
TYPE Original Research
PUBLISHED 19 June 2025
DOI 10.3389/fphy.2025.1615591

OPEN ACCESS

EDITED BY

Yongyuan Jiang,
Harbin Institute of Technology, China

REVIEWED BY

G. Palai,
Sri Sri University, India
Wenlin Gong,
Soochow University, China

*CORRESPONDENCE

Tiqiao Xiao,
tqxiao@sari.ac.cn

Haipeng Zhang,
zhanghp@sari.ac.cn

RECEIVED 21 April 2025
ACCEPTED 30 May 2025
PUBLISHED 19 June 2025

CITATION

Tang J, Zhang H, Zhao C, Zhao N, Wu J,
Guo H and Xiao T (2025) Megapixel X-ray
ghost imaging with a prior-recorded
reference.
Front. Phys. 13:1615591.
doi: 10.3389/fphy.2025.1615591

COPYRIGHT

© 2025 Tang, Zhang, Zhao, Zhao, Wu, Guo
and Xiao. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Megapixel X-ray ghost imaging
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Introduction: Efficient implementation of X-ray ghost imaging (XGI) with
megapixel-level field-of-view and spatial resolution of few microns is key
towards practical applications of XGI, but such implementation remains
constrained by the time-consuming data acquisition and low-quality
reconstruction for megapixel images under insufficient overall sampling rates.

Methods: We propose an efficient implementation scheme based on
synthetic aperture X-ray ghost imaging (SAXGI), in which only one set
of prior-recorded reference images is needed for ghost imaging of
multiple objects.

Results: Experimental results demonstrated that images of three different
objects, including tungsten fiber, resolution chart and small fish, can be
successfully reconstructed with the same set of prior-recorded references,
which implicates that the efficiency of data acquisition can be improved
significantly. Taking advantage of SAXGI, image size of 2040 × 1440 pixels
and system resolution of 10 μm was achieved. Results of a small fish
show that comparable image quality is achieved with a sampling rate of
27.6%, which means that the radiation dose is reduced to about 1/4 of a
conventional radiography. Furthermore, an extreme sampling rate down to 0.5%
is enough to make out the skeleton of the fish, which further demonstrates
high robustness and the low-dose potential of the proposed method for
X-ray imaging.

Conclusions: In conclusion, the proposed method with a prior-recorded
reference is applicable for XGI of multiple samples and the data acquisition
efficiency is greatly improved. Through further hardware improvement of the
imaging system, SAXGI with a prior-recorded reference is anticipated to provide
an efficient solution for megapixel X-ray ghost imaging.

KEYWORDS

X-ray ghost imaging, TV regularization, synthetic aperture imaging, radiology with low
radiation dose, computational imaging

1 Introduction

X-ray ghost imaging (XGI), known as a non-local imaging method, is promising in
simultaneously attaining high resolution and large field-of-view (FOV) with radiation dose
lower than that of conventional radiology, which is a pivotal aim among research fields
including biomedicine [1], material science [2], brain connectomics [3], etc. In a typical

Frontiers in Physics 01 frontiersin.org

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2025.1615591
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2025.1615591&domain=pdf&date_stamp=2025-06-18
mailto:tqxiao@sari.ac.cn
mailto:tqxiao@sari.ac.cn
mailto:zhanghp@sari.ac.cn
mailto:zhanghp@sari.ac.cn
https://doi.org/10.3389/fphy.2025.1615591
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fphy.2025.1615591/full
https://www.frontiersin.org/articles/10.3389/fphy.2025.1615591/full
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Tang et al. 10.3389/fphy.2025.1615591

setup of the optical path for ghost imaging [4], a randomly intensity-
modulated light beam is split into two identical beams, serving as
illumination beams for the object and reference arms respectively.
The light beam traversing the object arm is directed through the
object into a bucket detector devoid of spatial resolution, while
the beam in the reference arm propagates an equivalent distance,
directly illuminating a planar detector capable of spatial resolution.
The reconstructed image, through the correlation between the
object and reference signals, resolves the resolution-FOVdichotomy
inherent in local imaging, thereby facilitating the possibility of
imaging that compromises neither resolution nor FOV with no
substantial demand for full sampling dose as that of conventional
radiology.

With the ongoing advancements in high-performance X-ray
source capabilities, new methodology in X-ray imaging [5–12] and
diversified methods for X-ray ghost imaging have been developed
in past few decades [13–22]. With respect to experimental setup for
ghost imaging, three strategies prevail in X-ray regime: actual beam-
splitting strategy, “virtual” or equivalent beam-splitting strategy,
and computational strategy [23]. XGI via the actual beam-splitting
strategy, as it is, has two distinctive beams at any given time during
the experiments to acquire object and reference signals [24–30].
Such strategy is intuitive in consistence with the typical setup and
has the potential of dynamic X-ray ghost imaging. However, its
validity is established when the two distinctive beams have truly
identical intensity distributions, which is often not the case as
expected [31]. Virtual beam-splitting strategy bypasses this problem
by assuming that a single beam at distinctive moments can be
considered as identical “beams” [32–37]. XGI via virtual beam-
splitting strategy records object and reference signals at different
moments, with the object being moved into and out of the optical
path repeatedly, and such strategy suffers from time-inefficiency
and low precision in mechanical alignment. Computational XGI
abolishes the experimental recording of the reference signals to
achieve efficient data acquisition by applying known masks as
the light field modulator [38–43]. However, accurate calibration
of X-ray masks is constrained by technical limitations, which
makes it arduous to implement megapixel XGI via computational
strategy.

We aim to achieve timely efficient while readily available X-
ray ghost imaging with megapixel FOV and micron-level resolution
at relatively low radiation cost, which is yet impractical through
computational strategy due to the limitation of accurate mask
calibration, and inefficient via virtual beam-splitting strategy in
its repeated acquisition of reference signals for different objects.
Here we propose an efficient XGI implementation scheme as a
compromise between computational strategy and virtual beam-
splitting strategy, which only requires recording high-resolution
images in the reference arm once to achieve megapixel imaging
of multiple objects. In this way, efficient data acquisition for
megapixel XGI is achieved with readily available masks. Firstly, we
introduces principles of the implementation scheme, which is based
on synthetic aperture X-ray ghost imaging (SAXGI) [44] to achieve
megapixel imaging with less measurement. Three types of objects
are employed to evaluate the effectiveness of the proposed method
for ghost imaging of multiple objects with the same set of prior-
recorded references. Finally, conclusion and related discussion are
brought out.

2 Principle and method

2.1 SAXGI with prior-recorded reference

Basic experimental setup for ghost imaging consists of two
light paths: the object arm and the reference arm, incorporating
a bucket detector S in the object arm and an array detector R
in the reference arm. In the scenario of synthetic aperture ghost
imaging, an array of bucket detectors is utilized in the object
arm, while a high-resolution array detector is employed in the
reference arm.The pixel size of bucket detector arrays is significantly
larger than that of the high-resolution detector in the reference
arm. This allows FOV to be unrestricted by the high-resolution
detector and, since image reconstruction for SAXGI is based on
the pixel units of the bucket detectors, total number of pixels in
the imaging FOV is, in principle, unlimited. The area of the pixel
units in the bucket detector array is much smaller than the total
FOV, enabling high-quality ghost imaging reconstruction with far
fewer number of measurements than required by conventional
ghost imaging methods. This facilitates the achievement of
high-resolution, large FOV, and low-dose X-ray imaging
simultaneously.

Let the bucket detector array used on the object arm be denoted
as S = {S(p,q)}

P,Q
, where each bucket detector S(p,q) corresponds to

the same spatial position as one specific sub-array detector on the
reference arm. Accordingly, the sub-array detector on the reference
arm can be represented asR(p,q) = {R(p,q)(m,n)}

M,N
, where the spatial

range of signals received by the bucket detector array on the object
arm constitutes the FOV of SAXGI imaging system. Denote the
signals obtained from the object arm detector and the reference arm
detector at the i th measurement as Si and Ri respectively, then at the
i th measurement, both the object and reference arms collect their
signals respectively, as shown in Equation 1 for Si and Equation 2
for Ri:

Si =
[[[[

[

S(1,1)i ⋯ S(1,Q)i

⋮ ⋱ ⋮

S(P,1)i ⋯ S(P,Q)i

]]]]

]P×Q

(1)

Ri =
[[

[

R(1,1)i ⋯ R(1,Q)i
⋮ ⋱ ⋮

R(P,1)i ⋯ R(P,Q)i

]]

]P×Q

=

[[[[[[[[[

[

R(1,1)i (1,1) ⋯ R(1,1)i (1,N)
⋮ ⋱ ⋮

R(1,1)i (M,1) ⋯ R(1,1)i (M,N)
⋯

R(1,Q)i (1,1) ⋯ R(1,Q)i (1,N)
⋮ ⋱ ⋮

R(1,Q)i (M,1) ⋯ R(1,Q)i (M,N)
⋮ ⋱ ⋮

R(P,1)i (1,1) ⋯ R(P,1)i (1,N)
⋮ ⋱ ⋮

R(P,1)i (M,1) ⋯ R(P,1)i (M,N)
⋯

R(P,Q)i (1,1) ⋯ R(P,Q)i (1,N)
⋮ ⋱ ⋮

R(P,Q)i (M,1) ⋯ R(P,Q)i (M,N)

]]]]]]]]]

]
(MP)×(NQ)

(2)

Here, the two-dimensional array of bucket detectors on the
object arm, denoted as S(p,q)i , has P and Q pixels in the vertical
and horizontal directions respectively. At each vertical position
p and horizontal position q, the corresponding position on the
reference arm Ri is equipped with a sub-array detector R(p,q)i ,
which has M and N pixels in its vertical and horizontal directions
respectively.Thus, the total pixels of the reference arm in the vertical
and horizontal directions are MP and NQ respectively. Synthetic
Aperture Ghost Imaging method reconstructs the image using the
ghost imaging algorithm f for each pair of signals at vertical and
horizontal positions (p ∈ [1,P],q ∈ [1,Q]), which corresponds to
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S(p,q) and R(p,q) respectively, thus, the full reconstructed image T is
calculated by Equation 3:

T =
[[[[

[

T(1,1) ⋯ T(1,Q)

⋮ ⋱ ⋮

T(P,1) ⋯ T(P,Q)

]]]]

]P×Q

,T(p,q) = f(S(p,q),R(p,q)) (3)

where T represents the full reconstructed image of the object,
while T(p,q) denotes the reconstructed sub-image of the object
corresponding to the bucket detector at position (p,q) on the
object arm.

To reduce the number of measurements, i.e., lower the sampling
rate of the bucket detector array units, the TVAL3 algorithm
[45, 46] for reconstruction can be employed. Unlike conventional
correlation-based ghost imaging reconstruction methods that
typically require sufficient sampling densities, TVAL3 enables
significant reduction in sampling requirements while faithfully
recovering image details. The TVAL3 reconstruction algorithm for
synthetic aperture ghost imaging is formulated as Equations 4–6:

TSAXGI−TVAL3 =
[[[[

[

T(1,1)TVAL3 ⋯ T(1,Q)TVAL3

⋮ ⋱ ⋮

T(P,1)TVAL3 ⋯ T(P,Q)TVAL3

]]]]

]P×Q

(4)

T(p,q)TVAL3 = arg minT(p,q)[TV(T(p,q)) + λ‖R(p,q) ·T(p,q) − S(p,q)‖2
2
] (5)

TV(T(p,q)) =
M,N

∑
m=1,n=1
|T(p,q)(m+ 1,n) −T(p,q)(m,n)| + |T(p,q)(m,n+ 1) −T(p,q)(m,n)|

(6)

Here, the optimization objective T(p,q) represents the sub-image
of the object reconstructed at the position corresponding to (p,q).
TV(T(p,q)) is the total variation regularization term based on L1
norm, which is obtained by summing the absolute values of the
differences between all adjacent pixel values of the sub-image T(p,q)

in the vertical direction m = 1,…,M and the horizontal direction
n = 1,…,N. ‖R(p,q) ·T(p,q) − S(p,q)‖2

2
is the fidelity term based on L2

norm, introduced as an optimization penalty to ensure that the
ideal imaging process R(p,q) ·T(p,q) = S(p,q) holds, with λ being the
corresponding penalty parameter.

Building on the fundamental principles of synthetic aperture
ghost imaging, we developed a novel experimental setup with a
prior-recorded reference, depicted in Figure 1. According to virtual
beam-splitting strategies, the object in question Yj must be first
removed from the optical path to capture the reference signal
Rj
i using a high-resolution detector. Subsequently, the object is

reintroduced into the optical path to capture the object signal Sji
corresponding to Yj with a low-resolution detector. This in-and-out
movement is repeated for all number of measurements i to collect
complete data for ghost imaging. Acquiring such data typically
requires several hours with reasonable number of measurements
and exposure time, and the whole process must be repeated every
time a new test object Yj′ is introduced. Low data acquisition
efficiency via virtual beam-splitting strategies hampers its
broader application.

In the process of collecting data for multiple objects, provided
that the positions of the random scattering medium precisely
match between the two arms, it is possible to utilize a single
set of reference arm data for different object reconstructions.

FIGURE 1
Schematic diagram of the proposed experimental setup with a
prior-recorded reference based on Synthetic Aperture X-ray Ghost
Imaging (SAXGI). With the random scattering medium positioned at
different specified locations {(xi,zi)}C, the following images are
sequentially captured: (1) high-resolution light field images modulated
by the diffuser without object, i.e., the reference signal R; (2)
low-resolution images in the object arm S1,…,Sj,… when objects
Y1,…,Yj,… are introduced respectively into the optical path.
Subsequently, SAXGI reconstruction is performed using all the
collected R and S1,…,Sj,… data.

Initially, the zeroth dataset is recorded prior to other detection--
this is when no object is present in the optical path, and the
modulated light field are recorded by a high-resolution detector
with the diffuser at specified positions {(xi,zi)}i=1,…,C. This prior-
recorded dataset serves as the reference arm data R for ghost
imaging. Subsequent datasets for j = 1,…, J, where J is the total
number of objects to be tested, involve positioning the test object
Yj within the optical path and capturing images at the specified
positions {(xi,zi)}i=1,…,C with a low-resolution bucket detector array,
corresponding to the object arm data Sj for the test object Yj in ghost
imaging. By leveraging the same set of prior-recorded reference data
R, this approach not only circumvents the time and positioning
inaccuracies brought about by repeatedly moving test objects in
and out but also facilitates the collection of data from multiple
objects in a single experimental operation, markedly improving
data acquisition efficiency. Aside from the time-intensive collection
of high-resolution data for the reference arm, the data acquisition
approach of the proposedmethod aligns with conventional imaging,
promoting the practical application of XGI. Given the significantly
larger pixel size of the bucket detector array compared to the
high-resolution detector and its enhanced sensitivity, this technique
also aims to achieve low-dose imaging of test objects. However,
due to the necessity for the random scattering medium to be
moved back and forth and accurately repositioned at the specified
{(xi,zi)}i=1,…,C positions, failure to precisely reposition at the same
spot could lead to discrepancies between object and reference arm
data, jeopardizing the experiment’s reliability. Therefore, motorized
positioning stage that carries random scattering medium must
exhibit high repeatability precision and minimal cumulative error.
Ideally, the repeatability precision ∆δ of motorized positioning
stage and the cumulative error g(p′) corresponding to the traversed
distance p′ between two positioning attempts, ∆δ+ g(p′), should be
less than a quarter of the pixel size of the high-resolution detector
DR, or at the very least, less than half of DR, to ensure images
reconstructed with a high signal-to-noise ratio (SNR).
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In the optical path of SAXGIwith prior-recorded reference, both
the high-resolution detector and the low-resolution detector, i.e., the
bucket detector array, are required not only to be precisely located at
corresponding spatial positions but also to have certain matching in
terms of pixel size. Specifically, the pixel sizeDS of the low-resolution
detector and the pixel size DR of the high-resolution detector need
to satisfy a relationship of integer multiples, as shown in Equation 7:

DS =M×N×DR (7)

so that a pixel S(p,q) at position (p,q) on the bucket detector
array corresponds to a sub-array R(p,q) = {R(p,q)(m,n)}

M,N
on the

high-resolution detector. However, detectors with such relationship
of multiple integers are not always readily available in general
experimental setups. Unlike existing approaches, ensuring precise
spatial alignment between the pixel units of the bucket detector array
and the corresponding sub-arrays in the reference arm during the
signal acquisition for different objects is the greatest challenge for
the success of this scheme. Typically, the difference in pixel unit size
between the bucket detectors and the high-resolution detector in the
reference arm can reach up to 40 times [47], making digital image
registration solutions hard to be implemented. Addressing this issue
through hardware setup is the most efficient solution.

2.2 Experimental setup

In this experiment, we utilized a customized detector capable of
achieving arbitrary pixel number binning to collect signals. Signal
of the reference arm was recorded using the high-resolution mode
without binning, while for recording signal of the object arm, the
detector was binned according to specific requirements. Since the
detector’s position remained unchanged while recording signals
from both the object and reference arm signals, high-precision
registration between the two arms’ signals was ensured.The detector
model used was the Hamamatsu C15440-20UP01, with a pixel array
of 2304 × 2304 and a pixel size of 6.5 μm × 6.5 μm, corresponding to
a FOV of 14.976 mm × 14.976 mm. With a frame rate of 89.1 fps,
the detector ensures rapid acquisition of signals from the object
arm. During the acquisition of the object signal, pixel binning was
performed by merging pixels from left to right, top to bottom, in
square regions of K×K to form a single pixel in the output image
(discarding pixels that do not divide evenly), where K is the binning
number of pixels on each side of the sub-array in the reference
arm corresponding to a bucket detector pixel unit. After merging,
each pixel in the object signal corresponds to a K×K square region
in the reference signal, thereby directly acquiring object signals
with highly registered positions during data acquisition. Thus, by
switching the detector’s binning modes, we achieved the collection
of high-resolution and low-resolution signals required for SAXGI
using a single optical path and a single detector.

Based on existing numerical simulation results [44], selecting
a pixel binning value of K =M = N = 40 allows for a good
balance between the sampling rate and image quality. However, for
commercially available detectors, choosing K = 40 binning directly
during acquisition is impractical, as accumulated background noise
for each pixel often exceeds the dynamic range of the detector, leading
to the signal-to-noise ratio dropping to zero. Figure 2 presents the
statistical distribution of the dark field image for the customized

Hamamatsu detector used in the experiments. This 16bit detector
has a dynamic range of 0–65,535, and in the absence of light
signals, it exhibits a background noise with an average value of μ =
100.97, a standard deviation of σ = 6.74, and a range of 321. After
performing a 40 × 40 pixel binning operation, the average value of
the detector’s background noise becomes 40× 40× 100.97 ≈ 160000,
with the detector’s dynamic range fully occupied by dark current,
rendering it unusable for object arm signal detection. To reduce the
impact of background noise, collecting the object arm signal with
fewer pixel binning and then further binning to an appropriate block
size in the computer is a practical choice. For example, applying a
4× 4 binning operation in the object arm gives a background noise
in each binned pixel at an average value of μ′ = 4× 4× μ = 1615.52
and a standard deviation of σ′ = 4× 4× σ = 107.84. This corresponds
to a maximum fluctuation of (μ′ + 3σ′)/65535 = 2.96% with respect
to the detector’s dynamic range (assuming Gaussian distribution of
the noise), which is acceptable for successful SAXGI reconstruction,
as demonstrated later in our result images. Considering that software
binning in thecomputerdoesnot introduceadditionaloverflowerrors,
theproposedworkaroundaddresses theproblemofdetector’sdynamic
range saturation. Since the detection of the object arm signal uses a
low-resolution detector with a binned pixel array, the feasibility of
the proposed approach can be demonstrated. It should be noted that
while we applied a customized detector in our study for the sake
of convenience, the workaround of using a 4× 4 binning in acquiring
objectarmsignalsandthenapplyingsoftware-binning inthecomputer
is practical formost commercially available detectors in that 1× 1, 2×
2,4× 4binningoptionisusually incorporatedintothedetectorsystem.

We conducted the experiments at the BL13HB beamline of the
Shanghai Synchrotron Radiation Facility [48], with a photograph of
the experimental setup shown inFigure 3.Theexperimental apparatus
primarilyconsistsofthreecomponents:motorizedpositioningsystems
for the diffuser (sandpaper), for the objects, and for the customized
Hamamatsudetectorrespectively.Before theexperiment, it iscrucial to
adjust the optical path to ensure the collimation of sandpaper, objects,
and the detector along the X-ray beam. The motorized positioning
stage for sandpaper scanning in X direction is a Kohzu XA16F-
L2101, with a movement range of ±50 mm, a micro-step resolution
of 0.5 μm, repeatability accuracy of ≤±0.5 μm, horizontal straightness
of ≤4 μm/100 mm, and vertical straightness of ≤2 μm/100 mm. The
motorized positioning stage for sandpaper scanning in Z direction is
a Kohzu ZA16sA-32F01, with a movement range of ± 25 mm, micro-
step resolution of 0.01 μm, repeatability accuracy of ≤± 0.3 μm, and
perpendicularity of ≤8 μm/50 mm. The motorized translation stage
for objects in X direction is a Kohzu XA16F-L21, and the lifting
stage for objects in Z direction is a Kohzu ZA16A-32F. During the
experiments, the pseudothermal light source is generated by a 15 keV
beammodulatedby the randomscatteringmediumof sandpaper,with
the SiC particle size of the sandpaper being approximately 75 μm.
The test objects are placed about 3.5 cm in front of the customized
Hamamatsu detector with a pixel size of 6.5 μm, approximately 41 cm
behind the sandpaper, thus the distance between the detector and
the diffuser is 44.5 cm. The detector’s 100 μm LuAG:Ce scintillator
converts X-rays into visible light, which is thenmagnified 2 times by a
lens group, resulting in an effectivedetector pixel size ofDR = 3.25μm.

During the experimental process, we followed the
aforementioned experimental scheme. Firstly, a set of high-
resolution randomly modulated reference patterns, of the region of
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FIGURE 2
Statistical distribution of the dark field image of the customized detector.

FIGURE 3
Photograph of the experimental setup, primarily composed of three
main parts: a motorized positioning stage for random scattering
medium (sandpaper), a motorized positioning stage for objects, and
the customized Hamamatsu detector. The detector can achieve
binning directly through electronic control without the need to
change its position.

interest (ROI) 2040× 1440 and an effective pixel size ofDR = 3.25μm,
was recorded. The reference patterns were recorded by using raster-
scanning strategy, where the movement of the sandpaper’s center
forms a 21 × 21 grid in the X-Z plane perpendicular to the optical
axis, and exposure time for a single projection was 400 ms. The
displacement for each adjacent step in X or Z direction was the
same 455 μm, equivalent to 130 effective pixels, which significantly
exceeds the 75 μm characteristic size of SiC particles. The moving
range in X or Z direction in total is thus 455μm× (21− 1) = 0.91mm.

By this way, the non-correlation between any pair of reference
patterns is ensured. Figure 4 shows the distribution of the center
value for normalized 2-dimensional cross correlation of adjacent
reference patterns. The histogram exhibits a correlation with mean
value 0.050 and standard deviation 0.006 between adjacent reference
patterns, which is a rather low correlation degree for the pairs
of reference patterns with highest possible correlation. Thus, the
incoherence of reference signals was demonstrated.

The prior-recorded references were then followed by the
sequential capture of low-resolution images of the object arm,
namely, a small fish (Poecilia reticulata), tungsten wire, and a
resolution chart. Considering the impact of the detector’s dynamic
range and background noise, a pixel binning ofK1 = 4 is used for the
data acquisition in the object arm, resulting in a ROI size of 510 ×
360, with a corresponding effective pixel size of 13 μm. Subsequently,
a pixel binning ofK2 = 10 was performed in the computer to achieve
the pixel combination of K = K1K2 = 40 required for SAXGI image
reconstruction. In other words, the size of the bucket detector array
in the object arm used for SAXGI reconstruction corresponds to
51 × 36, with an effective pixel size of DS = 130μm. The number
of measurements collected by scanning different positions of the
sandpaper in the experiment was C = 441. Typical reference signals
as well as object signals acquired directly and processed later are
shown in Figure 5, where Figure 5a is a reference signal, with a pixel
count of 2040 × 1440 and an effective pixel size of 3.25 μm; Figure 5b
is the object signal directly acquired, with a pixel count of 510 × 360
and an effective pixel size of 13 μm; and Figure 5c is the object signal
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FIGURE 4
Histogram of the center value for the normalized 2-dimensional cross-correlation between adjacent reference patterns.

FIGURE 5
Typical images obtained from SAXGI data acquisition and subsequent processing, scaled to the same size for ease of comparison. (a) Reference signal
with randomly modulated light field, with 2040 × 1440 pixels and an effective pixel size of 3.25 μm; (b) Object signal directly acquired with 4 × 4 binned
detector, with 510 × 360 pixels and an effective pixel size of 13 μm; (c) Object signal used for SAXGI reconstruction, with 51 × 36 pixels and an effective
pixel size of 130 μm.

used for SAXGI reconstruction, with a pixel count of 51 × 36 and an
effective pixel size of 130 μm. All images were reconstructed using
the TVAL3 algorithm.

3 Results and analysis

To validate SAXGI with prior recorded reference, we selected
three test objects: tungsten wire, a resolution target, and a small
fish, representing strong absorption objects, regular objects, and
complex biological objects respectively. This was done to evaluate
the performance of our scheme for different types of objects. We
first collected a set of high-resolution images from the reference
arm by scanning the sandpaper, then adjusted the detector to
a 4 × 4 binning mode and sequentially acquired the object

signals of the three objects at positions with their correspondent
modulated light field. Subsequently, the same set of reference signals
was used in reconstruction with the object signals for different
objects. Recording the reference arm signal once to achieve SAXGI
reconstruction for three different objects, in principle, verifies the
feasibility of the efficient implementation of the proposed scheme
for imaging multiple objects with a single reference scanning.

3.1 Sample with strong absorption

A tungsten wire object, approximately 20 μm in diameter,
almost entirely absorbs 15 keV X-rays and can be considered
a simple binary object. This setup allows us to assess the
feasibility of imaging strongly absorbing objects with the proposed
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FIGURE 6
SAXGI with prior-recorded reference of a strong absorption tungsten wire object, where (a) the target image with 2040× 1440 pixels; (b) the 40-binned
low-resolution image from the object arm, with 51×36 pixels; (c) the SAXGI reconstruction with 441 measurements and a sampling rate of 27.6%, with
2040× 1440 pixels.

approach. Reconstruction results are displayed in Figure 6, with
Figure 6a providing the target image of the tungsten wire. Figure 6b
depicts the 40-binned image from the bucket detector array
of the object arm, revealing that the object’s fine details are
indiscernible. Figure 6c showcases the SAXGI reconstruction result,
clearly revealing the tungsten wire’s details, including bends
and closely spaced wire configurations. Furthermore, the weak
absorption tape used to fasten the object is also revealed in the
reconstructed image. Compared to the target image shown in
Figure 6a, here Figure 6c recaptures all the structural details of the
tungstenwire object, albeit with slightly reduced contrast. According
to the definition of sampling rate α′ for ghost imaging without
synthetic aperture, 441measurements correspond to a sampling rate
of α′ = 441/(2040∗1440) = 0.015%, insufficient for effective ghost
imaging reconstruction. However, within the context of synthetic
aperture ghost imaging, the sampling rate associated with pixel
units in the bucket detector array is α = 441/(40∗40) = 27.6%, ample
for the TVAL3 reconstruction algorithm, thereby facilitating the
acquisition of a high-quality and large FOV reconstruction of the
tungsten wire object. Note that among the three test objects, the
reconstruction for tungsten wire exhibits superior contrast relative
to that for the resolution chart and the fish.This enhancement stems
from the inherent high SNR of tungsten signals, which enables
the algorithm to more efficiently mitigate intensity fluctuation
during processing. Consequently, the improved noise suppression
capability translates into higher-contrast reconstruction outcomes.

3.2 Resolution chart

Compared to the tungsten wire, the resolution chart represents
a periodic structure object with relatively low absorption, thereby
allowing the testing of the signal-to-noise ratio impact on imaging
results within the proposed imaging system. Moreover, the spatial
structure information of the resolution chart is more abundant,
containing grating structures with periods ranging from 15.0 μm to
0.4 μm, which effectively tests the ability of the proposed method in
resolving different spatial frequencies.

Figure 7 presents the SAXGI reconstruction for a resolution
chart, where Figure 7a is the high-resolution target image of the
resolution chart. Figure 7b shows the 40-binned image from the
bucket detector array in the object arm, in which all the periodic
structures are indiscernible. From the SAXGI reconstruction shown

in Figure 7c, the unit with a period of 15 μm is clearly resolved, and
the unit with a period of 10 μm is discernible, indicating that the
spatial resolution is 10 μm. Due to noise, units with smaller periods
are completely indistinguishable. Since individual pixels cannot
resolve discrete objects, we conclude that 10 μm, corresponding to
approximately 3 effective pixels of 3.25 μm in the reference arm,
represents the best achievable spatial resolution of this system.
Given the object’s inherently low contrast, the influence of noise
is fully manifested in the reconstructed image of Figure 7c, where
the primary source of noise could be the registration error between
the low-resolution signal of the object arm and the high-resolution
image of the reference arm. Scattering of X-rays by the resolution
chart itself and its substrate material may also contribute to the
significant noises.

3.3 Biological specimen

Tungsten wire object with strong absorption and resolution
chart object with relatively weakly absorption and periodic structure
are both artificial, and the capability to image actual complex
objects is a key test of the utility of the method proposed in
the paper. A small Poecilia reticulata fish was chosen as the
test object to focus on the quality of SAXGI reconstruction
to distinguish its skeletal distribution compared to traditional
projection imaging. Figure 8 presents the reconstruction results for
the small fish object, with Figure 8a showing the high-resolution
projection image of the object, with an image size of 2040 ×
1440. Figure 8b displays the 40-binned image from the bucket
detector array of the object arm, illustrating that the details
of the fish’s skeleton are difficult to be discerned. Figure 8c is
SAXGI reconstruction result, which clearly resolves the complex
skeletal distribution of the small fish. To further compare with
the projection image, Figure 8d provides the grayscale distribution
profiles at positions marked by the blue and red lines in Figures 8a,c
respectively. It can be observed that in areas where the object
signal is strong, corresponding to low relative grayscale areas in
the absorption image, the SAXGI reconstruction matches well with
the projection image. This demonstrates superior reconstruction
capabilities of our method for regions with higher SNR. In other
areas where the absorption signal is weak, corresponding to high
relative grayscale areas, the intensity distribution trends of the
two images are consistent, but the ghost imaging reconstruction
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FIGURE 7
SAXGI with prior-recorded reference of a resolution chart, where (a) the target image with 480×440 pixels; (b) the 40-binned low-resolution image
from the object arm, with 12× 11 pixels; (c) the SAXGI reconstruction with 441 measurements and a sampling rate of 27.6%, with 480×440 pixels.

FIGURE 8
SAXGI with prior-recorded reference of a Poecilia reticulata fish, where (a) the high-resolution projection image with 2040× 1440 pixels; (b) the
40-binned low-resolution image from the object arm, with 51×36 pixels; (c) the SAXGI reconstruction with 441 measurements and a sampling rate of
27.6%, with 2040× 1440 pixels; (d) Grayscale line profiles at marked lines in (a,c).

shows significant random fluctuations in intensity. This indicates
that the SAXGI reconstructed images exhibit noticeable noise,
leading to reduced imaging contrast in areas where the object
signal is weak.

Images reconstructed via SAXGI method exhibit irregular
fluctuations compared to the original images, which could, on
the one hand, originate from the residuals of the modulated
speckle patterns and, on the other hand, be related to the spatial
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misalignment between blocks during segmented reconstruction.
These factors, combined with other noise influences, result in
the deteriorated signal-to-noise ratio of the SAXGI reconstructed
images compared to traditional methods. Imperfect matching
between the sandpaper scanning in the object and reference arms
during multiple measurements could be a significant cause.

Recording the reference signal priorly and then sequentially
collecting the object signals for three different objects, the proposed
method is capable of reconstructing with high fidelity the structure
details of the objects. These results indicate that the implementation
scheme with a prior-recorded reference proposed in the paper can
achieve ghost imaging of different objects. Data collection process in
the proposed scheme is similar to traditional imaging methods and
may favor the widespread application of X-ray ghost imaging.

3.4 Potential of low dose radiology

One potential advantage of SAXGI is the capability to achieve
imaging at a low sampling rate, which implicates low radiation dose.
The experimental resultsmentioned above were reconstructed using
all 441 measurements. With a sampling rate of 27.6%, combined
with compressed sensing algorithms such as TVAL3, satisfactory
reconstruction results are achieved. Then, reconstructions will be
conducted with fewer measurements to validate the performance of
the proposed implementation scheme at even lower sampling rates.
The reconstruction of the small fish skeletal structure with reduced
sampling rates is shown in Figure 9, where Figure 9a is a full FOV
projection image of 2040× 1440, and Figures 9b–g represent SAXGI
reconstruction results at sampling rates of 27.6%, 12.5%, 6.3%, 3.1%,
1.25%, and 0.5% respectively. For ease of comparison of structure
details, only a part of the entire imaging FOV with dimensions
of 480× 720 is concentrated, as denoted in Figure 9a with a red
rectangle.

From Figure 9, it is evident that as the sampling rate decreases,
the block effect (see Section 4.1) in the reconstructed images
becomes more pronounced, and the impact of noise is more
significant. However, even at a sampling rate of 1.3% with 20
measurements used for reconstruction, the main structure of the
small fish remains clearly discernible. Even when the number of
measurements is reduced to 8, corresponding to a sampling rate of
0.5%, the skeletal outline can still bemade out.This indicates that the
proposed implementation scheme for SAXGI with a prior-recorded
is quite robust, and able to reconstruct object information even at
very low sampling rates. In practical applications, an appropriate
sampling rate can be selected by compromising the image SNR and
radiation dose. By optimizing experimental conditions, especially
the scanning precision of the scattering medium, SNR of the
reconstructed images at low sampling rates is expected to be
improved significantly.

4 Discussion

4.1 Block effect

In the images reconstructed by SAXGI with prior-recorded
reference proposed in this article, grid-like boundaries with

discontinuous light and dark areas can be observed. This
phenomenon, known as the block effect, mainly originates from
two sources: (1) Errors caused by the accuracy of the motorized
positioning stage during data acquisition. In our experimental
scheme, it is necessary to first record the reference at a series
of specified positions of the sandpaper, and then collect the
object signals at the corresponding positions. Since the motorized
positioning stage for sandpaper is not equipped with a closed-
loop control system incorporating a grating ruler, its inherent
displacement accuracy can lead to certain positioning errors.
Moreover, the back-and-forth movement of the sandpaper during
scanning contributes to significant positioning errors due to the
backlash of the positioning stage. These scanning errors can lead
to mismatches between the object and reference arm, resulting in
the residual of the sandpaper speckle patterns in the reconstructed
images, which affects the imaging contrast. (2) Errors caused by
SAXGI reconstruction algorithm. In the reconstruction process of
SAXGI, the image is reconstructed based on the signals from the
pixel units of the bucket detector array, with the overall imaging
FOV composed of blocks formed by the two-dimensional spatial
distribution of reconstructed units. Mismatches in spatial positions
of object and reference arm signals during data collection, as well as
differences in detection sensitivity and quantum efficiency among
bucket detector units, can lead to reduced SNR within blocks.
Particularly, reconstruction differences between adjacent blocks
can cause an abnormal increase in contrast at block edges, resulting
in grid-like boundaries.

In the experimental scheme via virtual beam-splitting strategies,
the sandpaper did not move during the collection of corresponding
object and reference signals, resulting in no spatial registration issues
between the object and reference arm signals, and thus no apparent
block effect was observed in the reconstruction results of (44),
namely, Figure 5d in (44). Numerical simulations also did not reveal
the impact of the block effect, as evidenced in Figure 3d in (44),
indicating that the SAXGI method itself may not be the main cause
of the block effect. Therefore, it can be concluded that in SAXGI
with prior-recorded reference proposed in the paper, the block
effect mainly arises from the mismatch between the positions of the
sandpaper in the object and reference arms during data acquisition.

To further demonstrate that the registration error is the
main cause of block effect, we intentionally introduced pixel-level
mismatch into our reconstruction process for the tungsten wire
to obtain Figure 10. In Figure 10a, one constant leftward pixel
mismatch of the diffuser with respect to the detector is introduced,
and subsequently evident vertical stripes darker on the left edge
and brighter on the right appears, compared to Figure 6c. As a
comparison, the reconstruction result Figure 7c also shows block
effect mainly as vertical stripes with bright-dark edges, indicating
a systematic rightward mismatch in the data acquisition. Similarly
in Figure 10b, one upward pixel mismatch of the diffuser with
respect to the detector caused horizontal stripes darker on the
upper edge and brighter on the lower. These results indicate that
registration errors result in block effect as directional boundary
artifacts. Note that for this demonstration specifically, since we
adopted the experiment data with unknown and non-uniform
registration error, stripes in Figure 10 are not as uniformas expected.

With one leftward as well as one upward pixel mismatch of
the diffuser with respect to the detector in Figure 10c, stripes
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FIGURE 9
Reconstruction results of a Poecilia reticulata fish at low sampling rates, with an area of 480 × 720 concentrated. (a) High-resolution projection image,
image size 2040 × 1440, with the concentrated 480 × 720 area highlighted in a red box; (b) Sampling rate of 27.6%, corresponding to 441
measurements; (c) Sampling rate of 12.5%, corresponding to 200 measurements; (d) Sampling rate of 6.3%, corresponding to 100 measurements; (e)
Sampling rate of 3.1%, corresponding to 50 measurements; (f) Sampling rate of 1.25%, corresponding to 20 measurements; (g) Sampling rate of 0.5%,
corresponding to 8 measurements.

in vertical and horizontal directions combine into evident block
effect. Experimentally, the intensity variations at image boundaries
observed are predominantly non-deterministic, implying that
registration errors are not uniform but exhibit random fluctuations.
Such omnidirectional perturbations at boundaries prevent the
formation of deterministic textures.

By further improving the scanning accuracy of the motorized
positioning stage, adding a closed-loop control system with a
grating ruler, and refining the existing TVAL3 algorithm during
the reconstruction process by considering the relationships between

bucket detector units, it is hoped that the impact of the block effect
can be effectively eliminated, thereby improving the SNR of the
reconstructed images by the proposed method.

4.2 Quantitative evaluation

Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity
Index Measure (SSIM) [49] are commonly utilized indicators for
assessing image quality. However, as shown in Tables 1, 2, for the
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FIGURE 10
Reconstruction results of tungsten wire when displacement is introduced, with other reconstruction conditions the same as in Figure 6c, where here
(a) one constant leftward pixel mismatch of the diffuser with respect to the detector is incorporated; (b) one constant upward pixel mismatch of the
diffuser with respect to the detector is incorporated; (c) one constant leftward as well as one constant upward pixel mismatch of the diffuser with
respect to the detector is incorporated.

TABLE 1 Quantitative evaluation of the reconstructed images of fish at
different sampling rates, with the bold values being anomalies contrary
to expected performance.

Sampling
rate/fish

PSNR SSIM Perceptual loss
based

27.6% 19.2 0.985 0.471

12.5% 13.3 0.929 0.490

6.3% 9.95 0.815 0.494

3.1% 9.67 0.801 0.509

1.3% 13.3 0.928 0.538

reconstruction outcomes of this experiment, these two indicators
do not seem to yield consistent results. Accordingly, we introduced
the perceptual loss function from the VGG19 deep learning network
[50] as an evaluation metric of the image quality. This criterion
utilizes a pretrained deep learning network to extract the features of
the image at various depth layers, assessing the similarity between
two images by comparing the differences in these feature layers, and
the perceptual loss function is formulated in Equation 8:

L(T1,T2) =
K

∑
i=1

U,V

∑
u=1,v=1

ci|φi(T
(u,v)
1 ) −φi(T

(u,v)
2 )| (8)

within this context, L represents the perceptual loss in the L1
norm between two images T1 and T2 in the VGG19 network, where
T(u,v) denotes the pixel value of image T at the vertical coordinate
u and horizontal coordinate v, with U and V being the sizes of
the image in the vertical and horizontal directions respectively.
K denotes the number of network layers, φi(T) represents the
parameters output by the i th layer of the network, and ci are the
corresponding layer weights.

In this study, when performing calculations, the overall
network layers K = 5 was selected, with layer weights c =
[1/32,1/16,1/8,1/4,1]. Subsequently, the perceptual loss was
added to the mean squared error (MSE) with weighting,
resulting in the perceptual-loss-based evaluation metric L′, as
formulated in Equation 9:

L′(T′1,T
′
2) = 10× L(T

′
1,T
′
2) +MSE(T′1,T

′
2) (9)

TABLE 2 Quantitative evaluation of the reconstructed images of
tungsten wire at different sampling rates, with the bold values being
anomalies contrary to expected performance.

Sampling
rate/tungsten

wire

PSNR SSIM Perceptual loss
based

27.6% 6.98 0.749 0.462

12.5% 7.33 0.773 0.519

6.3% 5.82 0.656 0.529

3.1% 5.54 0.629 0.548

1.3% 8.81 0.853 0.599

where T′ is the image T after normalization operations, with pixel
values distributed between [−1,1], and MSE(T′1,T

′
2) is the mean

squared error between T′1 and T′2.
Tables 1, 2 present various quantitative metrics between SAXGI

reconstructed images and target images of traditional projection at
different sampling rates for a fish and tungsten wire respectively.

As the sampling rate decreases, the image quality deteriorates.
Therefore, the corresponding PSNR and SSIM values should
decrease, and the perceptual loss should increase. The bold values
highlighted in Tables 1, 2 denote the anomalies in PSNR and SSIM
values with decreasing sampling rates, contrary to the expected
performance, indicating that these two commonly usedmetrics may
not provide a consistent assessment of image reconstruction. In
contrast, the evaluation metric based on perceptual loss from deep
learning offers a consistent assessment.

The discrepancy that PSNR/SSIM occasionally fail to reliably
assess reconstruction quality may originate from speckle noise
artifacts and dynamic range constraints. On the one hand,
speckle intensity fluctuations undetectable by PSNR/SSIM, which
lack multi-scale sensitivity, induce metric instability, whereas
convolutional neural networks effectively decouple diagnostically
irrelevant speckle patterns from structural features. On the other
hand, SSIM’s luminance term tends to become unreliable due
to dynamic range constraints imposed by mandatory contrast
adjustment in TVAL3-reconstructed images for visualization when
outlier intensities occur.
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While perceptual-loss-based metrics demonstrate enhanced
correlation with human visual perception, its utility for science
imaging is constrained by subjective parameter selection and case-
specific optimization tendencies. Perceptual loss function itself is
not an objective evaluation metric, and its effectiveness depends on
the selection of network type, weights for different feature layers,
norms, and other variables, which detracts from its universality as an
image evaluationmetric. Establishing a concept of normalization for
perception loss is challenging, so it only has relative significance and
cannot compare the degradation levels of different images. However,
test results indicate that this metric can provide a consistent
evaluation of the relative quality differences when assessing the
reconstruction quality of SAXGI at different sampling rates.

5 Conclusion

Aiming at efficient implementation of megapixel X-ray ghost
imaging, we developed an experimental scheme that achieves X-ray
ghost imaging ofmultiple objects, requiring only once acquisition of
the signals in the reference arm. By prior-recording and reusing the
same set of high-resolution reference images, the data acquisition
efficiency has been significantly improved compared to that of the
strategies available, reducing the data acquisition time from 6 h to
40 min. Experimental results demonstrate that the proposed scheme
can achieve high-quality image reconstruction with a size of 2040 ×
1440 pixels. According to the successful reconstruction of the fish
skeleton with only 8 measurements, corresponding to a sampling
rate of 0.5%, the potential of low dose radiology for the developed
method is verified experimentally. Imaging results with a resolution
chart demonstrate that a spatial resolution of 10 μm is achieved,
comparable to the resolution defined by the effective pixel size of
3.25 μm in the reference arm. By optimizing the scanning speed
and positioning control of the random light field modulator, the
image acquisition efficiency and the signal-to-noise ratio of the
reconstructed images are anticipated to be further improved. With
appropriate modifications, the developed experimental scheme is
expected to extend the field of view in nano-resolution imaging. In
addition, with the development of a dedicated X-ray detector which
can switch automatically between high efficiency mode for object
arm and high-resolution mode for reference arm, the proposed
experimental scheme can be implemented more efficiently.
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