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Numerical solutions of the
nonlinear Fisher’s equation using
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This study introduces a relatively new numerical technique for solving one-
dimensional Fisher’s equation. The proposed numerical technique is a simple
direct meshless method, which is based on the collocation scheme. To
circumvent the traditional two-level numerical procedure, the space-time
radial basis function is considered. Under such circumstances, the time-
dependent one-dimensional nonlinear Fisher’s equation can be solved by a one-
level numerical procedure. Several numerical results are investigated to show
advantages of the proposed meshless method.
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1 Introduction

The application areas of nonlinear fisher’s equation include biology [1], ecology [2]
cancer research [3], chemistry [4], etc. It continues to serve the spatiotemporal dynamics
modeling of complex systems, and in the future, it will deeply intersect with cutting-edge
fields such as quantum computing and synthetic biology. As a classic reaction-diffusion
model, the nonlinear fisher’s equation has the following form

∂u
∂t
= α∂

2u
∂x2
+ γu(1− u),a < x < b, t > 0. (1)

Here, α denotes the constant diffusion coefficient or diffusion factor and γ is the reaction
factor which can denote growth rate or birth rate.

Numerical simulation of Fisher’s equation has made significant progress driven by
computational power, algorithm innovation, and interdisciplinary demands [5]. Traditional
methods include the finite differencemethod [6], the finite elementmethod [7], and coupled
numerical methods based on traditional methods [8–10]. By using generalized Hermite
interpolation, a fully discrete pseudospectral scheme is presented for Fisher’s equation
[11]. Geeta and Varun [12] investigated trigonometric B-spline collocation method to
simulate the 1-D Fisher’s equation. A hybrid numerical method [13], which is composed
by cubic trigonometric B-spline base functions and differential quadrature method, is
proposed for the numerical solution of Fisher’s reaction-diffusion equation. Based on the
finite difference method and wavelet Galerkin method, Haifa [14] proposed an algorithm
to simulate the Fisher’s equation. The Haar wavelet method is applied to obtain the
approximate solution for the Fisher’s equations by Sakina et al. [15]. Based on Barycentric
Rational interpolation, Mittal and Rohila [16] proposed a numerical approach to simulate
the Burgers’ and Fisher’s equations.
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Since the radial-basis-function-based collocation methods are
truly meshless numerical methods, they are widely used in solving
partial differential equations and analyzing complex engineering
problems. The effectiveness of the BKM is investigated for
solving Helmholtz-type problems under various conditions through
a series of novel numerical experiments [17]. Based on the
method of fundamental solutions, a high-accuracy and efficient
method is provided for addressing antiplane piezoelectricity
problems with multiple inclusions [18]. A new meshfree method
is proposed for heat transfer problems in porous material energy
storage battery [19].

Some investigations have been performed by using radial-basis-
function-based methods to simulate Fisher’s equation. Based on the
global radial basis function method, Zhang et al. [20] proposed a
two-level radial basis function-finite difference method for solving
nonlinear Fisher’s equation. A novel meshless local collocation
method is proposed for the numerical solution of the 3-D extended
Fisher-Kolmogorov equation [21]. In combination with the pseudo-
spectral method, Geeta et al. [22] used the radial basis function to
get the numerical solution of Fisher’s equation. Alongwith the radial
basis functions, particle swarm optimisation algorithm is used to
obtain the numerical solutions of the Fisher’s equation [23].

As mentioned in the previous-analysis, there are some
investigations related to the meshless method for Fisher’s equation.
However, these numerical methods are two-level numerical
methods. The meshless method should be accompanied with the
other numerical methods to deal with time-dependent term in the
governing equation. To seek for an alternativeway,we propose a one-
level meshless method for Fisher’s equation. By using a space-time
formulation, the time-dependent term can be treated as space-
dependent term. The initial and boundary conditions for Fisher’s
equation are given as

{
u(x,0) = u0(x),x ∈ {a,b},
u(x, t) = u(x, t), t > 0.

(2)

Here, u0(x) and u(x, t) are prescribed smooth functions.
The rest of this paper is organized as follows. Section 2 provides

a brief description of the one-level meshless method. Numerical
examples are provided in Section 3 and some concluding remarks
are given in Section 4.

2 The one-level meshless methods

As is known to all, the time-dependent problems Equations 1, 2
are always solved by using two-level numerical methods. The
finite difference scheme or integral transform method should be
employed to deal with the time-dependent term, and the resulting
elliptic-type problems are solved by the other numerical methods.
There are two aspects in the accumulation of errors of two-level
methods, i.e., the finite difference step and the numerical method
step.

To find an alternative to the two-level method, a one-level direct
meshless method is proposed in this section. The one-level direct
meshless method is based on space-time radial basis functions
(RBFs). Under such one-level meshless method, there’s only one
aspect in the accumulation of errors.

2.1 The space-time RBFs

RBFs are a type of scalar function based on distance
measurement, whose core characteristic is that the function value
only depends on the distance from the two points. The advantages
of RBFs include local response characteristics, efficient processing
of sparse or high-dimensional data, simple mathematical form,
easy-to-implement, and parallel computing.

For 2D steady-state problems, the commonly-used RBFs include
three types, the detailed formula is shown in Equation 3

φ(r) =
{{{
{{{
{

√1+ (εr)2,Multiquadric,

e−(εr)
2
,Gaussian,

r2 log r,Thin Plate Spline.

(3)

Here, r = ‖Xi −Xj‖ is the Euclidean distance between two points
Xi = (xi,yi) and Xj = (xj,yj), ε is the RBF shape parameter.

Since there is only one space variable in Fisher’s Equation 1, we
consider the time variable “equally” as a new space variable. More
specifically, the Fisher’s equation is considered as a “equally” steady-
state equation. The corresponding space-time RBFs has the form

ϕ(r) =
{{{
{{{
{

√1+ (εr)2,Multiquadric,

e−(εr)
2
,Gaussian,

r2 log r,Thin Plate Spline.

(4)

Here, r = √(xi − xj)
2 + (ti − tj)

2 is the Euclidean distance
between two space-time points Xi = (xi, ti) and Xj = (xj, tj).

2.2 Implementation of the one-level
meshless method

Before implementation of the one-level meshless method,
collocation points should be provided. More specifically, the space
variable interval [a,b] is divided into small segments a = x0 <
x1 < ... < xn = b and the time variable interval [0,T] is divided
into segments 0 = t0 < t1 < ... < tn = T. The interval division is
usually under uniform scheme, but it is also workable for un-
uniform scheme.

According to the basic theory of collocation methods, the
approximate solution of the function u(x, t) at an arbitrary point X =
(x, t) in Fisher’s equation has the form

u(·) ≈
N

∑
j=1

λjϕj(·) (5)

with {λj}
N
j=1

the unknown coefficients and ϕj(·) = √1+ (εrj)
2 =

√1+ ε2(x− xj)
2 + ε2(t− tj)

2, where j is the index of collocation
points and N is the total collocation point number.

To illustrate the one-level meshless method, we
substitute Equation 6 into Equations 1, 2 at space-time points
{Xk = (xk, tk)}

n×n
k=1

. Then, one can obtain the following equations

N

∑
j=1

λjLϕj(Xk,Xj) = 0,k = 1, ..., (n− 2)2, (6)
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{{{{{
{{{{{
{

N

∑
j=1

λjϕj(Xk,Xj) = u0(Xk),

N

∑
j=1

λjϕj(Xk,Xj) = u(Xk),
k = (n− 2)2 + 1, ...,n2. (7)

Here, the operator is shown in the following Equation 8

Lϕj = α
∂2ϕj
∂x2
−
∂ϕj
∂t
+ γϕj(1−ϕj). (8)

For multiquadric RBF ϕj(r) = √1+ (εrj)
2 =

√1+ ε2(x− xj)
2 + ε2(t− tj)

2, we have the corresponding derivatives
in Equations 9–11

∂ϕj
∂x
= ε2(x− xj)(1+ ε2r

2
j )
− 1

2 , (9)

∂2ϕj
∂x2
= ε2(1+ ε2r2j )

− 1
2 [1− ε2(x− xj)

2/(1+ ε2r2j )], (10)

∂ϕj
∂t
= ε2(t− tj)(1+ ε2r

2
j )
− 1

2 . (11)

In order to obtain a square interpolationmatrix, we considerN =
n× n. Equations 6, 7 has the matrix form as shown in Equation 12

Aλ = f, (12)

where A = [ϕkj] is N×N interpolation matrix, λ and f are N×
1 vectors.

Equation 9 can be directly solved to get the unknowns λ. Then
the approximation solution of the unknown function in the Fisher’s
equation can be solved by using Equation 5.

3 Numerical simulations

In the following numerical examples, the multiquadrics RBF in
Equation 4 is used to illustrate the numerical results. We use the
L2 − error to show the accuracy of the proposed method. The L2 −
error of the proposed method is also compared with the results in
previous literatures. The optimal choice of RBF parameter has been
investigated in many literatures [24, 25]. This is beyond the scope
of our current research, we use the simple prior-tested selection of
the shape parameter in all numerical results [26, 27]. Due to the
limitation of the paper type, the initial condition plots are provided
in the appendix.

3.1 Example 1

For the constant diffusion coefficient α = 1 and the reaction
factor γ = 6, the fisher’s equation has the form in Equation 13

ut = uxx + 6u(1− u),−1 < x < 1,0 < t < T. (13)

The corresponding exact solution is

u(x, t) = 1
(1+ ex−5t)2

. (14)

The corresponding initial condition and boundary condition
can be deduced from Equation 14.

FIGURE 1
L2 − error curve versus shape parameter.

FIGURE 2
Numerical solution and analytical solution at time t = 1.

At time t = 1, the variation of shape parameter versus the L2 −
error is presented in Figure 1 for fixed collocation point numberN =
117. It can be seen that the quasi-optimal L2 − error is 6.8893× 10−8

for shape parameter ε = 1.45. This is more accurate than the most
accurate numerical result 4.33× 10−5 in [14]. For shape parameter
ε = 1.45, Figure 2 is plotted to show that the numerical solution is
highly consistent with the analytical solution.

3.2 Example 2

Here, we consider the following Fisher’s equation
as shown in Equation 15

ut = uxx + u(1− u
6),−1 < x < 1,0 < t < T (15)

The corresponding exact solution is shown in Equation 16

u(x, t) = 3√1
2
tanh(−3x

4
+ 15t

8
)+ 1

2
. (16)
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FIGURE 3
Numerical solution and analytical solution at times t = 0.1, t = 0.5, t = 1.

FIGURE 4
Numerical solution and analytical solution at times t = 0.1, t = 0.5, t = 1.

The quasi-optimal choice of shape parameter is the same as
Example 4.1. For shape parameter ε = 0.44, the L2 − error is 2.8366×
10−10 at time t = 1, which is also far more accurate than the most
accurate result 1.27× 10−5 in [14]. Figure 3 is plotted to show that the
numerical solution is highly consistent with the analytical solution
at three different times t = 0.1, t = 0.5, t = 1.

3.3 Example 3

In this example, we consider the following Fisher’s equation
as shown in Equation 17

ut = uxx + u(1− u2),−1 < x < 1,0 < t < T. (17)

The corresponding analytical solution is shown in Equation 18

u(x, t) = −1
2
tanh(
√2
4
(x−
√18t
2
))+ 1

2
. (18)

At time t = 1, the quasi-optimal choice of shape parameter is ε =
0.49 with the corresponding L2 − error 2.3819× 10

−8. It is also more
accurate than the most accurate result 6.00× 10−5 in [14]. Figure 4 is
plotted to show that the numerical solution is highly consistent with
the analytical solution at three different times t = 0.1, t = 0.5, t = 1.

4 Conclusion

This study introduces a novel one-level meshless method for
solving the one-dimensional nonlinear Fisher’s equation, leveraging
space-time radial basis functions (RBFs). The key findings are
summarized as follows:

• The use of space-time RBFs eliminates the requirement for
the traditional two-level numerical procedure (e.g., separate
time-stepping and spatial discretization), significantly reducing
computational complexity.

• The meshless nature of the method avoids reliance on
structured grids, making it suitable for problems with complex
geometries or dynamic boundaries.

• Numerical experiments demonstrate that the method achieves
high accuracy (e.g., compared to analytical solutions) while
maintaining low computational costs, particularly for long-
term simulations.

In conclusion, the proposed one-level meshless method
provides an efficient and flexible numerical tool for solving time-
dependent partial differential equations, particularly in terms of
simplifying procedures. As a meshfree collocation method, the
proposed method has similar limitations with the other collocation
methods. Substantial theoretical groundwork, particularly regarding
convergence and stability in generalized frameworks, remains
unexplored. These aspects will be systematically investigated in
future studies.
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