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Statistical relationship between
the enclosed area and trajectory
length of animal movement
trajectories

Atushi Ishikawa1*, Shouji Fujimoto1 and Takayuki Mizuno2

1Department of Information Engineering, Kanazawa Gakuin University, Kanazawa, Japan, 2Information
and Society Research Division, National Institute of Informatics, Tokyo, Japan

All animals, humans included, generate closed trajectories—or loops—by
repeatedly leaving and returning to the same location. In this study we
statistically analyse such closed paths by measuring their total length L and
the area S that they enclose, and by quantifying the scaling law S ∼ Lα. Our
data comprise GPS tracks for nine taxa archived in Movebank—common kestrel,
demoiselle crane, tortoise, blue whale, reindeer, elephant, wildebeest, lion and
nomadic humans—togetherwith smartphone-basedGPS logs of peoplemoving
in Urayasu, Japan. Daily loops extracted from these records reveal a two-regime
geometry: for short displacements ( <5km) both humans and kestrels display
nearly two-dimensional behaviour with α ≈ 2, whereas for longer distances
the exponent drops to α ≈ 1.5, indicating a transition toward one-dimensional
excursions. At the annual scale every species shows seasonal round-trip
movement, yet the trajectory exponent diverges by taxon: nomadic humans,
demoiselle cranes, tortoises and blue whales yield α ≈ 2, wildebeest, elephants,
and lions fall between 1 and 2, and reindeer approach α ≈ 1. These results suggest
that open environments such as sky, ocean or plain foster two-dimensional
roaming, while strong social or environmental constraints—for example, herd
mobility—compress movement toward a one-dimensional pattern. A Lévy-
flight simulation that incorporates a return potential and bounds the turning
angle reproduces the observed α clusters, demonstrating that the strength of
directional constraints is a key determinant of geometric dimensionality. Our
findings establish the exponent α as a simple, quantitative metric for comparing
movement patterns across species and across spatial and temporal scales.

KEYWORDS

movement trajectories, Movebank, area-perimeter relationship, Lévy flight, annual
periodicity, statistical properties

1 Introduction

The widespread adoption of GPS-enabled smartphones has facilitated the collection
of detailed human movement trajectories. These data have enabled multidimensional
analyses of human mobility, fostering progress in diverse research areas including
urban planning, disaster response, and transportation system improvements (e.g.,
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Zhao et al. [1]; Andrade et al; [2]; Ghahramani et al. [3]). Moreover,
these benefits are not confined to studies of human populations: GPS
technology now permits the collection of detailed movement data
for animals, significantly advancing research in fields such as ecology
and behavioral science (e.g., Niga et al. [4]; Mastrantonio [5]).

The main difference between human and animal trajectory
datasets is their volume.Whereas humanmovement trajectories can
be obtained at the scale of tens of thousands of individuals per day
from vendors [6]; by contrast, animal data often range from only
a few individuals to at most a few hundred. This disparity exists
because humans routinely carryGPS-enabled smartphones, whereas
animals must each be fitted with tracking devices. Furthermore,
the term “animals” encompasses a wide array of species, including
birds, mammals, amphibians, reptiles, and fish. Few studies directly
compare such diverse taxa, as animal-movement research typically
focuses on the idiosyncrasies of single species.

Since the late 20th century, the collection of animal movement
data has progressed rapidly. However, in the early stages, data
were often managed independently by different researchers and
institutions, resulting in a large amount of unshared data andmaking
it difficult to advance studies efficiently on the same regions or
species. To address this issue, in 2007, the Max Planck Institute for
Ornithology (now the Max Planck Institute of Animal Behavior) in
Germany took the lead in developing the Movebank system [7],
a centralized database that allows open-access data sharing and
analysis. Currently, more than 1,000 research projects manage their
data on Movebank, and thousands of species, including humans,
mammals, birds, and reptiles, have accumulated movement data on
this platform.

Here, we analyze mammal, bird, and reptile trajectories
drawn from the Movebank database. Specifically, we examine
whether the statistical properties we previously identified in
humanmovement—concerning the relationship between the length
of movement trajectories and the areas they enclose [8]—are
also observable in the trajectories of these animals. Through
this investigation, we discuss potential similarities or differences
between humans and animals, as well as across different
animal species.

This paper is organized as follows. In Section 2, we describe the
two types of movement trajectory data examined in this study. The
first type is the human movement trajectory data collected via GPS
from devices such as mobile phones and smartphones that people
carry. The second type is the movement trajectory data archived in
Movebank for various animals, including humans. In Section 3, we
first review our previous research [8], which investigates statistical
properties observed between the length of a person’s dailymovement
trajectory and the area it encloses. We then show that the same
statistical properties observed in human movement trajectories also
appear in the daily trajectories of the kestrel, a bird species whose
detailed movement records are available in Movebank. In Section 4,
we discuss the annual periodicity in the movement trajectories of
eight species of animals, including humans, stored in Movebank,
and we explore the statistical properties observed between the total
distance traveled in 1 year and the corresponding enclosed area. In
Section 5, we demonstrate that these observed statistical properties
between trajectory length and enclosed area can be reproduced
using a Lévy flight model that incorporates a potential, thereby
enforcing a return-to-origin condition. Finally, in Section 6, we

summarize our findings, discuss their implications, and present
future perspectives.

2 Data

In this section, we introduce the two types of trajectory data
used in this paper. One dataset, employed in Section 3.1, was
purchased from Agoop Inc. and consists of GPS data collected from
smartphones carried by pedestrians that passed through Urayasu
City in Chiba Prefecture during August 2022, covering about 20,000
people per day. These trajectories are recorded at 1-min intervals of
latitude and longitude, lack transport-mode information and cannot
be linked across days. We focus on those trajectories composed of at
least five latitude–longitude points, with the distance between the
start and end points being less than 10 km.

According to the user manual, human location data obtained
from smartphones via Agoop has an approximate spatial accuracy of
less than 20 m. It should be noted, however, that even when a person
departs from and returns to their home, the recorded coordinates at
the start and end of the trip often do not match exactly. One reason
for this discrepancy is that vendors typically delete location logs
within several hundred meters of a user’s residence to prevent the
identification of private homes. Furthermore, although the location
logs are generally recorded at 1-min intervals, the interval may
exceed 5 min depending on the situation. Considering the potential
movement that can occur during such gaps, the discrepancy between
the starting and ending positions may reach up to approximately
10 km, even if the person returns to the same physical location.
Therefore, if the distance between the starting and ending points is
less than 10 km, we assume the trajectory forms a closed loop and
treat it as such in our analysis. Similarly, most of the movement data
registered inMovebank is GPS-based.Whenmeasurement accuracy
is documented, it is typically comparable to that of the Agoop data.
However, in the case of animal trajectories, we set a stricter threshold
by assuming that the trajectory is closed if the distance between the
starting and ending points is less than 1 km, taking into account
the typical movement speeds of animals. In this study, we define a
closed trajectory based on the criteria described above and limit our
analysis to such trajectories.

For example, Figure 1a shows the trajectory of a person who
traveled through Urayasu City on August 7, covering a distance
of 127.9 km and enclosing an area of 11.5 km2. The starting
point is shown as a green dot, and the ending point is shown as
a red dot. Figure 1b illustrates another trajectory from August 1,
spanning 3.21 km and enclosing an area of 0.69 km2.

Another dataset consists of animal movement trajectories
registered in Movebank. As of December 2024, there are
approximately 850 projects inMovebank that provide downloadable
animal tracking data. From these, we analyze the movement
trajectories of the common kestrel and demoiselle crane (birds),
the elephant, blue whale, reindeer, lion, wildebeest, and human
(mammals), and the tortoise (reptiles).

1. The common kestrel is a bird classified under the order
Falconiformes and the family Falconidae, widely distributed
across the Eurasian and African continents. In winter,
individuals either remain in their breeding grounds or migrate
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FIGURE 1
The trajectories of two people traveling within Urayasu City on August. (a) The trajectory of a person who traveled within Urayasu City on August 7, with
a trajectory length of 127.9 km and an enclosed area of 11.5 km2. (b) The trajectory of a person traveling within Urayasu City on August 1, with the
trajectory measuring 3.21 km in length and enclosing an area of 0.69 km2.

to warmer areas. In this paper, we focus on data [9] from
a research project dealing with non-migratory individuals to
analyze movement trajectories where the start and end points
are close. Because this dataset records positions at an average
interval of a few minutes, we use it for 1-day movement
trajectory data in Section 3.2.

From Item 2 onward, many of the movement trajectory datasets
contain only a few location data points per day, but they cover a long
period ranging from several years to more than a decade, so we use
them in Section 4.

2. The demoiselle crane is a relatively small crane known for its
long-distance migrations over the Himalayas at altitudes of
around 8,000 m. During the breeding season, they form small
groupsmade up of pairs or families, but duringmigration, they
may form large flocks ranging from hundreds to thousands of
individuals. Data on demoiselle cranes are provided by eight
research projects [11–17].

3. Elephants are the largest land animals, typically moving in
small groups of around 5–20 individuals (data from seven
research projects [18–24]).

4. Blue whale is the largest animal on Earth, generally moving in
pairs or small groups (2–3 individuals) (data from six research
projects [25–30]).

5. Reindeer are deer-family animals that move in herds. In
summer, they form small groups of a few dozen, and in winter,
they form large herds of tens of thousands to hundreds of
thousands of individuals. Some individuals travel more than
5,000 km per year, placing them among the longest annual
migrators among mammals (data from two research projects
[31, 32]).

6. Lions are large carnivores belonging to the cat family, moving
in groups of 3–30 individuals (data from three research
projects [33–35]).

7. Wildebeests are herbivorous animals of the Bovidae family,
known formigrating inmassive herds ofmillions of individuals
each year. Lions are their largest natural predator (data from
three research projects [36–38]).

8. Human data from nomadic peoples in the Far North region of
Cameroon has also been registered (data from four research
projects [21–23, 39]).

9. Tortoises are a type of turtle inhabiting arid regions, grasslands,
and forests. They have a strong sense of territory, do not form
groups, and generally do not interact with other individuals
except during breeding (data from five research projects
[40–44]).

The dataset comprises 17 recorded columns. For our analysis,
we extracted four of these fields—timestamp (the date and time
when the data were recorded), location-long (the longitude of the
individual’s position), location-lat (the latitude of the individual’s
position), and individual-local-identifier (the individual’s identifier).

For instance, Figure 2a shows approximately 1 year ofmovement
data for the kestrel with the individual-local-identifier “5829,”
Figure 2b illustrates about 4 years of movement data for the
demoiselle crane with the identifier “H33-6233,” and Figure 2c
depicts roughly 14 years of movement data for the tortoise “Alison”
on Santa Cruz Island in the Galapagos archipelago.

3 Daily trajectories

3.1 Human movement

In this section, as prior research for this paper, we review the
statistical relationship observed between the length of people’s daily
movement trajectories and the area enclosed by them [8]. Figure 3a
presents a scatter plot, on double logarithmic axes, of the length
of movement trajectories (L km) and the enclosed area Skm2 for
people moving within Urayasu City on 7 August 2022, with a total of
14,492 data points. If themovement trajectorywere a perfect circle, it
would satisfy S = L2/(4π). Alternatively, if the movement trajectory
were out-and-back with nearly perfect overlap on the outbound and
return routes, then S = L/2. In reality, closed movement trajectories
lie between a perfect circle and a nearly one-dimensional out-and-
back route. This tendency can be quantified by the parameter α
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FIGURE 2
Movement trajectories of three individuals: (a) kestrel (ID “5829”), (b) demoiselle crane (ID “H33-6233”), (c) tortoise (ID “Alison”). (a) Movement
trajectory of the kestrel (ID “5829”) from 6 November 2022 to 14 November 2023. (b) Movement trajectory of the demoiselle crane (ID “H33-6233”)
from 26 August 2018 to 28 September 2022. (c) Movement trajectory of the tortoise (ID “Alison”) on Santa Cruz Island from 17 September 2010 to 5
November 2024.

defined by the following equation:

log10S = α log10L+Const. (1)

As shown in Figure 3a, Equation 1 shows a strong correlation
between log10L and log10S. Since we focus on movement trajectories
consisting of five or more points, there are no trajectories with S = 0
in our dataset. At the same time, the parameter α differs for shorter
and longer trajectories, with 5 km serving as a practical threshold
corresponding to an adult’s typical walking distance over about 1 h.
Applying least-squares fitting to the data in Figure 3a yields αShort =
2.05± 0.03 and αLong = 1.40± 0.01. Here, αShort applies to L < 5 km
and αLong to L ≥ 5 km. Notably, αShort ≈ 2 indicates that when L <
5 km, many trajectories form a two-dimensional loop enclosing a
relatively large area (Figure 1b). By contrast, αLong lying between 1 and
2 signifies that trajectories of L ≥ 5 km are more one-dimensional in
nature,encompassingareaonlypartially,as inFigure 1a.Thisresultwas
observedthroughouttheentiremonthofAugust,notmerelyonAugust
7.Moreover, similar behavior emerged in data fromKyoto’s Shimogyo
Ward and in Ishikawa Prefecture, implying that the phenomenon
is not unique to Urayasu.

In Urayasu, αLong is observed to be smaller on weekends and
holidays than on weekdays, indicating that the one-dimensional
tendency of long-distance movement becomes more pronounced
on these days. In contrast, in Kyoto City’s Shimogyo Ward and
in Ishikawa Prefecture, αLong tends to be larger on weekends
and holidays, suggesting that the two-dimensional tendency of
long-distance movement is strengthened. These findings can be
interpreted as follows: Urayasu is home to one of Japan’s largest
theme parks, which attracts visitors from across the country,
thus intensifying round-trip travel on weekends and holidays.
Meanwhile, in Kyoto and Ishikawa—both regions renowned
for numerous historical tourist spots—weekends and holidays
encourage more extensive tours among multiple attractions.

3.2 Kestrel movement

The purpose of this study is to investigate the statistical
relationship between the length of animal movement trajectories
and the areas they enclose. To begin, we focus on the commonkestrel
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FIGURE 3
Scatter plot of the trajectory length L km and enclosed area S km2. (a) Scatter plot of the trajectory length L km and enclosed area Skm2 for people
traveling in Urayasu City on 7 August 2022. (b) Scatter plot of the daily trajectories from 11,185 days of 53 kestrels recorded between 6 May 2020, and
15 June 2024.

(Falco tinnunculus) dataset registered in Movebank [9], which, like
the humanmovement data analyzed in Section 3.1, provides detailed
daily trajectories at minute-level intervals. Figure 3b plots the daily
trajectories of 53 kestrels recorded from 6May 2020, to 15 June 2024,
encompassing a total of 11,185 days in which the distance between
the start and end points is less than 1 km [9]. As the figure shows,
non-migratory birds generally travel shorter distances in a single
day compared to humans, likely because birds rely on their own
flight power rather than mechanical means. Nevertheless, a strong
correlation is also evident between log10L and log10S, mirroring the
patterns observed in human movement.

Although this correlation may not be immediately apparent
from the figure, applying a least-squares regression to
the data in Figure 3b—and distinguishing short- and long-distance
movements at the same 5 km threshold used for humans—yields
αShort = 1.99± 0.04 and αLong = 1.48± 0.02. These results suggest
that, similar to humans, kestrels tend to exhibit two-dimensional,
area-enclosing trajectories for relatively short distances, while longer
distances are characterized by a more one-dimensional trajectory.
The interpolation algorithm used in this study solely connects the
start and end points of a trajectory. This connection is applied only
when the start and end points are considered to match within the
range of GPS error, privacy-preserving adjustments (e.g., for home
locations), and potential movement inaccuracies. Therefore, the
added segment by the interpolation algorithm can be approximately
regarded as part of the actual movement trajectory. As such, the
observed result of αShort ∼ 2 is not considered to be an artifact of the
interpolationmethod. Indeed, in the case of the kestrel, for example,
even when the connection is made at a threshold of less than 500 m
instead of 1 km, the result remains consistent within the margin of
error: αShort = 1.94± 0.04.

Table 1 provides a comparison of the number of individuals,
the total number of days, and the short- and long-distance
movement indices for humans (Urayasu) and kestrels
analyzed in Section 3. These observations underscore that
both species share common features in their daily trajectories,

with comparable distinctions between short- and long-distance
movements.

4 Annual trajectories

In this section, we analyze multi-day trajectories using
Movebank data, which could not be examined with the Agoop
dataset. First, as introduced in Section 2, we focus on data from
research projects related to demoiselle cranes, elephants, blue
whales, reindeer, lions, wildebeest, humans (pastoralists), and
tortoises registered in Movebank, grouping them by species for
our analysis. The number of individuals for each species and the
total number of days for which latitude and longitude data were
recorded are summarized in Table 2.

4.1 Annual cycle

To gain an overview of their movement, we first focused on
the time course of the mean squared displacement from the start
date of observation for each species. Figure 4 shows the transitions
in the mean square displacement for (a) demoiselle cranes and (b)
tortoises. A prominent feature in these figures is the clear 365-
day periodicity. Although not shown here due to space constraints,
similar annual cycles can also be observed in elephants, blue whales,
lions, reindeer, wildebeests, and humans. It is noteworthy that even
humans (nomadic peoples) exhibit seasonal movement.

4.2 Eight animal species

In this section, we take advantage of the fact that the eight
animal species analyzed here exhibit an annual movement cycle.
We investigate whether their movement patterns tend to enclose
large areas in a two-dimensional fashion, or whether they follow a
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TABLE 1 Animal species, number of individuals, total number of days, and short- and long-distance trajectory indices: αShort, αLong for daily movement
trajectories.

Animal species Number of individuals Total number of days αShort αLong

Human (Urayasu) 14,492 14,492 2.05± 0.03 1.40± 0.01

Common kestrel 53 11,185 1.99± 0.04 1.48± 0.02

TABLE 2 Animal species, number of individuals, total number of days, and trajectory index: α for 1-year movement trajectories.

Animal species Number of individuals Total number of days α

Demoiselle crane 84 10,984 2.14± 0.07

Elephant 40 23,104 1.50± 0.15

Blue whale 178 5,023 1.87± 0.06

Reindeer 110 7,105 1.03± 0.08

Lion 29 11,994 1.30± 0.21

Wildebeest 52 24,422 1.57± 0.16

Human (Nomadic) 1,062 6,759 2.18± 0.20

Tortoise 54 103,111 1.91± 0.12

FIGURE 4
The relationship between the number of days elapsed since the start of the two species tracked and their mean squared travel distance: (a) Demoiselle
cranes, (b) Tortoises.

more one-dimensional pathwhere outbound and returnmovements
nearly overlap. This trend is evaluated by using the parameter α.

For example, Figure 5a presents a scatter plot showing the annual
trajectories of 84 demoiselle cranes, with the trajectory length L
km on the horizontal axis and the enclosed area Skm2 on the
vertical axis. In Figure 5a, a parabolic boundary can be observed
between regions where data points exist and where they do not.This
boundary reflects that, for a fixedmovement distance L, the enclosed
area S reaches its maximum when the trajectory is nearly circular
(i.e., S∝ L2).

At the same time, Figure 5a shows that both S and L span
an extremely wide range. Consequently, plotting the data on
logarithmic axes, as in Figure 5b, facilitates a clearer estimation of
the parameter α in Equation 1. From the best-fit line shown in
Figure 5b, α is evaluated to be 2.14± 0.07. The fact that α is close to
2 is consistent with the demoiselle crane’s trajectory covering large
areas, as illustrated in Figure 4b.

A similar strong correlation between the enclosed area S and
the perimeter L is observed for the annual trajectories of the
other seven species as well. By estimating α from each of these
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FIGURE 5
Scatter plot of the enclosed area S km2 versus the perimeter L km for 1-year trajectories of 84 demoiselle cranes. (a) On linear plot. (b) On
double-logarithmic plot. The best-fit line log10S = 2.14log10L−2.48 is shown as a dotted line.

datasets, we obtain the results summarized in Table 2. A notable
difference from the kestrel data in Section 3.2 is that, over the
course of a year, there is no clear separation between short- and
long-distance movements when assessing the correlation between
trajectory length and enclosed area.

5 Simulation based on the Lévy flight
model

In this study, we analyze movement trajectories of animals
obtained from Movebank, focusing on those that return to their
starting points. We report two main findings. First, the daily
movement trajectories of the lesser kestrel exhibit a scaling exponent
α that approaches 2 for short distances and 1.5 for long distances.
This behavior is consistent with our previous observation based on
human daily mobility patterns derived from Agoop data. Second,
the annual movement trajectories of eight animal species from
Movebank exhibit periodicity, with the scaling exponent α over
1 year varying by species. Specifically, the exponent is close to 2
for humans (nomadic people), the demoiselle crane, tortoises, and
blue whales; close to 1 for reindeer; and approximately 1.5 for
wildebeests, elephants, and lions. While the first empirical property
has already been shown to be reproducible through our previously
proposed simulation model, the present study proposes a new
simulationmodel aimed at understanding the second property from
the perspective of directional tendencies in movement.

Specifically, we consider two contrasting scenarios: one in which
movement direction is highly constrained due to environmental
factors, and another in which such constraints are minimal. To
systematically investigate how the trajectory scaling exponent α
changes depending on the strength of directional constraints, we
designed a simplified setting in which the movement direction is

restricted to remain close to the previous step’s direction. Based
on this framework, we conducted two-dimensional random walk
simulations using Lévy flights [45–48]. Here, the scenario with
strong directional constraints models the movement of reindeer,
while the unconstrained case represents movements of humans
(e.g., nomadic tribes), demoiselle cranes, tortoises, and blue whales.
Additionally, to ensure that the Lévy flight returns to its point of
origin, we introduced a return potential term. This term generates
a pulling force toward the starting point, which becomes stronger as
the number of remaining steps decreases.

1. Step count: Each simulated trajectory contains between 30
and 100 steps, chosen at random. This simulation targets
movement trajectories lasting up to 1 year (365 days);
therefore, we set the maximum number of steps to 100,
which is of the same order and provides a convenient round
number. The minimum number of steps was set to 30, based
on empirical observations that the shortest animal movement
trajectories span approximately 1 month.

2. Lévy distribution: The length of each step follows a heavy-
tailed Pareto distribution with Pareto exponent μ = 1.5. The
purpose of this simulation is to examine the relationship
between the strength of movement constraints and the
trajectory scaling exponent α, as described above. Therefore,
we adopted a typical value of μ = 1.5, which is commonly
observed in the power-law distribution of jump lengths in
animal movement (see, e.g., Zaburdaev et al. [49]).

3. First step:The first step proceeds in a randomdirection (0–2π).
4. Direction of movement: With respect to the direction of the

previous step, each subsequent step is taken randomly within
±π/n (i.e., −π/n toπ/n), where n is a parameter.

5. Return potential: To ensure that the final position returns
to the origin, an attractive potential inversely proportional
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to the distance from the origin—adjusted by the number of
remaining steps—is added at each step. The position xi is
updated according to the following Equation 2, where the third
term on the right-hand side represents the return potential:

xi+1 = xi + si −
xi − x0
N− i
. (2)

Here, i denotes the step index starting from 0, xi is the position
vector at step i, si represents a standard Lévy step, x0 is
the position vector of the starting point, and N is the total
number of steps.

6. Final step processing: At the final step, the trajectory is forcibly
brought back to the origin, forming a closed polygon.

7. Repeated simulation: This simulation is repeated 1,000 times,
and for each closed trajectory, the length L and the enclosed
area S are measured. Please refer to the attached Python
code for the details of the measurement method. In the code,
when a self-intersection occurs in the trajectory, the area is
correctly computed using make_valid(). Furthermore, each
measurement was repeated 10,000 times, and the evaluation
described in the next item (Sterp 8) was conducted in both
cases. In the case of human or animal movement trajectories
based on latitude and longitude coordinates, we used the
geodesic algorithm of [50], which is implemented in the Geod
class of pyproj (v3.6.1) with the WGS-84 ellipsoid, as it is
suitable for geodetic calculations in such coordinate systems.

8. Correlation analysis: For each parameter n, a linear regression
analysis is performed on the logarithms of the length and
enclosed area, (log10L, log10S), to evaluate the parameter
α in Equation 1.

Figure 6a shows an example for the case where n = 1 governs
the motion. Figure 6b presents the case for n = 10. In addition,
Figure 7 illustrates the scatter plot of (log10L, log10S) along with its
best-fit line for n = 1. The slope of this line in Figure 7 is α, and
Figure 8 shows the values of α evaluated at n = 1,2,…,10.This figure
indicates that when the direction ofmotion is unconstrained (n = 1),
the enclosed area is proportional to the square of the path length,
whereas imposing stronger constraints on the direction of motion
causes the enclosed area to approach a relationship proportional
to the path length to the first power. However, due to the effect
of the return potential, the rate at which it converges to a first-
power relationship becomes increasingly gradual. In Figure 8, we
also present results from 10,000 simulation trials in which the Pareto
exponent μ, set to 1.5 in Step 2, was instead set to 1.0 and 2.0.
Within this range of values, we observe that a larger μ tends to
result in a larger scaling exponent α. However, the overall trend
that α gradually decreases with increasing turning-angle constraint
parameter n remains consistent across different μ values. The fact
that α does not appear to approach 1 may reflect a limitation of our
simulation framework, which relies on the return potential to ensure
closure of the trajectories.

6 Results and conclusion

In this study, we used movement trajectory data from nine
species of animals (common kestrel, demoiselle crane, tortoise,

blue whale, reindeer, elephant, wildebeest, lion, and nomadic
human populations) registered in the Movebank database, which
integrates research data on animal movements worldwide, to
examine statistical properties of these trajectories that transcend
the classifications of birds, mammals, and reptiles. We first focused
on the common kestrel, for which movement trajectories are
recorded at several-minute intervals, and confirmed that its daily
movement trajectories tend to become two-dimensional, enclosing
a large area when the distance traveled is short, whereas they
exhibit an increasingly one-dimensional tendency as the distance
becomes longer. This finding aligns with our previous research, in
which human movement trajectories were observed to display a
similar property.

The daily trajectories analyzed in this study are subject to
a stringent constraint: individuals must return to their point of
departure within the same day. We contend that this requirement
gives rise to the distinct geometric differences observed between
short- and long-distance paths. It is therefore reasonable to assume
that this property is not confined to humans or common kestrels, but
is shared by any animal that completes a round trip within a single
day.Themodel we proposed in our earlier work further substantiates
this interpretation.

By examining the temporal evolution of the mean squared
displacement from the initial observation point over the course
of the study, we confirmed that all eight species of animals with
recorded trajectories of over one year—excluding the kestrels
analyzed in this study—exhibited periodic movement on an annual
timescale. Building on this finding, we quantitatively evaluated the
shape of these trajectories for each species by using the parameter
derived from the correlation between the logarithms of the total
distance traveled in 1 year and the enclosed area. As a result,
we found that humans (nomadic populations), demoiselle cranes,
tortoises, and blue whales formed trajectories that enclosed a
large area, while reindeer engaged in round-trip movements in
which outbound and return paths nearly overlapped. Moreover,
wildebeests, elephants, and lions exhibited movement patterns
intermediate between these two extremes.

Furthermore, by employing a Lévy flight model conditioned
to return to the origin, we demonstrated that trajectories with
no directional constraints tend to become more two-dimensional,
whereas imposing stronger directional constraints leads to more
one-dimensional trajectories.

The simulation supports the following interpretation. Species
whose annual long-distance movement index is close to 2—namely
nomadic pastoralists, demoiselle cranes, blue whales, and
tortoises—experience few constraints on their trajectories other
than the eventual need to return to their point of origin. This
pattern typifies organisms that are, in principle, free to range across
vast, unbounded arenas such as open plains, the sky, or the open
ocean. In the tortoise’s case, its largely solitary habits further relax
spatial constraints by eliminating the need to coordinate with
conspecifics. By contrast, the other species exhibit directional
restrictions: large herbivore herds generate collective movement
constraints, and these, in turn, impose similar limitations on
the carnivores that prey upon them. The social structure of each
animal species—such as herd density and group size—likely plays
a significant role in shaping the trajectory parameter α. In our
simulation, behavioral correlation distances mediated by tactile
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FIGURE 6
Simulation example of a trajectory when the movement direction is chosen randomly within ±π/n relative to the previous step’s direction. (a) For n = 1,
i.e., movement independent of the previous step’s direction. (b) For n = 10, i.e., limited to ±18°.

FIGURE 7
Scatter plot of the simulation repeated 10,000 times with trajectory length: L and enclosed area: S displayed on double-logarithmic axes. The slope of
the best-fit line, α, is evaluated by the least squares method as 2.06±0.01.

or olfactory cues (e.g., pheromones) and visual signals may also be
interpreted as corresponding to the directional constraint parameter
n. This simulation was originally designed to explain interspecies
differences in the trajectory exponent α for annual long-distance
movements. However, it may also help account for the observed

differences inα between long- and short-distancemovementswithin
the same species. The simulation results suggest that the smaller the
deviation between the direction of the previous step and that of the
next step, the smaller the resulting α, approaching approximately
1.5. Conversely, when the influence of the previous direction on
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FIGURE 8
Results obtained by performing the analysis in Figure 7 for n =
1,2,…,10.

the next is minimal, α tends to approach 2. This finding aligns
with the interpretation that long-distance movements—assumed to
return to the point of origin within a day—are often associated with
specific destinations and therefore exhibit less directional variation.
In contrast, short-distance movements are more likely to involve
multiple destinations, resulting in greater directional variability.
In this context, the 5 km threshold may reflect a distinction in
the mode of transportation. Movements exceeding 5 km are likely
dominated by highly linear modes of transport such as cars or
trains, whereas movements under 5 kmmay primarily involve more
maneuverable modes such as walking or cycling. Confirming this
hypothesis remains a subject for future investigation.

However, to assert these conclusively, one would need to analyze
a broader range of species rather than just the nine discussed in
the present study. Using the approach we propose, it should be
possible to perform such expanded analyses, and thus this remains
an important task for future research.

The movement described in this paper can be understood
qualitatively by simply plotting the trajectories on a map. Indeed,
the animal-movement videos on the Movebank website’s top page
can even be profoundlymoving. However, examining themovement
trajectories of more than a thousand species is exceedingly
time-consuming. Consequently, by quantifying these trends using
statistical indicators, it becomes possible to evaluate the movements
of any animal using a uniform metric. Through this approach,
similarities and differences among various animal species, as well
as between animals and humans, can be elucidated. Many of the
datasets in Movebank lack altitude information, so in this study we
excluded all altitude data from our analysis. In the future, we plan
to perform a three-dimensional analysis for trajectories that include
reliable altitude measurements.
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