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This study proposes a lightweight and efficient classification method for Power
Quality Disturbances (PQDs) using the PowerMobileNetmodel, which combines
the S-transform for time-frequency feature extraction and the MobileNetV3-
CBAM neural network for enhanced classification performance. Extensive
experiments demonstrate that PowerMobileNet achieves a prediction accuracy
of 99.33%, significantly surpassing traditional Convolutional Neural Networks
(CNNs) at 97.07% and MobileNetV3-SE at 98.58%. Compared to other state-
of-the-art models, PowerMobileNet outperforms KELM (97.4%), SqueezeNet
(99.0%), ShuffleNet V2 (98.6%), and AlexNet (98.3%) in terms of classification
accuracy. Additionally, it exhibits superior robustness under various signal-to-
noise ratio (SNR) conditions, maintaining high accuracy even at low SNR levels
(e.g., 90% accuracy at 20 dB). Themodel’s parameter count is drastically reduced
to 374,632 (1.43 MB), compared to the traditional CNN’s 112,094,345 (427.61 MB),
making it highly suitable for resource-constrained environments. Furthermore,
PowerMobileNet demonstrates the shortest runtime, with a training duration of
925 sandaclassificationtimeof0.57 s.Theseresultsvalidatetheeffectivenessand
efficiencyofPowerMobileNet for real-timePQDclassification,offeringsignificant
potential for practical power quality monitoring applications.

KEYWORDS

power quality disturbances, MobileNetV3-CBAM, S-transform, lightweight model, real-
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1 Introduction

Inmodern power systems, the rapid development of renewable energy generation, along
with the widespread adoption of distributed generation and microgrid control strategies,
has introduced a substantial number of nonlinear signals into the power system [1, 2].
From a physics perspective, the intermittency and volatility of wind and photovoltaic
power generation are rooted in the inherent variability of natural energy sources. Wind
speeds and solar irradiance fluctuate over time, leading to voltage fluctuations [3, 4], flicker,
and harmonic distortion in the electrical domain. These phenomena can be understood
through the lens of electromagnetic theory and signal processing principles, which highlight
the complex interactions between renewable energy sources and the power grid [5–7].
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Furthermore, the power electronic converters associated with these
energy sources are highly susceptible to PQDs, such as harmonic
distortion and voltage imbalance [8]. This susceptibility can be
attributed to the fundamental principles of power electronics, where
the conversion of electrical energy between different forms (e.g., AC-
DC, DC-AC) introduces nonlinearities and potential instabilities
into the system. The frequent occurrence of power quality events
not only causes significant inconvenience to users but also results
in substantial economic losses [9]. From a physics standpoint,
accurately identifying and classifying PQDs is crucial for ensuring
the stable operation of microgrids and the safe functioning of
related equipment [10, 11].This involves the application of advanced
signal processing techniques and machine learning algorithms to
extract meaningful features from complex, nonlinear signals. The
underlying physics of these disturbances provides a foundation
for developing robust and efficient detection methods, which are
essential for maintaining the integrity and reliability of modern
power systems.

However, PQDs in microgrids are often highly complex
and exhibit multiple characteristics, making feature extraction a
fundamental prerequisite for effective disturbance classification
[12–15]. Traditional detection methods rely on manual operations,
such as using oscilloscopes, multimeters, and power quality
analyzers, whose efficiency and accuracy are increasingly inadequate
for the demands of modern power systems. In contrast, fast and
accurate intelligent detection methods not only reduce labor costs
but also significantly mitigate equipment degradation and system
failures caused by power quality issues. Therefore, developing an
efficient and precise PQD detection algorithm is essential not only
for minimizing production costs but also for its substantial practical
significance and broad application prospects.

The identification process of PQDs primarily consists of
two steps [16]:

1. Extracting features from PQD signals;
2. Classifying the disturbances based on the extracted features.

Regarding feature extraction, the main methods include Fast
Fourier Transform (FFT) [17], Wavelet Transform [4], S-Transform
[18], Hilbert-Huang Transform (HHT) [19], Short-Time Fourier
Transform (STFT) [20], Singular Value Decomposition (SVD) [21],
and Kalman Filtering (KF) [22]. The STFT has a fixed window
length and shape, which limits its ability to simultaneously capture
high-frequency and low-frequency signal characteristics. Although
Wavelet Transform enables multi-scale analysis, the relationship
between its transformation scales and frequencies is fixed, making
flexible adjustments challenging. Additionally, both SVD and
Kalman Filtering lack the capability to describe signal features in the
frequency domain.

In contrast, S-Transform, which integrates the advantages of
both Wavelet Transform and FFT as a reversible time-frequency
analysis technique, has gained widespread application in PQD
feature extraction in recent years [23]. By employing an analysis
window that adapts to frequency variations, S-Transform provides
frequency-dependent resolution [18], effectively overcoming
the fixed-resolution limitation of STFT in handling high- and
low-frequency signals [24]. Compared to Wavelet Transform,
S-Transform not only expands its application scope but also
significantly reduces sensitivity to noise [25]. This is particularly

beneficial in complex power systems with substantial noise
interference, as it enables more accurate extraction of time-
frequency features, offering superior temporal and spectral
resolution. These characteristics make S-Transform particularly
advantageous for analyzing nonlinear, non-stationary, and transient
PQDs, thereby providing more reliable technical support for power
quality monitoring and fault diagnosis [11, 26].

In the field of PQD classification, machine learning and
deep learning methods have been extensively studied and
applied. Traditional machine learning techniques, such as
Support Vector Machines (SVM) [27], Decision Trees [28], and
Bayesian Classifiers [29], are widely used due to their efficiency
and interpretability in handling classification tasks. However,
these methods exhibit certain limitations when dealing with
complex PQD signals. For instance, although SVM achieves high
classification accuracy, its computational burden during parameter
optimization is significant, particularly when processing large-
scale datasets, leading to prolonged training times that fail to
meet real-time requirements. Additionally, Decision Trees and
Bayesian Classifiers tend to suffer from overfitting when handling
high-dimensional features and complex signals, thereby reducing
classification performance. Another common drawback of these
conventional approaches is their reliance on manual feature
extraction, which not only increases preprocessing complexity but
may also result in insufficient or redundant feature selection, further
impacting classification efficiency.

In recent years, the rise of deep learning has presented
new opportunities for PQD classification. CNNs, as a powerful
deep learning model, have been widely applied in image
recognition, signal processing, and related fields [30]. By leveraging
convolutional and pooling layers, CNNs can automatically extract
features from signals, reducing the need for manual feature
engineering while enhancing classification accuracy to some extent
[31, 32]. However, CNNs also face challenges when applied to
PQD signals. First, CNN models are typically highly complex and
require a large number of parameters for training, which not only
increases computational resource consumption but also prolongs
training time,making real-time applications difficult. Second, CNNs
struggle with distinguishing highly similar disturbance signals (e.g.,
interruptions and voltage sags), often leading to misclassification.
This issue is further exacerbated by the potential introduction of
redundant, non-essential features during feature extraction, which
reduces classification efficiency.

In parallel, Transformer-based models, such as Vision
Transformers (ViTs) and Swin Transformers, have recently
emerged as competitive alternatives to CNNs in image and signal
classification tasks [33, 34]. These models leverage self-attention
mechanisms to capture global dependencies across the input,
demonstrating strong performance in various vision applications
[35]. However, despite their promising results, Transformer models
exhibit several limitations in the context of PQD classification.
First, they typically require substantial computational resources and
memory, which hampers their feasibility for real-time deployment
in embedded or resource-constrained power systems. Second,
while Transformers excel at modeling global structures, they may
overlook subtle local disturbances that are critical for fine-grained
classification of PQD types. This limitation affects their robustness
and accuracy when applied to transient and high-noise scenarios
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TABLE 1 Comparison of lightweight convolutional neural networks.

Comparison dimension EfficientNet (B0) [40] GhostNet [41] MobileNetV3 [42]

Parameter Count ∼5.3 M ∼5.2 M ∼4.2 M

FLOPs ∼390 M ∼141 M ∼219 M

Architectural Design Based on compound scaling (depth,
width, resolution)

Utilizes Ghost blocks to reduce
redundant feature map calculations

Based on MobileNetV2, uses SE and
h-swish blocks

Inference Speed (Mobile) Moderate, complex structure Fast, low computational cost Fast, well-optimized

Accuracy (ImageNet top-1) ∼77.1% ∼74.5% ∼75.2%

Attention Mechanism None Simplified attention mechanism in
specific layers

Built-in SE block

Flexibility for CBAM Integrated design, difficult to replace
attention blocks

Lightweight structure, but high module
encapsulation

High, open structure, easy to replace
SE blocks

Deployment Ecosystem Google support, complex deployment Limited engineering deployment
support

Mature, widely used in Android/iOS

frequently encountered in real-world power systems. Similarly,
popular deep learning models such as BiLSTM [36], GRU [37], and
Deep Belief Networks (DBN) [38] improve classification accuracy
but face challenges related to model size and computational speed.

To overcome the limitations of traditional CNNs and
Transformer-based models in PQD classification, researchers
have increasingly turned to lightweight neural networks such
as EfficientNet (B0), GhostNet, and MobileNetV3, which have
attracted considerable attention in recent years due to their efficiency
and compact design [39]. However, each exhibits varying degrees
of limitations in terms of feature extraction capability, architectural
flexibility, or deployment adaptability. Table 1 lists the comparative
analysis and shows their differences.

From Table 1, it is evident that EfficientNet, despite its high
accuracy, has a complex structure and challenges in integrating
attention mechanisms flexibly. GhostNet, while extremely
lightweight, shows slightly lower accuracy and high module
encapsulation, hindering further improvements. MobileNetV3
strikes a balance between efficiency and performance, but further
refinement is needed.

To address the limitations of traditional methods in PQD
classification, we propose a lightweight deep learning model,
PowerMobileNet, based on an improvedMobileNet V3 architecture.
Compared to CNNs, BiLSTMs, and other deep learning models,
MobileNet offers advantages in computational efficiency and
parameter reduction. However, its feature extraction capabilities
remain insufficient. To enhance this aspect, we incorporate the
Convolutional Block Attention Module (CBAM). This integration
does not significantly increase computational complexity, as CBAM
is relatively lightweight and can be implemented using simple
convolutional and pooling operations. As a result, MobileNet
retains its lightweight nature while benefiting from enhanced
feature extraction. Consequently, PowerMobileNet achieves
high classification accuracy while substantially reducing model
parameters and computational complexity, making it more suitable
for real-time PQD classification tasks.

This study makes the following key contributions:

• In terms of feature extraction, we employ S-Transform for
time-frequency analysis. By incorporating a Gaussian window
function, S-Transform overcomes the fixed window width
limitation of traditional methods, enabling effective processing
of nonlinear and non-stationary PQD signals. Compared to
Short-Time Fourier Transform (STFT) andWavelet Transform,
S-Transform offers superior time-frequency resolution,
allowing for more precise feature extraction and providing a
more reliable foundation for subsequent classification tasks.

• In terms of model architecture, we enhance MobileNet
V3 by integrating the CBAM [42]. Unlike conventional
Squeeze-and-Excitation (SE) modules, CBAM not only focuses
on channel attention but also optimizes spatial attention,
further refining the feature extraction process. This dual
optimization significantly enhances the model’s capability to
capture key features while preserving its lightweight structure,
making it well-suited for deployment in resource-constrained
environments.

• In terms of model complexity, the MobileNetV3-CBAMmodel
achieves a substantial reduction in computational complexity.
The total number of parameters is reduced from 112,094,345
(427.61 MB) to 374,632 (1.43 MB). This improvement makes
the model highly suitable for real-time deployment on mobile
devices and embedded systems, aligning with the power
system’s efficiency and real-time processing requirements.

• In terms of loss function optimization, we refine the original
cross-entropy loss function by introducing a dynamically
adjusted Bias Loss, effectively mitigating random prediction
errors caused by insufficient data features. This enhancement
improves the model’s robustness under varying signal-to-noise
ratio (SNR) conditions.

The experimental results demonstrate that PowerMobileNet
achieves a prediction accuracy of 99.33%, significantly surpassing
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traditional CNN (97.11%) and MobileNet V3-SE (98.58%). The
model excels under high SNR conditions and maintains high
classification accuracy even in low-SNR environments, validating
its effectiveness and efficiency in practical applications. Through
these improvements, PowerMobileNet not only addresses the
challenges of high computational complexity and poor real-time
performance associated with traditional methods but also enhances
model performance and applicability by incorporating a lightweight
architecture and an optimized loss function.

The structure of this paper is organized as follows: Section 1
reviews related work on PQD classification. Section 2 provides
a detailed description of the feature extraction process, the
proposed method, and its key modules. Section 3 presents the
experimental results and compares them with state-of-the-
art algorithms to validate the effectiveness of the proposed
approach. Finally, Section 4 concludes the study and discusses future
research directions.

2 Models

2.1 S-transform and feature extraction

The S-transform is a reversible time-frequency analysis method
that introduces a Gaussian window function into the Fourier
transform framework [44]. This allows the analysis window’s width
to vary with frequency, thereby overcoming the fixed window width
limitation of the short-time Fourier transform. The S-transform
exhibits multi-resolution analysis capabilities, making it suitable for
analyzing nonlinear, non-stationary, and transient PQD signals.The
continuous S-transform is defined as shown in Equation 1 below:

S(t, f) = ∫
+∞

−∞
h(τ)w(τ− t, f)e−j2πfτdτ (1)

where h(τ) represents the input signal, andω(τ− t, f) is the Gaussian
window function, defined as shown in Equation 2:

ω(τ− t, f) =
| f|
√2π

e−
(τ−t)2f2

2 (2)

In this study, the S-transform is employed to extract the time-
frequency features of PQD signals.The detailed steps are as follows:

1. Signal Preprocessing: The collected power signals are
normalized to adjust their amplitudes to the range of [0,1].

2. Feature Extraction:The S-transform is applied to extract signal
features, generating a two-dimensional time-frequencymatrix.
In this matrix, rows represent different time points, columns
represent different frequency points, and the values correspond
to the energy intensity at the respective time and frequency.

3. Matrix Cropping: The extracted time-frequency matrix is
cropped into a 224 × 224 square matrix, which serves as the
input for the neural network.

2.2 The construction of the
MobileNetV3-CBAM model

To enhance the precision and efficiency of PQD classification,
we employed the lightweight neural network model MobileNet

V3, which is fundamentally based on depthwise separable
convolutions [45]. By decomposing standard convolutions into
depthwise convolutions and pointwise convolutions, the former
reduces spatial computation, while the latter decreases channel
computation, thereby significantly reducing both parameter count
and computational cost. Additionally, the model integrates the
CBAM, which focuses on critical features across channel and
spatial dimensions, further improving the model’s accuracy
and representational capacity [38]. The structure of CBAM
is shown in Figure 1.

Specifically, the traditional MobileNet integrates the Squeeze-
and-Excitation (SE) module, which focuses solely on channel-
level features while neglecting spatial dimensions. In contrast, the
CBAM module processes features across both channel and spatial
dimensions while maintaining low computational overhead. The
channel attention module assigns a weight to each channel by
analyzing the significance of the input features along the channel
dimension. Initially, the input feature F undergoes global average
pooling (GAP) and global max pooling (GMP), resulting in two
global feature description vectors. These vectors are processed
through a shared multilayer perceptron (MLP), their outputs are
then summed, and a Sigmoid activation function is applied to
generate the channel attention map Mc, represented as Mc =
σ(MLP(GAP(F)) +MLP(GMP(F))).

Finally, the original input feature F is weighted by the
channel attention map Mc to obtain the enhanced feature F′,
as shown in Equation 3:

F′ =Mc · F (3)

After generating the channel-enhanced features F′, the spatial
attention module then focuses on the prominent regions of
the features along the spatial dimension. Initially, the input
feature F′ undergoes both global average pooling and global
max pooling to obtain two spatial feature maps.These two maps are
concatenated along the channel dimension to form a comprehensive
representation. This representation is then processed through a 7 ×
7 convolution operation to capture local spatial correlations. Finally,
a Sigmoid activation function is applied to generate the spatial
attention mapMs, represented as shown in Equation 4:

Ms = σ( f7×7([GAP(F);GMP(F)])) (4)

Finally, the channel-enhanced feature F′ is weighted by the
spatial attention map Ms to generate the final enhanced feature F″,
as shown in Equation 5:

F″ =Ms · F
′ (5)

The MobileNet V3 model designed in this study consists
of a series of Inverted Residual Blocks and Dense Layers,
as shown in Table 2.

The initial layer employs a Conv2D 3 × 3 convolution with 3
input channels and an output size of 112 × 112, using the ReLU
activation function and a stride of 2. This is followed by multiple
InvertedResidual Blocks, with the number of input channels ranging
from 16 to 40, and the output size gradually decreasing. Finally, a
GlobalAveragePooling2D layer is applied to compress the feature
map size to 1 × 1. The last two layers are fully connected layers:
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FIGURE 1
Structure of CBAM.

the first layer uses the Hard-swish activation function, with 1 ×
1 input channels and an output size of 1,280; the second layer
applies the Softmax activation function, with 1,280 input channels,
and outputs probability scores for 9 classes. MobileNetV3 block
is shown in Figure 2.

The overall model construction of PowerMobileNet
is shown in Figure 3.

Regarding the loss function, cross-entropy loss optimizes model
performance by calculating the difference between the predicted
probability distribution and the ground truth labels. However,
the traditional cross-entropy loss function may fail to adequately
account for data diversity, particularly when data points lack
rich features, leading the model to generate random predictions.

To address this issue, we adopt the Bias Loss function, which
dynamically adjusts the weight of each data point, allowing the
model to focus on samples with distinctive features during the
optimization process. It is defined as follows, with Equation 6
representing the bias loss and Equation 7 defining the function z(vi):

Lbias = −
1
N

N

∑
i=1

K

∑
j=1

z(vi)yij log fj(xi;θ) (6)

z(vi) = exp(vi × α) − β (7)

here, N represents the number of samples, and K is the number
of categories. The term yij corresponds to the ground truth label
encoded using one-hot representation, while fj(xi;θ) denotes the
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TABLE 2 Network structure of the MobileNet V3 model.

Layer Input channel Output size Activation function Step CBAM module

Conv2D, 3 × 3 3 112 × 112 ReLu 2 —

InvertedResidual, 3 × 3 16 112 × 112 ReLu 1 —

InvertedResidual, 3 × 3 16 56 × 56 ReLu 2 —

InvertedResidual, 3 × 3 24 56 × 56 ReLu 1 —

InvertedResidual, 3 × 3 24 56 × 56 ReLu 1 —

InvertedResidual, 3 × 3 24 56 × 56 ReLu 1 —

InvertedResidual, 5 × 5 24 28 × 28 ReLu 2 —

InvertedResidual, 5 × 5 40 28 × 28 ReLu 1 ✓

InvertedResidual, 5 × 5 40 28 × 28 ReLu 1 ✓

InvertedResidual, 3 × 3 40 14 × 14 Hard-swish 2 —

GlobalAveragePooling2D 80 1 × 1 — — —

Dense Layer 1 × 1 1,280 Hard-swish — —

Dense Layer 1,280 9 Softmax — —

FIGURE 2
MobileNetV3 block.

predicted probability of sample xi belonging to class j. The key
innovation lies in introducing the scaling function z(vi), where vi
represents the feature variance of sample xi. The parameters α and β
are tunable hyperparameters designed to regulate the dynamic range
of the scaling function. A higher value of α increases the emphasis
on samples with higher feature variance, thus focusing the model
more on these samples during optimization. Conversely, β provides
a baseline offset, ensuring that samples with low feature variance
are not completely ignored. By carefully tuning these parameters,
we can control how much emphasis the model places on samples

with different feature variances, which is crucial for improving the
model’s ability to generalize from the training data to unseen data.

3 Experimental design

3.1 Data sample

Since the performance of deep learning networks heavily
depends on the quantity and quality of training samples, it is
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FIGURE 3
The computational process of the PowerMobileNet model.

TABLE 3 Mathematical model of PQD [49, 50].

PQD Mathematical equations Parameters

Normal [1± α(u(t− t1) − u(t− t2))] sin (ωt) α < 0.04,T ≤ (t2 − t1) ≤ 9T

Harmonics α1 sin(ωt) + α3 sin(3ωt) + α5 sin(5ωt) + α7 sin(7ωt) 0.05 ≤ α3,α5,α7 ≤ 0.15,∑(α2i ) = 1

Interruption [1− α(u(t− t1) − u(t− t2))] sin (ωt) 0.9 ≤ α ≤ 1,T ≤ (t2 − t1) ≤ 9T

Sag [1− α(u(t− t1) − u(t− t2))] sin (ωt) 0.1 ≤ α < 0.9,T ≤ (t2 − t1) ≤ 9T

Swell [1+ α(u(t− t1) − u(t− t2))] sin (ωt) 0.1 ≤ α ≤ 0.8,T ≤ (t2 − t1) ≤ 9T

Flicker [1+ α f sin(βωt)] sin (ωt) 0.1 ≤ α f ≤ 0.2,5 ≤ β ≤ 20Hz

Sag with harmonics [1− α(u(t− t1) − u(t− t2))] ×
[α1 sin(ωt) + α3 sin(3ωt) + α5 sin(5ωt) + α7 sin(7ωt)]

0.1 ≤ α < 0.9,T ≤ (t2 − t1) ≤ 9T,0.05 ≤ α3,α5,α7 ≤ 0.15,∑(α
2
i ) = 1

Swell with harmonics [1+ α(u(t− t1) − u(t− t2))] ×
[α1 sin(ωt) + α3 sin(3ωt) + α5 sin(5ωt) + α7 sin(7ωt)]

0.1 ≤ α < 0.8,T ≤ (t2 − t1) ≤ 9T,0.05 ≤ α3,α5,α7 ≤ 0.15,∑(α2i ) = 1

Oscillatory transients sin(ωt) + α−(t−t1)/t sin((ω0(t− t1))(u(t2) − u(t1))) 0.1 < α ≤ 0.8,0.5T ≤ (t2 − t1) ≤ 3T,3 ≤ t ≤ 40,300 ≤ 2πω0 ≤ 900

crucial to have as many high-quality training data as possible.
Adequate and well-annotated data can significantly enhance the
generalization ability of the model, reducing the risk of overfitting
and improving its robustness in real-world applications [46]. To
validate the effectiveness of PowerMobileNet, we therefore generated

nine different types of PQD signals using MATLAB R2024a,
adhering to the IEEE 1159–2019 standard [47], referring to Li et al.
and Khetarpal et al. ’s research [48, 49]. The nine types of signals
include: Normal, Harmonics, Interruption, Sag, Swell, Flicker,
Sag+Harmonics, Swell+Harmonics, and Transient Oscillation. The
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FIGURE 4
Correspondence diagram of the attention mechanism: (a) Original signal, (b) image after S-transformation processing, (c) image after CBAM
processing.

FIGURE 5
Comparison of accuracy with mainstream models.

mathematical model of PQD is shown in Table 3. The original
signal, the image after S transformation and the image after CBAM
processing are shown in Figure 4. The MATLAB rand function was
used, with a base frequency of 50 Hz and a sampling frequency
of 3.2 kHz. The generated signals exhibit random amplitude and
random disturbance occurrence times, within specified parameter
ranges and sampling durations. After S-transformation, the image
data is divided into training, testing and validation sets in a
4:1:1 ratio, with 9,000 samples for training, 2,250 samples for

testing and 2,250 samples for validation, ensuring balanced class
distribution.

To train the PowerMobileNetmodel, we used the SGDoptimizer
with a learning rate of 0.01 and momentum set to 0.9. The model
was trained for 100 epochs with a batch size of 32. All input
images were resized to 224 × 224 × 3 and normalized to the range
[0, 1]. During training, data augmentation was applied including
shear transformation (range: 0.2), zoom (range: 0.2), and horizontal
flipping to improve generalization and prevent overfitting.
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FIGURE 6
Comparison of loss function with mainstream models.

TABLE 4 The average classification results of each model for different types of PQD signals in 10 experiments.

Model Test set accuracy (%) Training time (s) Classification time (s)

KELM 97.4 2,357 1.51

SqueezeNet 99.0 1982 0.98

ShuffleNet V2 98.6 1,631 0.70

AlexNet 98.3 2,689 2.14

PowerMobileNet 99.3 925 0.57

FIGURE 7
Comparison of confusion matrices with mainstream models: (a) the confusion matrices of CNN; (b) the confusion matrices of MobileNet-SE; (c) the
confusion matrices of PowerMobileNet.
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TABLE 5 The impact of different degrees of noise on classification results.

Disturbance class Accuracy

No noise (%) 40 dB (%) 30 dB (%) 20 dB (%)

Normal 100 100 99.6 98.0

Sag+Harmonics 100 100 100 98.8

Swell+Harmonics 100 100 100 100

Flicker 100 100 100 99.6

Harmonics 100 100 100 100

Interruption 100 100 100 99.2

Sag 99.6 96.8 95.2 89.2

Swell 100 100 100 100

Transient Oscillation 100 99.6 99.2 99.2

FIGURE 8
Model classification accuracy under different SNR conditions.

TABLE 6 Ablation study of attention modules on PQD classification.

Model Test accuracy
(%)

Training time (s)

PowerMobileNet w/o
CBAM

97.6 896

PowerMobileNet 99.3 925

3.2 Comparison of the model with
mainstream methods

Figures 5, 6 illustrate the variation of accuracy and loss function
over the number of iterations for the compared models. It can
be observed that PowerMobileNet stabilizes after approximately
25 epochs, with relatively minor fluctuations after convergence.
In contrast, CNN exhibits poor convergence performance, with
higher loss values and significant oscillations during training. Even
after 100 epochs, its accuracy only hovers around 97%. When

MobileNet V3 integrates the CBAMmodule, the validation accuracy
steadily approaches 98.5%, and the loss function stabilizes around
0.10 after 40 iterations. Furthermore, replacing the cross-entropy
loss function with Bias Loss and incorporating the CBAM module
further improves classification accuracy by 0.76% and reduces the
loss by 0.07.These results demonstrate that introducing the Bias Loss
function mitigates random prediction issues in the optimization
process, highlighting the robustness of PowerMobileNet and
validating the effectiveness of the proposed method.

Figure 7 compare the confusion matrices of CNN, MobileNet-
SE, and PowerMobileNet. The CNN model selected for comparison
consists of 12 layers, similar to the layer count of the MobileNetV3
used in this study. It includes two convolutional blocks, each
containing convolutional layers, LeakyReLU activation layers, and
max-pooling layers. The convolutional output gradually increases to
192 channels. A flattening layer transforms the output into a fully
connected layer with 4,096 neurons, followed by a Softmax activation
function for 9-class classification.We added 30 dBwhite noise to each
simulated signal to simulate random disturbances. As shown in Table
4, despite the presence of disturbance, PowerMobileNet achieved the
highest prediction accuracy of 99.33%.

To provide a more comprehensive and rigorous evaluation
and to validate the effectiveness of the proposed approach, we
conducted comparative experiments between MobileNet-CBAM
and state-of-the-art methods. These methods include the optimized
KELM model [51] after feature vector extraction, as well as deep
learning models such as SqueezeNet [50], ShuffleNet V2 [52],
and AlexNet [53]. All experiments were performed on the same
computing platform, which consists of an NVIDIA GeForce RTX
3060GPUand anAMDRyzen 7 5800HCPU,with JupyterNotebook
7.0.8 as the programming environment. The Table 4 summarizes
the average classification results of different models on various
types of PQD signals over 10 experimental runs. The experimental
results indicate that KELM andAlexNet require substantial memory
and computational resources when processing large-scale PQD
signal data, resulting in inefficiencies. In contrast, SqueezeNet and
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TABLE 7 Comparison of parameters of different models.

Model Total parameters Trainable parameters Non-trainable parameters

CNN 112,094,345 (427.61 MB) 112,094,345 (427.61 MB) —

MobileNet V3 -SE 374,436 (1.43 MB) 371,652 (1.42 MB) 2,784 (10.88 KB)

MobileNet V3-CBAM 374,632 (1.43 MB) 371,848 (1.42 MB) 2,784 (10.88 KB)

FIGURE 9
Class-wise accuracy comparison on SEED-PQD-v1 dataset.

ShuffleNet V2 employ Fire Modules and layered convolution [54],
respectively, to reduce the number of parameters, thereby improving
test accuracy while maintaining a more compact model. The
results in the table demonstrate that PowerMobileNet achieved the
highest classification accuracy, outperforming KELM, SqueezeNet,
ShuffleNet V2, and AlexNet by 1.95%, 0.30%, 0.71%, and 1.02%,
respectively. Moreover, PowerMobileNet exhibited the shortest
runtime, with a training duration of 925 s and a classification
duration of 0.57 s, further validating its superior performance in
PQD signal classification tasks.

3.3 The impact of noise on classification
results

In real-world scenarios, PQD signals are inevitably affected by
various unpredictable factors, leading to different levels of noise
[48]. To demonstrate the robustness and generalizability of the
proposed algorithm across different environments, we introduced
noisewithSNRof40 dB,30 dB,and20 dBintotheoriginalsignalsand
compared the classification performance. As shown in Table 5, the
classification accuracy of PowerMobileNet exhibits a decreasing
trend as the SNR decreases. However, even in a high-noise
environmentwith an SNRof 20 dB, the lowest classification accuracy
remains around 90%, highlighting its superior noise resistance.

Figure 8 also presents the performance of the three models
under varying SNR in the simulation dataset. Experiments
conducted under four different conditions demonstrated that the

MobileNet-CBAM model has fewer misclassified PQD instances,
indicating strong robustness and exceptional performance.

3.4 Ablation study

To quantitatively evaluate the contribution of the CBAM
module to model performance, we conducted an ablation study
by comparing the classification accuracy of two configurations:
PowerMobileNet and its variant without CBAMmodule.The results
are summarized in Table 6.

As shown, the inclusion of CBAMresults in a 1.7% improvement
over the baseline with a minor time increase.This demonstrates that
CBAM effectively enhances the focus on relevant features in both
spatial and channel dimensions, thereby improving classification
performance.

3.5 The comparison of model size and
parameter count

In Table 7, we can clearly observe the differences in the
parameter count of each model. When compared with CNNs that
have similar layers and functionality, the MobileNetV3-CBAM
significantly reduces computational complexity and parameter
count. Moreover, while maintaining parameters comparable to
MobileNetV3-SE,MobileNetV3-CBAMnot only improves accuracy
but also better satisfies the practical requirements for deployment on
mobile devices and embedded systems.
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3.6 Validation on real-world dataset

To evaluate the real-world performance and generalization
capability of PowerMobileNet, we conducted experiments on
the publicly available SEED Power Quality Disturbance Dataset
(SEED-PQD-v1), which is available at https://www.kaggle.
com/datasets/sumairaziz/seed-power-quality-disturbance-dataset.
This dataset contains 17 power disturbance classes, each with 1,000
signals sampled at 5 kHz.We compared PowerMobileNet against six
representative models: CNN, MobileNet-SE, KELM, SqueezeNet,
ShuffleNet V2, and AlexNet. The experimental conditions were
exactly the same as the previous setup. The classification accuracy
for each class and the overall average are reported.

As presented in Figure 9, PowerMobileNet achieved the highest
overall classification accuracy (96.78%) across all 17 power
quality disturbance (PQD) classes in the SEED-PQD-v1 dataset.
This significantly outperforms the traditional CNN (88.03%),
classical machine learning method KELM (85.11%), and several
lightweight or well-established deep models including MobileNet-
SE (91.91%), SqueezeNet (89.91%), ShuffleNet V2 (92.45%), and
AlexNet (91.22%).

In detail, for PQ2 (Sag), it outperforms CNN by 13.0%
and ShuffleNet V2 by 4.3%. In PQ3 (Swell), PowerMobileNet
achieves an improvement of 19.9% over CNN and 3.6% over
ShuffleNet V2. Notably, PowerMobileNet exhibits improvement in
several challenging PQD classesinvolving compound or transient
disturbances. For instance, for PQ11 (Flicker with Sag) and PQ15
(SagwithHarmonics), the proposedmodel surpasses CNNby 20.5%
and 16.3%, respectively, while also outperforming ShuffleNet V2
and AlexNet by 11.9% and 9.2%. These categories typically involve
compound or transient features that are difficult to model using
standard CNNs or shallow classifiers.

Furthermore, compared to models such as MobileNet-SE and
ShuffleNet V2, which are known for their computational efficiency,
PowerMobileNet still yields a clear 4%–5% accuracy gain on average,
with only a modest increase in training time. These results validate
the architectural enhancements introduced by CBAM and Bias Loss
components.

4 Conclusion

In this study, we successfully developed a highly efficient
and lightweight method for PQD classification using the
PowerMobileNet model. The proposed approach integrates the
S-transform for robust time-frequency feature extraction and
the MobileNetV3-CBAM architecture for enhanced classification
accuracy and efficiency. We compared PowerMobileNet with
mainstream models in terms of accuracy, loss function, noise
impact, model size and number of parameters. The experimental
results achieved a classification accuracy of 99.33%, significantly
surpassing traditional CNN (97.07%), MobileNetV3-SE (98.58%),
and other state-of-the-art models such as KELM (97.4%),
SqueezeNet (99.0%), ShuffleNet V2 (98.6%), and AlexNet (98.3%).
The model also demonstrates remarkable robustness under varying
SNR conditions, maintaining high accuracy even at low SNR
levels (e.g., 90% accuracy at 20 dB). Additionally, PowerMobileNet
achieves a substantial reduction in computational complexity,

with a total parameter count of 374,632 (1.43 MB) compared
to traditional CNNs (112,094,345 parameters, 427.61 MB). This
efficiency is further evidenced by its short training duration of 925 s
and classification time of 0.57 s. This makes it particularly well-
suited for deployment in resource-constrained environments. Our
research provides an efficient and accurate tool for power quality
monitoring, indicating great potential for practical applications in
power systems. Future research will focus on further optimizing the
model structure and validating its generalization ability on broader
datasets. In addition, we plan to deploy the model on embedded
platforms such as Raspberry Pi or Jetson Nano in our subsequent
research, in order to systematically evaluate its latency, memory
consumption, and real-time performance, thereby promoting the
transition of the algorithm from experimental validation to practical
deployment in real-world power monitoring systems.
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Nomenclature

BiLSTM Bidirectional long short-term memory

CBAM Convolutional block attention module

CNN Convolutional neural network

DWT Discrete wavelet transform

DBN Deep Belief Networks

FFT Fast Fourier transform

GAP Global average pooling

GRU Gated recurrent unit

GMP Global max pooling

HHT Hilbert–Huang transform

KELM Kernel extreme learning machine

KF Kalman Filtering

MLP Multi-layer perceptron

PQD Power quality disturbance

SE Squeeze-and-excitation

SNR Signal-to-noise ratio

STFT Short-time Fourier transform

SVM Support vector machine

SVD Singular Value Decomposition

ViTs Vision Transformers
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