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Accurate and generalizable segmentation of medical images remains a
challenging task due to boundary ambiguity and variations across domains.
In this paper, an implicit transformer framework with a high-frequency
adapter for medical image segmentation (HiImp-SMI) is proposed. A new
dual-branch architecture is designed to simultaneously process spatial and
frequency information, enhancing both boundary refinement and domain
adaptability. Specifically, a Channel Attention Block selectively amplifies high-
frequency boundary cues, improving contour delineation. A Multi-Branch
Cross-Attention Block facilitates efficient hierarchical feature fusion, addressing
challenges in multi-scale representation.Additionally, a ViT-Conv Fusion Block
adaptively integrates global contextual awareness from Transformer features
with local structural details, thereby significantly boosting cross-domain
generalization. The entire network is trained in a supervised end-to-end
manner, with frequency-adaptive modules integrated into the encoding stages
of the Transformer backbone. Experimental evaluations show that HiImp-
SMI consistently outperforms mainstream models on the Kvasir-Sessile and
BCV datasets, including state-of-the-art implicit methods. For example, on
the Kvasir-Sessile dataset, HiImp-SMI achieves a Dice score of 92.39%,
outperforming I-MedSAM by 1%. On BCV, it demonstrates robust multi-class
segmentation with consistent superiority across organs. These quantitative
results demonstrate the framework’s effectiveness in refining boundary
precision, optimizing multi-scale feature representation, and improving cross-
dataset generalization. This improvement is largely attributed to the dual-
branch design and the integration of frequency-aware attention mechanisms,
which enable the model to capture both anatomical details and domain-robust
features. The proposed framework may serve as a flexible baseline for future
work involving implicit modeling and multi-modal representation learning in
medical image analysis.
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1 Introduction

Medical image segmentation plays a crucial role in assisting
disease diagnosis and guiding clinical treatment. Traditional discrete
methods based on convolutional neural networks (CNNs), such
as U-Net [1], nnU-Net [2], and PraNet [3], effectively integrate
multi-scale features but remain highly sensitive to variations in data
distribution, thus limiting cross-domain generalization. Although
boundary-aware methods, such as Boundary-aware U-Net [4],
WM-DOVA [5], Hausdorff distance-based approaches [6], dropout-
based calibration [7], and neural network calibration [8], have
improved localization precision and feature representation, these
methods still face challenges when dealing with complex medical
structures and achieving consistent segmentation performance
across different domains. Additionally, multi-scale residual
architectures likeRes2Net [9] further enhance feature representation
but are still limited in boundary preservation.

Recent developments have introduced Transformer-based
architectures, such as TransUNet [10] and UNETR [11], leveraging
global contextual awareness through self-attention mechanisms
[12]. Despite superior global feature capture capabilities, these
approaches often underperform in local boundary refinement and
require extensive training data for effective generalization. Further
advancements, such as LoRA [13], aim to improve Transformer
efficiency and generalization but do not explicitly optimize
for boundary segmentation accuracy. Furthermore, adaptations
based on the Segment Anything Model (SAM) [14], including
MedSAM [15], SAM-based 3D extensions [16], and customized
SAM models [17], generally improve generalization capabilities
but typically neglect fine-grained feature integration, resulting in
limited boundary segmentation accuracy. Additional SAM-related
studies, such as NTo3D [18], Customized SAM [19], SAM-Med2D
[20], DiffDP [21], spatial prior-based approaches [22], and mask-
enhanced SAM models [23], have explored further improvements
but continue to face challenges with boundary precision.

Beyond conventional deep learning approaches, emerging
research spans several interdisciplinary directions that address
these challenges. For instance, memristor- and memcapacitor-
based neural network models have been proposed to enable
neuromorphic hardware implementations [24, 25]; such analog in-
memory circuits have demonstrated improved image segmentation
speed and accuracy via parallel high-efficiency computations
[26, 27]. Recent studies have further explored Hamiltonian
conservative chaotic systems integrated with memristors for
modeling and FPGA implementation, enhancing the physical
interpretability and stability of neuromorphic designs [28].
Similarly, chaotic and hyperchaotic dynamical systems have been
exploited in image encryption, leveraging their high-dimensional
unpredictability to enhance security. In particular, memristor-
coupled cellular neural networks based on resonant tunneling
diodes have been applied in forensic digital image protection,
offering a secure hardware foundation for sensitive applications
[29]. Some studies even integrate memristive chaotic circuits to
strengthen resistance against differential attacks [30], and in general
hyper-chaos offers greater randomness and key space than lower-
dimensional maps [31], yielding encryption schemes with robust
immunity to cryptanalytic attacks [32]. Other researchers have
implemented novel hyperchaotic systems in FPGA to support

audio encryption, demonstrating the practical deployment of
such dynamics on low-power reconfigurable hardware [33, 34].
In IoT contexts, researchers have developed lightweight image
encryption and steganography techniques to secure multimedia
data with minimal computational overhead [35, 36], addressing
the limitations of earlier cryptosystems on resource-constrained
devices [37]. Moreover, discrete n-dimensional hyperchaotic
maps with customizable Lyapunov exponents have been proposed
to expand the design space for secure communications and
embedded cryptography [38]. Additionally, integrating multi-
modal information has become crucial for improving diagnostic
accuracy, prompting new architectures that effectively fuse
heterogeneous medical data streams [39, 40]. Equally important,
domain-generalization strategies are being pursued to ensure
models remain robust across disparate imaging domains, tackling
the severe performance degradation caused by cross-modality
shifts without requiring retraining on target data [41]. Finally,
a concerted effort is underway to translate these advances into
practical deployments: specialized DSP-based accelerators and
other hardware implementations are achieving real-time image
processing with low power consumption [42, 43], and even complex
neuromorphic networks are being prototyped on DSP platforms
[25, 26]. These developments across hardware design, secure
encryption, lightweight algorithms, and multi-modal learning
collectively strengthen the foundation for next-generation medical
image segmentation systems.

Implicit neural representation methods represent another
advancement, employing continuous mappings from coordinate
spaces to representation spaces, exemplified byOSSNet [44], IOSNet
[45], and SWIPE [46].Thesemodels exhibit improved segmentation
robustness across resolutions but remain constrained by their
reliance on traditional convolutional encoders, limiting their
capacity to simultaneously capture detailed boundary information
and global contextual features. Further implicit methods, including
NeRF [47],NUDF [48],NISF [49], ImplicitAtlas [50], implicit neural
representations survey [51], shape reconstruction from sparse
measurements [52], implicit functions for 3D reconstruction [53],
MRI super-resolution [16], and volumetric SAM adaptations [54],
have significant potential but share similar limitations. Frequency-
domain adapters, like those in I-MedSAM [55], have enhanced
boundary delineation, but single-adapter designs remain insufficient
for comprehensive multi-scale feature integration.

To address these challenges, this study introduces HiImp-
SMI, an implicit Transformer-based medical image segmentation
framework incorporating three key innovations: (1) a Channel
Attention Block to explicitly enhance high-frequency boundary
information, (2) a Multi-Branch Cross-Attention Block to facilitate
efficient hierarchical feature fusion across different scales, and (3) a
ViT-Conv Fusion Block designed to integrate global context from
Transformer-based architectures with local fine-grained features
extracted by convolutional networks. Experimental validations
conducted on the Kvasir-Sessile and BCV datasets demonstrate
that HiImp-SMI outperforms existing segmentation methods,
highlighting its effectiveness in boundary precision, multi-scale
feature representation, and cross-dataset generalization capabilities.

The remainder of this paper is organized as follows: Section 2
details the proposed HiImp-SMI framework; Section 3 presents the
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experimental setup and results; and Section 4 concludes the study,
providing directions for future research.

2 Materials and methods

The overall architecture of the proposed HiImp-SMI framework
is depicted in Figure 1. It comprises a dual-branch encoder
structure that jointly exploits spatial-domain and frequency-
domain information. Given an input image I, a Fast Fourier
Transform (FFT) is applied to derive its frequency representation
IFFT, which highlights high-frequency components corresponding
to anatomical boundaries and texture transitions. By integrating
IFFT into the encoder, our Channel Attention Block can selectively
amplify boundary-sensitive features, enhancing fine-grained
localization and generalization to unseen domains. These
embeddings are then processed by three key modules: a Channel
Attention Block, which selectively enhances high-frequency
boundary details; a Multi-Branch Cross Attention Block, designed
to enable effective feature exchange across hierarchical levels;
and a ViT-Conv Fusion Block, which adaptively integrates global
contextual information from the Transformer branch and local
structural features from the convolutional branch. Through this
architecture, HiImp-SMI aims to achieve more precise boundary
segmentation, stronger multi-scale representation, and enhanced
cross-domain generalization.

2.1 Channel attention block

In this study, SAM employs a Vision Transformer (ViT) as the
image encoder, pretrained on a large-scale natural image dataset.
To preserve the strong feature representation capability of the
pretrained ViT, its weights are kept frozen during training. Instead,
a local adapter module is introduced to incorporate localized
inductive biases into the model, as illustrated in Figure 2.

The Channel Attention Block enhances the domain-specific
feature extraction capability of the pretrained Vision Transformer
(ViT) without fine-tuning its weights. The procedure involves the
following steps:

Step 1: Obtain the input embedding Fvit from the ViT attention
block. This embedding carries high-level semantic features.
It serves as the input to the channel attention block.

Step 2: Apply layer normalization (LN) to stabilize feature
distributions. LN normalizes each channel to reduce
internal covariate shift. This improves training stability and
convergence.

Step 3: Perform a pointwise convolution (Conv1×1) to adjust
channel dimensions. This operation projects features into
a latent space. It preserves spatial structure while enabling
channel-wise transformation.

Step 4: Execute a depthwise convolution (DWConv3×3) to
capture spatial information. Each channel is convolved
independently to extract local patterns. This enhances
spatial modeling without increasing parameter count
significantly.

Step 5: Apply a Squeeze-and-Excitation (SE) block to model
channel-wise dependencies. Specifically, the SE block

performs global average pooling followed by two fully
connected layers and non-linear activations to generate
a channel attention vector s, which is then applied to
recalibrate the feature map, as shown in Equation 1:

{{{{{{
{{{{{{
{

z = 1
H×W

H

∑
i=1

W

∑
j=1

Fij

s = σ (W2 ⋅ δ (W1 ⋅ z))

SE (F) = F⊗ s

(1)

Here, F ∈ ℝC×H×W denotes the input feature map, and z ∈ ℝC is the
channel-wise descriptor obtained by global average pooling. W1
and W2 are learnable weight matrices of two fully connected layers.
δ(⋅) and σ(⋅) denote the ReLU and sigmoid activation functions,
respectively. The resulting attention vector s is used to rescale each
channel of F via element-wise multiplication, enabling adaptive
channel emphasis.

Step 6: Integrate the processed features using another pointwise
convolution (Conv1× 1) to obtain refined embedding F̂vit,
as defined in Equation 2:

F̂vit = Conv1× 1(SE(DWConv3× 3(Conv1× 1(LN(Fvit))))) (2)

Step 7: Merge the refined features with the original features through
a residual connection, as formulated in Equation 3:

Fout = Fvit + F̂vit (3)

2.2 Multi-branch Cross Attention Block

Figure 3 illustrates the structure of the Multi-branch Cross
Attention Block, which integrates deep features from the ViT branch
with shallow features from a convolutional branch. The procedure
involves the following steps:

Step 1: Extract shallow features (Fs) from the resized input image
using a lightweight convolutional block. This step captures
low-level visual patterns such as edges and textures. The
convolutional block is designed to be efficient for early-stage
feature extraction.

Step 2: Generate queries, keys, and values for the ViT branch and
convolutional branch separately, as described in Equation 4:

{
Qd =Wd

qFd, Kd =W
d
k [Fb;Fs] , Vd =Wd

vFs
Qs =Ws

qFs, Ks =W
s
k [Fb;Fd] , Vs =Ws

vFd
(4)

Here, Fd and Fs denote deep features from the ViT branch and
shallow features from the convolutional branch, respectively. Fb
represents bottleneck features shared across branches. Wq, Wk, and
Wv are learnable linear projection matrices used to obtain queries
(Q), keys (K), and values (V) for attention computation.
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FIGURE 1
Overall architecture of our proposed model.
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FIGURE 2
The Channel Attention Block for domain-specific feature
enhancement in the ViT encoder.

Step 3: Fuse features across branches using deformable attention,
detailed in Equation 5:

{
Fcd = DeformAttn(Qd,Kd,Vd)

Fcs = DeformAttn(Qs,Ks,Vs)
(5)

Here, Fcd and Fcs represent the cross-attended features refined via
deformable attention in the ViT and convolutional branches,
respectively. Deformable attention adaptively samples spatial
locations, enabling the model to focus on semantically relevant
regions. This mechanism facilitates more effective feature alignment
across the two branches.

Step 4: Refine the fused featureswith residual feedforward networks
(FFN) and layer normalization (LN)—this refinement is
formalized in Equation 6:

{
F1
d = FFN(LN(Fd + F

c
d)) + (Fd + F

c
d)

F1
s = FFN(LN(Fs + Fcs)) + (Fs + Fcs)

(6)

Here, F1
d and F1

s denote the updated deep and shallow features
after refinement. The FFN enhances non-linear representation
capacity, while LN improves training stability. The residual
connection facilitates efficient information preservation and
gradient flow.

2.3 ViT-Conv fusion block

A fusion block equippedwith an automatic selectionmechanism
is constructed to integrate the diverse information provided by

FIGURE 3
The Multi-branch Cross Attention Block for fusing ViT and
convolutional features via cross-attention.

convolutional features and Transformer features. The architectural
details of this module are illustrated in Figure 4.

The ViT-Conv Fusion Block adaptively integrates convolutional
and Transformer features through these steps:

Step 1: Process deep (Fd) and shallow (Fs) features individually with
a channel attention layer to obtain logits (φd,φs). Channel
attention highlights informative channels in each branch.
This yields two attention logits representing the feature
importance.

Step 2: Aggregate logits fromboth branches to compute an element-
wise selection mask using a sigmoid function. Equation 7
defines this aggregation process.

ω = Sigmoid(φd +φs) (7)

Here, ω denotes the attention-based selection mask used to balance
feature contributions from the two branches. The summed logits
φd +φs capture joint channel importance. The sigmoid function
constrains the mask values between 0 and 1, enabling soft feature
weighting.

Step 3: Compute the final fused output via element-wise
multiplication, as specified in Equation 8:

Foutput = F
o
d ⊗ω+ F

o
s ⊗ (1−ω) (8)

Here, Fod and Fos represent the output features from the Transformer
and convolutional branches, respectively. Foutput denotes the final
fused representation. The selection mask ω adaptively controls the
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FIGURE 4
The ViT-Conv Fusion Block for adaptive integration of Transformer and convolutional features.

contribution of each branch, enabling dynamic integration of global
and local information.

2.4 Loss function

To supervise both the coarse and fine segmentation branches
during training, a Progressive Dual-Branch Loss (PDB Loss) is
proposed. This loss function dynamically adjusts the supervision
weights between the coarse and fine predictions over training
epochs. The total training loss is precisely defined by Equation 9:

LPDB =
1
B

B

∑
i=1
[(1− α) ⋅LDiceCE (ŷ

(i)
coarse,y(i)) + α ⋅LDiceCE (ŷ

(i)
fine,y
(i))]

(9)

Here, ŷ(i)coarse and ŷ(i)fine are the predicted masks from the coarse and
fine branches for the i-th sample, and y(i) is the corresponding
ground truth. B denotes the batch size. α ∈ [0,1] is a progressive
weight that determines the relative contribution of the fine branch.

For each prediction, a hybrid loss combining Dice and binary
cross‑entropy (BCE) is used, aspresented in Equation 10:

LDiceCE (ŷ,y) = λdice ⋅LDice (ŷ,y) + λce ⋅LCE (ŷ,y) (10)

The loss weights were set as λdice = 0.8 and λce = 0.2. To shift
the learning focus from coarse to fine predictions over time, the
coefficient α was scheduled according to the current epoch t
as given in Equation 11:

α =min( t+ 1
5
,1.0) (11)

This progressive weighting strategy encourages the model to
learn global structural features in early epochs via the coarse
branch and gradually refine local boundaries and details through the
fine branch.

3 Experiments

In this section, a series of comprehensive experiments
is performed to evaluate the effectiveness of the proposed
HiImp-SMI on medical image segmentation tasks. Initially, the
experimental setup is detailed, including dataset selection and
training configurations. Subsequently, the performance of HiImp-
SMI is quantitatively and qualitatively compared with state-of-
the-art implicit and discrete segmentation approaches, specifically
addressing binary polyp segmentation on the Kvasir-Sessile dataset
[13] and multi-class organ segmentation on the BCV dataset [56].
Additionally, robustness analyses under various data distributions
are presented. Finally, a systematic ablation study is conducted
to elucidate the contributions of individual modules within
HiImp-SMI.

The quantitative comparison results are summarized in Table 1,
highlighting mean Dice and IoU scores alongside corresponding
standard deviations. The best-performing methods are emphasized
in bold, illustrating that HiImp-SMI consistently achieves superior
segmentation performance compared to existing state-of-the-
art methods.

3.1 Experimental setup

The model’s performance is evaluated on two distinct medical
image segmentation tasks: binary polyp segmentation and multi-
class abdominal organ segmentation.

For polyp segmentation, experiments are conducted on the
challenging Kvasir-Sessile dataset [13], which contains 196 RGB
images of small sessile polyps. To assess the generalization capability
of HiImp-SMI, the pretrained model is further evaluated on the
CVC-ClinicDB dataset [13], which consists of 612 images extracted
from 31 colonoscopy sequences.

For multi-organ segmentation, the model is trained on the
BCV dataset [56], which includes 30 CT scans with annotations
for 13 organs, and is further evaluated on the AMOS dataset
[57], which contains 200 CT training samples, following the same
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TABLE 1 Overall segmentation results compared to state-of-the-art discrete and implicit methods. The last two columns present the mean Dice and
IoU scores with standard deviation. The best results are highlighted in bold.

Method type Method Kvasir-sessile BCV

Dice(%) IoU(%) Dice(%) IoU(%)

Discrete

U-Net [1] 63.89±1.30 46.94±0.65 74.47±1.57 59.32±0.79

PraNet [3] 82.56±1.08 70.3±0.54 N/A N/A

UNETR [11] N/A N/A 81.14±0.85 68.27±0.43

Res2UNet [9] 81.62±0.97 68.95±0.49 79.23±0.66 65.6±0.33

NnUNet [2] 82.97±0.89 70.9±0.45 85.15±0.67 74.14±0.34

MedSAM [15] 82.88±0.55 70.77±0.28 85.85±0.81 75.21±0.41

Implicit

OSSNet [44] 76.11±1.14 61.43±0.57 73.38±1.65 57.95±0.83

IOSNet [45] 78.37±0.76 64.43±0.38 76.75±1.37 62.27±0.69

SWIPE [46] 85.05±0.82 73.99±0.41 81.21±0.94 68.36±0.47

I-MedSAM [55] 91.49±0.52 84.31±0.26 89.91±0.68 81.67±0.34

HiImp-SMI (Ours) 92.39±0.36 85.86±0.18 91.21±0.31 83.84±0.16

Note. “N/A” indicates that the corresponding experiment was not conducted.
Bold values indicate the best performance for each metric.

experimental setup as [22]. Since this study focuses on 2D medical
image segmentation, slice-wise segmentation is performed on CT
images. Following the data preprocessing strategy of SWIPE [46],
all datasets are split into training, validation, and test sets in
a 6:2:2 ratio, and the reported Dice scores are based on test
set results.

The training process involves fine-tuning the SAM encoder [7]
with ViT-B as the backbone network.The LoRA rank is set to 4, with
amplitude information incorporated in the frequency adapter. The
MLP dimensions for the implicit segmentation decoder are [1,024,
512] for Decc and [512, 256, 256, 128] for Decf. During training,
12.5% of the most uncertain points are sampled for refinement,
and the dropout probability is set to 0.5. For the multi-organ
segmentation task, the final layer of Decc and Decf is adjusted to
match the number of target segmentation classes. HiImp-SMI is
optimized using AdamW [58] with α = 0.5,β = 0.1, a learning rate
of λada = 5× 10−5 for the encoder adapter, and λdec = 1× 10−3 for
the decoder.

To ensure fair comparison, all methods are trained for 1,000
epochs under the same experimental setup. During testing, Dice
scores and Hausdorff distances [6] are reported based on the best
validation epoch. The input image resolutions are set to 384× 384
(Sessile dataset) and 512× 512 (BCV dataset slices).

The baseline approaches are categorized into discrete methods
and implicit (continuous) methods. The discrete methods include
U-Net [1], PraNet [3], Res2UNet [9], nnUNet [2], UNETR [11],
and MedSAM [15]. Among these, MedSAM [15] is also a SAM-
based approach, where the original decoder is directly fine-tuned.
The implicitmethods includeOSSNet [44], IOSNet [45], and SWIPE
[46] and I-MedSAM [55].

3.2 Quantitative comparison

A Dice score comparison is first presented against baseline
methods. Subsequently, experiments are conducted across
different resolutions and domains to evaluate the model’s
cross-domain generalization ability under data distribution
shifts. Finally, Hausdorff Distance (HD) [6] is computed to
compare the segmentation boundary quality across different
experimental settings.

Discrete methods and implicit methods are compared in
terms of trainable parameters and Dice scores (including standard
deviation). Specifically, binary segmentation is performed on the
Kvasir-Sessile dataset, while multi-class segmentation is conducted
on the CT BCV dataset, with results detailed in Table 2. Leveraging
the proposed frequency adapter, SAM generates richer feature
representations, leading to improved segmentation boundary
quality. In contrast, SwIPE, which employs Res2Net-50 [9] as its
backbone, exhibits weaker feature extraction capability, resulting in
lower segmentation quality.

The adaptability of binary polyp segmentation across different
resolutions and domains is assessed by comparing it with the best-
performing discrete and implicit methods. To adapt to different
target resolutions (e.g., low resolution 128× 128 and high resolution
896× 896), the pretrained HiImp-SMI model, initially trained at
384× 384 standard resolution, is modified by scaling the input
coordinates to match the target resolution, and the corresponding
Dice scores are computed. For discrete methods, the output
resolution remains consistent with the input resolution. Input
images at the original resolution of 384× 384 are provided, and the
generated segmentation results are rescaled to the target resolution
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TABLE 2 Cross-resolution evaluation from 384×384 to 128× 128 and from 384×384 to 896×896.

Method type Method 384×384→128× 128 384×384→896×896

Dice(%) IoU(%) Dice(%) IoU(%)

Discrete

PraNet [3] 72.64 57.04 74.95 59.94

PraNet∗ [3] 68.79 52.43 43.92 28.14

nnUNet [2] 73.97 58.69 83.56 71.76

nnUNet∗ [2] 65.34 48.52 76.36 61.76

MedSAM [15] 82.39 70.05 83.56 71.76

Implicit

IOSNet [45] 78.37 64.43 78.01 63.95

SWIPE [46] 81.26 68.44 84.33 72.91

I-MedSAM [55] 91.45 84.25 91.33 84.04

HiImp-SMI (ours) 92.52 86.08 92.28 85.67

Bold values indicate the best performance for each metric.

TABLE 3 Cross-domain results for binary polyp segmentation and multi-class abdominal organ segmentation.

Method type Method Kvasir→CVC BCV→AMOS

Dice(%) IoU(%) Dice(%) IoU(%)

Discrete

PraNet [3] 68.37 51.94 N/A N/A

UNETR [11] N/A N/A 81.75 69.13

nnUNet [2] 84.91 73.78 79.63 66.15

MedSAM [15] 74.59 59.48 71.98 56.23

Implicit

IOSNet [45] 59.42 42.27 79.48 65.95

SWIPE [46] 70.1 53.96 82.81 70.66

I-MedSAM [55] 88.83 79.9 86.28 75.87

HiImp-SMI (ours) 91.58 84.47 88.17 78.84

Note.“N/A″ indicates that the corresponding experiment was not conducted.
Bold values indicate the best performance for each metric.

TABLE 4 HD distance (↓) for different methods and datasets.

Method Kvasir-sessile Kvasir→CVC 384→128 384→896 BCV BCV→AMOS

nnUNet [2] 31.30 82.31 13.69 72.31 6.50 80.39

MedSAM [15] 21.53 30.15 8.04 51.82 10.62 52.14

IOSNet [45] 51.72 81.60 35.33 87.86 21.46 61.19

I-MedSAM [55] 11.59 19.76 7.91 32.77 5.95 37.53

HiImp-SMI (ours) 10.48 20.30 3.60 24.52 4.97 38.12

Bold values indicate the best performance for each metric.
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FIGURE 5
Qualitative comparisons on five representative samples. The last row indicates the method names corresponding to each column.

TABLE 5 Ablation study on the integration of different modules: Channel Attention Block (CAB), Multi-branch Cross Attention Block (MCAB), and
ViT-Conv Fusion Block (VCFB). Evaluation is conducted on the Kvasir-Sessile dataset and its cross-domain transfer to the CVC dataset.

Modules Kvasir-sessile Kvasir-sessile→ CVC

CAB MCAB VCFB Dice (%) ↑ HD ↓ IoU (%) ↑ Dice (%) ↑ HD ↓ IoU (%) ↑

91.81 11.80 84.86 89.07 24.06 80.29

✓ 92.02 11.28 85.22 88.94 24.66 80.08

✓ ✓ 92.42 11.50 85.91 88.87 22.12 79.97

✓ ✓ ✓ 92.51 9.98 86.06 91.46 21.03 84.26

Bold values indicate the best performance for each metric.

for evaluation. Additionally, the suffix (∗) is used to mark discrete
baselines, where the original medical images are resized to the
target resolution before being fed into the models, allowing these
methods to directly generate segmentation results at the target
resolution.

As shown in Table 2, implicit methods exhibit stronger
adaptability to spatial resolution changes and consistently
outperform discrete methods. Among implicit methods, HiImp-

SMI achieves the highest performance across different output
resolutions, which can be attributed to the proposed frequency
adapter, enhancing HiImp-SMI’s predictive capability across
resolutions.

Model performance across different datasets is examined. In
binary polyp segmentation, all methods are pretrained on the
Kvasir-Sessile dataset and directly evaluated on the CVC dataset.
Similarly, inmulti-class abdominal organ segmentation, all methods
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are pretrained on the BCV dataset and evaluated on the AMOS
dataset, focusing exclusively on the liver class.

As shown in Table 3, leveraging SAM’s generalization ability,
HiImp-SMI outperforms the best discrete method, achieving
Dice scores of 91.58% on the CVC dataset and 88.17% on the
AMOS dataset.

Segmentation boundary quality is further assessed using
Hausdorff Distance (HD) [19]. As shown in Table 4, HiImp-SMI
achieves lower HD scores, indicating superior boundary precision
compared to existing methods.

3.3 Qualitative comparison

As shown in Figure 5, a qualitative comparison is conducted
on the Kvasir-Sessile dataset. Additionally, the input medical
images and their corresponding ground truth segmentation masks
are provided, where segmentation boundaries are highlighted
in green in Figure 5.The sharpness of boundaries in the visual results
may be attributed in part to the frequency-domain information
introduced via FFT.

From the results, it is evident that HiImp-SMI produces more
precise segmentation boundaries. By leveraging the proposed
modules, HiImp-SMI effectively aggregates high-frequency
information from the input, leading to improved segmentation
accuracy in the final output.

3.4 Ablation study

An ablation study is conducted to evaluate the effectiveness of
each module within the high-frequency adapter. The results are
summarized in Table 5.

In the baseline model, the single frequency adapter module
consists of a linear down-projection layer, a GELU activation
function, and a linear up-projection layer. On the Kvasir-
Sessile dataset [8], the baseline model achieves a Dice score of
91.81% and an HD of 11.80. When transferred to the CVC dataset,
the Dice score drops to 89.07%, with an HD of 24.06.

As the channel attention block, bi-directional cross-attention
block, and ViT-Conv fusion block are incrementally added, model
performance exhibits a significant improvement. When all three
modules are incorporated, the Dice score on the Kvasir-Sessile
dataset improves to 92.51%, while HD decreases to 9.98. Similarly,
on the CVC dataset, the Dice score improves to 91.46%, and HD
decreases to 21.03, highlighting the necessity and effectiveness of the
proposed modules.

4 Conclusion

In this study, a novel implicit Transformer-based framework,
HiImp-SMI, was proposed to overcome key limitations in medical
image segmentation, such as poor boundary refinement, weak
feature fusion, and limited cross-domain generalization. High-
frequency information and multi-scale features were incorporated
through three main components: a Channel Attention Block
for frequency-domain feature adaptation, a Multi-Branch Cross

Attention Block for hierarchical feature exchange, and a ViT-
Conv Fusion Block for adaptive context integration. Additionally,
a Progressive Dual-Branch Loss was introduced to guide the
training process from coarse to fine segmentation. Extensive
experiments conducted on the Kvasir-Sessile and BCV datasets
demonstrated that HiImp-SMI consistently outperformed state-of-
the-art methods, particularly in cross-domain and cross-resolution
tasks. Ablation studies further confirmed the effectiveness of each
proposed module.

However, the current framework has not yet been validated in
clinical or multi-center settings. Future research will aim to evaluate
its applicability in real-world clinical workflows.

Overall,HiImp-SMIprovided a unified and adaptive solution for
precise and generalizable medical image segmentation.
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