source, which facilitates
the model’s robustness regarding infrequent data points [32].

3 Methodology

Figure 2 presents the framework of RAPN. HMD is initially
performed on the basis of a PVLM with prompts, referred to as
a “hierarchical triplet constructor.” Each prompt is constructed
as a triple sequence of memes, with each meme being a triple
textual sequence as well. Specifically, a retrieval-augmented module
is devised to retrieve the most similar examples to construct the
prompt during testing. Then, a textual encoder is employed for
deriving embeddings. Both a feature extractor and a ranking unit
are established on attention mechanism. Key features are extracted
andused to classify the inference instance as either “hateful” or “non-
hateful.” Contrastive learningwithin a training batch is implemented
to enhance the classification accuracy. More details about each
component are described in the following sections.

3.1 Hierarchical triplet constructor

For an input meme with T as the text and I as the image, a pre-
trained image captioning model, ClipCap [17], is taken to generate
captions from the given image. According to the prompting manner
presented in [7], the meme to be predicted is transformed into a
triplet containing text τ, caption c, and category label l—written
as ο = {τ,c, l}. To facilitate processing, the category label indicates
whether thememe is “good” (non-hateful) or “bad” (hateful). For the
specific inference instance, the label ismasked. Figure 3 illustrates an
example of the meme triplet.

Conforming with the prompt template, a non-hateful and a
hateful meme are concatenated following the inference instance
sequentially, given as a positive and a negative example, respectively
(Figure 4). As long as each meme is a triplet, a hierarchical triplet
in textual form is constructed. To facilitate processing, each triplet
sequence is established within fixed positions. The text and caption
of the triplet are concatenated and arranged into one sequence
segment with the category label into the other (Figure 5). Every
sequence is constrained to its predefined length. If the length is not
reached, it is padded; otherwise, it is truncated. Given the pivotal
role of inference instances in classification, the length of inference
instance is extended, whereas that of examples is reduced. The
inference instance sequence sin fer is written in Equation 1:

sin fer = (τ⊕ c) ⊕ l. (1)

Similarly, the sequences of positive spos and negative
sneg examples can be computed. The input prompt can
be given in Equation 2:

Pmp = sin fer ⊕ spos ⊕ sneg. (2)

3.2 Retrieval-augmented selector

The equations should be inserted in editable format from the
equation editor. All figures and tables should be cited in the main
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FIGURE 2
Model architecture.

FIGURE 3
Example of a meme triplet. Meme sourced from https://www.drivendata.org/competitions/64/hateful-memes/. ©Getty Images.

text as “Figure 1”, “Table 1”, and so forth. The purpose of retrieval-
augmented selection is to capture the most relevant sample of the
inference instance as a prompting example. Thus, the quality of
prompts can be improved to benefit the model’s learning. A two-
stage sample selecting approach is thus proposed: in the training
stage, we take a random selection to enhance example diversity;
in the test stage, we use vector retrieval to select relevant prompt
examples based on similarity. The schematic of retrieval augmented
example selection is shown in Figure 6.

A pre-trained Jina [33] model is employed as the vector
converter to obtain a relevant sample from the support set. In line
with the aforementioned meme triplet, the text and image caption
are concatenated to obtain its vector:

gi = VecConverter(τi ⊕ ci), (3)

where τi and ci refer to the text and image caption of the ith meme
sample, gi is the vector containing key information, and ⊕ stands for
the concatenating operation.

All of the sample vectors can be derived using (Equation 3),
and they are further stored in the retrieval database Dbase. During
the test, samples of the highest similarities are selected as examples
within a prompt. Specifically, the similarity score between samples

is calculated in Equation 4:

Simi,j = consine(gi,gj), (4)

where gi and gj are vectors of two distinguishing samples, consine( )
stands for the computing of cosine similarity, and Simi,j is the
similarity score of gj to gi. In practice the cosine similarity
computation is performed via matrix operation—the vector of each
sample is compared with all the other global vectors from Dbase,
forming a similarity matrix.

3.3 Attention-based feature extractor

Theprimary feature, from the text and image caption, is obtained
by feeding the hierarchical textual triplet into an attention-based
feature extractor. The architecture of feature extraction is exhibited
in Figure 7. A pre-trained Roberta-large model is applied to convert
the prompt sequences into embeddings via Equations 5–8:

Emb = Roberta− large(Pmp) = Embin fer ⊕Embpos ⊕Embpos (5)

Embin fer = embin ferτ+c ⊕ embin ferlabel (6)
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FIGURE 4
Example of a hierarchical triplet in prompt template. Memes sourced from https://www.drivendata.org/competitions/64/hateful-memes/.
©Getty Images.

FIGURE 5
A meme sequence.

TABLE 1 Statistics of datasets.

Dataset Hateful Non-hateful

FHM-Training 3,050 5,450

FHM-Test 250 250

HarM-Training 1,064 1,949

HarM-Test 124 230

Embpos = embposτ+c ⊕ embposlabel (7)

Embneg = embnegτ+c ⊕ embneglabel (8)

where Emb ∈ Rn×d with n represents the prompt length and d
represents the hidden layer dimension of BLIP-2. Embin fer, Embpos,

and Embneg are embeddings of inference instance, positive example,
and negative example, respectively. embin ferτ+c , embposτ+c, and embnegτ+c are
corresponding embeddings of text and caption segments. embin ferlabel ,
embposlabel, and embneglabel are corresponding embeddings of labels.

The embeddings are then sent to the attention network. For the
inference instance, the label embedding embneglabel is used as the query,
while the text and image embedding embin ferτ+c stand for key and value.
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FIGURE 6
Retrieval-augmented example selection.

FIGURE 7
Attention-based feature extraction.
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The attention weights are thus computed. Taking embneglabel as query
to text and caption, the most valuable information can be selected as
the primary feature (Equation 9). Therefore,

Fin fer = Attention(embin ferlabel ,embin ferτ+c ,embin ferτ+c )

= so ftmax[[

[

embin ferlabel(embin ferτ+c )
T

√dk

]]

]

embin ferτ+c

(9)

where Fin fer stands for the primary feature of the inference instance,
and dk represents the hidden layer dimension. It also applies in such
a manner to the positive and negative examples.

3.4 Dual-perception and dual-attention
ranking unit

Tables should be inserted at the end of the manuscript. In order
to predict the category label of the inference instance, the interaction
between the label embedding and primary feature is performed in
the dual-perception and dual-attention ranking unit (Figure 8). In
the context of prompting, since the label is a prediction target, a
greater weight is assigned during ranking.

For each sequence, the label token can be extracted from its
label embedding, which is further integrated with the primary
feature. Then, the integration of inference instance is respectively
paired with those of examples, which are respectively fed into two
perception networks to derive the hateful- and the non-hateful-wise
representations (Equations 10, 11).

Repneg = Perception(F
in fer + tin ferlabel) ⊕ (F

neg + tneglabel), (10)

Reppos = Perception(F
in fer + tin ferlabel) ⊕ (F

pos + tposlabel), (11)

where tin ferlabel , t
neg
label, and tposlabel, and Fin fer, Fneg, and Fpos are, respectively,

label tokens and primary features of each sequence; + indicates the
vector addition with the same dimension.

The learning of the relation between inference instance and both
examples is thus carried out. Each perception outcome contains
either the hateful feature or the non-hateful feature. Both outcomes
are combined and sent to the attention mechanism to obtain overall
representation of the prompt. Specifically, the fused outcome is used
as key and value, while the label embedding of the inference instance
is the query, as presented in Equation 12:

Repo = Attention(t
in fer
label ,Repneg ⊕Reppos,Repneg ⊕Reppos)

= so ftmax[

[

tin ferlabel (Repneg ⊕Reppos)
T

√dk
]

]
(Repneg ⊕Reppos)

.

(12)

Based on the attention mechanism, both the hateful- and non-
hateful-wise representation can be perceived by using the label token
and further fused into the overall presentation.

Subsequently, a linear classifier LMhead is taken to predict three
scores upon the representations via Equations 13–15:

Rneg = LMhead(Repneg + t
in fer
label) (13)

Rpos = LMhead(Reppos + t
in fer
label) (14)

Ro = LMhead(Repo + t
in fer
label) (15)

where Sneg is the score on hateful-wise information, Spos is the
score on non-hateful-wise information, and So is the score on the
fused information. One can also observe that the label token of
the inference instance is integrated into the inputs of the LMhead
classifier.

Lastly, an attention network is established, allowing the adaptive
selection of hateful proportions. The query is the primary of the
inference instance, the key is the overall representation, and the
value is the concatenation of the three scores from LMhead. The
final rank R̂ is a paired outcome that contains both hateful and
non-hateful scores calculated using Equation 16:

R̂ = Attention(tin ferlabel ,Repneg ⊕Reppos ⊕Repo,Rneg ⊕Rpos ⊕Ro)

= so ftmax[

[

tin ferlabel (Repneg ⊕Reppos ⊕Repo)
T

√dk
]

]
(Rneg ⊕Rpos ⊕Ro)

(16)

3.5 Contrastive learning unit

The meme classification result is determined by the ranking on
hateful and non-hateful scores, withmodel training guided by cross-
entropy loss. To further enhance learning the relationship between
hateful and non-hateful information in the inference instance,
contrastive learning strategies are proposed to facilitate training
processes.

3.5.1 Label-based contrastive learning
There is clearly a certain distinction in the masked label

between hateful and non-hateful inference instances. Label
features are grouped by category in the vector space, with intra-
category clustered and inter-category separated. Label prediction is
performed using the masked category extracted from the prompt.
In this way, contrastive learning on a category label can benefit the
learning of hateful and non-hateful information.

Compared with the masked label, the label of the same category
forms positive samples, while those of the different category are
negative samples within a batch. Based on contrastive learning,
discriminative categories are taken by pulling positive samples closer
and pushing negative samples farther apart. The loss function of
label-based contrastive learning is given in Equation 17:

Llabel = −
1
N
∑N

i=1
log
{{
{{
{

[∑N
j=1

ξ(ci = cj) · sim(t
in fer
labeli
, tin ferlabelj
)]/Tlabel

[∑N
k=1

sim(tin ferlabeli
, tin ferlabelk
)]/Tlabel

}}
}}
}
(17)

where N is the sample number of the batch, sim( ) is the cosine
similarity, Tlabel the temperature coefficient, and ci stands for the
label category of the i sample. The indicator ξ(ci = cj) evaluates
whether samples i and j belong to the same category. ξ(ci = cj) equals
1 when the two samples share the same category and 0 otherwise.

3.5.2 Feature-based contrastive learning
Like label-based contrastive learning, contrastive learning on

primary features is also conducted during training. In the case
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FIGURE 8
Dual-perception and dual-attention ranking unit.

of an inference instance of the actual category “hateful,” its mask
token lies closer to the example of bad token and farther to that of
good token in the feature space. Specifically, the inference instance
label token tin ferlabel forms a positive pair with an example of the

same category and a negative pair with an example of the different
category. With the contrastive learning on features, the mask tokens
from the same category are closer to each other, while those from
different categories are more distinct. As noted in the Introduction,
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a hateful meme can be classified into distinguishing aspects, such
as racial discrimination, gender conflict, and national antagonism.
Therefore, contrastive learning on the mask token is performed
within a training batch rather than restricted to the given prompt.
Instead ofmanual annotation, the feature-based contrastive learning
enables the learning of primary features from examples of the
same aspect, thus facilitating the comprehension of hateful and
non-hateful features. The loss function of feature-based contrastive
learning is given in Equation 18:

L feature = −
1
N
∑N

i=1
log

{{{{{
{{{{{
{

[∑N
j=1
sim(tin ferlabeli

, texample
labelj_actual

)]/T feature

[∑N
k=1

sim(tin ferlabeli
, texample

label
neg
k
)+ sim(tin ferlabeli

, texample

label
pos
k
)]/T feature

}}}}}
}}}}}
}

(18)

where T feature is the temperature coefficient, texample
labelk

represents
the primary feature of either positive or negative sequence, and
texample
labelj_actual

refers to the actual feature corresponding to tin ferlabeli
.

According to Equation 19, the total training loss of
RAPN combines

Ltotal = Lcross + α · Llabel + β · L feature (19)

where α and β are hyperparameters that control the weights of
different loss terms.

4 Experiments

4.1 Dataset

Experiments were performed on two public datasets: Facebook
Hate Memes (FHM) [6] and Harmful Memes (HarM) [5]. The
FHM dataset is developed by Facebook to support a crowdsourced
initiative on multimodal HMD. HarM includes real-world COVID-
19 memes from Twitter, which are labeled as highly harmful,
partially harmful, and harmless. Consistent with prior research [7],
we adopt a binary classification scheme by merging highly harmful
and partially harmful memes into a single “hateful” label. We
augment the imagewith entity information and racial characteristics
using external tools (Google Vision Web Entity Detection API) and
the pretrained FairFace classifier [34]. Table 1 presents the statistics
for both datasets.

4.2 Experimental setting

The pretrained RoBERTa-large is employed with its hidden
layer dimension set to 1,024. To preserve the performance of the
pretrained language model during training, a hierarchical learning
rate strategy is applied with a smaller learning rate for the pretrained
model and a larger learning rate for other layers. The model settings
are detailed in Table 2.

4.3 Baselines

To comprehensively evaluate the performance of the proposed
model, the following baselines are taken for comparison.

Unimodal methods:
Text-Bert: a text-only approach based on fine-tuned BERT [35]

model on hateful meme text classification.
Image-Region: an image-only method that processes hateful

meme images using Faster R-CNN [36] and ResNet-152 [37], then
sends the representations to a classifier.

Multimodal methods:
Late Fusion [38]: amodel that extracts visual features and textual

features using ResNet-152 and BERT, with simple fusion followed by
linear classification.

MMBT-Region [39]: a supervised multimodal approach using
bit-transformation on image-region features.

ViLBERTCC [40]: a multimodal model that is pretrained on the
Conceptual Captions dataset.

Visual BERT COCO [41]: a vision-language model that is
pretrained on the COCO dataset.

MOMENTA [5]: a multimodal deep neural network that
analyzes global and local information from a given meme while
incorporating contextual background.

LLM:
DeepSeek V3: untrained DeepSeek V3 is employed via its

application programming interface (API).
Prompt-based Methods:
PromptHate [7]: a prompt-based method that converts images

into textual descriptions, concatenates them with text, and
constructs sequences. The sequences are fine-tuned with Roberta
and fed into a linear layer for classification.

Pro-Cap [9]: based on PromptHate zero-shot, VQA is employed
to ask BLIP-2 questions, which improves the image-caption quality
and the classification performance.

4.4 Main results

In this experiment, we adopted accuracy and macro-F1 as
evaluation metrics to assess the working performance. Table 3
compares the results of baseline methods with the proposed model
on the HarM and FHM datasets, with all metrics averaged over ten
independent runs. Of all methods, RAPN consistently outperforms
the baselines in both evaluation settings.

Multimodal approaches are clearly better alternatives than
single-modality methods in HMD tasks. With respect to
multimodal models, Late Fusion and MMBT-Region are of
inferior performance due to the absence of model pretraining. In
contrast, both VisualBERT-COCO and ViLBERT-CC benefit from
additional pretraining on external multimodal corpora. Moreover,
MOMENTA enhances classification by jointly modeling both global
and local information in memes through a fine-grained analysis
paradigm. Apparently, there is a considerable gap between the
performance on HarM and FHM of multimodal models. A possible
explanation is that samples from FHM tend to suffer from missing
modalities, such as blurry text or low-quality images, resulting in
significant performance decline. One can also see a sub-optimal
outcome of DeepSeek V3 on both datasets. Without model fine-
tuning, LLMs fall short in HMD because the labeling largely
relates to human subjectivity and requires domain-specific historical
knowledge.
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TABLE 2 Model configuration.

Parameter FHM HarM

Hidden layer dimension 1,024 1,024

Batch size 16 16

Epochs 80 10

α 0.5 0.3

β 0.5 0.5

PVLM learning rate 1e-5 9e-6

Non- PVLM learning rate 2e-5 4e-5

Maximum prompt length 344 344

Seed 1,111–1,120 1,111–1,120

TABLE 3 Experimental results.

Methods Acc (HarM) Macro-F1(HarM) Acc (FHM) Macro-F1(FHM)

Text BERT 70.17 66.25 57.12 41.52

Image-Region 68.74 62.97 52.34 34.19

Late Fusion 73.24 70.25 59.14 44.81

MMBT-Region 73.48 67.12 65.06 61.93

VisualBERT 81.36 80.13 61.48 47.26

ViLBERT CC 78.70 78.09 64.70 55.78

MOMENTA 83.82 82.80 61.34 57.45

DeepSeek V3 65.25 41.70 74.04 73.55

Prompthate 84.47 82.42 72.98 71.99

Pro-Cap 85.06 83.89 74.72 74.59

RAPN 87.12 86.17 74.80 74.47

Experimental results show that prompt-based baselines achieve
comparable results across both datasets. By converting the
multimodal HMD into NLP tasks, prompts are established to guide
the models in classification and leverage the implicit knowledge by
adopting a masked language modeling training objective for HMD.
Compared to Pro-Cap, our model achieves increments of 2.6% and
0.08% on HarM and FHM, respectively. Thus, the effectiveness of
prompting is further highlighted. By introducing attention-based
feature extraction and retrieval augmented strategy, more relevant
examples with similar aspects are selected for prompting in testing
while key features from given memes are captured. In this way, the
relationship between inference instance and prompting examples
within feature space is determined. With learning of hateful and
non-hateful information from examples, it is reasonable to expect
more precise features and thus better performance.

4.5 Ablation study

In order to determine the importance of components
in RAPN, an ablation study was conducted (Table 4).
Based on the structure of RAPN, four components are
sequentially removed.

According to Table 4, the retrieval-augmented strategy does
make a contribution to HMD. The retrieval process identifies
semantically similar samples from example sets based on the
inference instance. More relevant examples of the inference
instance are thus selected for classification. Moreover, the ablating
of L feature also results in a substantial metric drop than Llabel.
This finding verifies that selecting training examples with similar
aspects considerably benefit model performance. Withdrawing
both contrastive learning losses yields the most significant
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TABLE 4 Ablation study.

Methods Acc (HarM) Macro-F1(HarM) Acc (FHM) Macro-F1(FHM)

RAPN 87.12 86.17 74.80 74.47

w/o RA 86.55 85.58 74.28 73.92

w/o Llabel 86.13 85.17 74.49 74.18

w/o L feature 86.10 85.11 74.14 73.75

w/o CL 85.88 84.87 73.76 73.30

aw/o RA: retrieval-augmented strategy is not used to construct examples within prompts. Instead, examples are randomly selected for both training and testing; w/o Llabel: label-based
contrastive learning loss is removed during training; w/o L feature: feature-based contrastive learning loss is removed during training; w/o CL: neither contrastive learning loss is applied during
training, with only cross-entropy loss preserved.

FIGURE 9
Visualization of label tokens.∗Green dots: label tokens of non-hateful inference instances. Red dots: label tokens of hatful inference instances. Yellow
stars: label tokens of positive examples. Blue stars: label tokens of negative examples.

performance decline, which further validates the pivotal role of
contrastive learning. The delicate-designed contrastive learning
unit, by leveraging the given resource, greatly enhances the
classification accuracy.

4.6 Visualization

To intuitively demonstrate the impact of the contrastive learning
scheme on model learning, the t-SNE visualization on the HarM
test set is conducted [42]. As presented in Figure 9, most green
and red dots form distinct clusters. This result validates the
proposed model’s capability of learning discriminative features

based on contrastive learning strategies. Specifically, the featured-
based contrastive learning benefits from learning from category
labels with the same aspects. Clearly, the specific category label of
an inference instance is close to its corresponding positive/negative
tokens within the feature space, demonstrating the effectiveness of
our contrastive learning unit.

5 Conclusion

This study proposes a retrieval-augmented prompting network
(RAPN) on the task of HMD. In the proposed model, a
retrieval-augmented selector is built to capture semantically similar
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prompting examples from a wide-range of sources, thus enhancing
the prompt relevance toward the inference instance. Based on
the attention mechanism, valuable features from both inference
instance and examples are extracted, and these are further used
to determine the hateful score. Contrastive learning on category
label and feature is employed during training, further promoting the
ability to distinguish hateful and non-hateful memes. Experiments
on two benchmark datasets demonstrate the superiority of the
proposed model. Experimental results reveal that our model is
the best alternative compared with baselines. In the future, we
will consider further improving the model’s generalizability across
diverse datasets and cultural contexts by using LLMs.
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