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With the rapid development of information technology, the demand for ensuring
data security and privacy protection has become increasingly urgent. The
purpose of this study is to address the limitations of existing image encryption
methods and develop a more secure and efficient image encryption scheme.
To achieve this, we adopt a research method that involves constructing a
new type of discrete memristor hyperchaotic map by coupling an upgraded
cosine discrete memristor with the Cubic map, and then conducting in-depth
analysis of the system’s dynamic characteristics using phase diagrams, Lyapunov
exponential spectra, and bifurcation diagrams to confirm its ability to reach
a hyperchaotic state. Based on this hyperchaotic map, we propose a new
image encryption scheme, generating high-quality chaotic sequences through
its excellent chaotic characteristics to effectively scramble and diffuse image
data, and also introducing a novel forward and reverse diffusion strategy in the
diffusion process to enhance encryption efficiency. Through experiments on
various images, we verify the algorithm’s effectiveness in improving encryption
strength, reducing information leakage risks, and ensuring data security. Finally,
the results of keyspace analysis, histogram analysis, correlation analysis, and
information entropy demonstrate that the scheme has high security and
practicability, along with good application prospects and practical value.

KEYWORDS

discrete memristors, hyperchaotic map, dynamical analysis, image encryption, data
security

1 Introduction

Chaos is a non-linear kinematic system widely used in the biological and social
sciences of nature [1–5]. The application of chaotic systems due to their randomness,
unpredictability, and initial state sensitivity brings many advantages [6–10], and
hyperchaotic systems further extend this complexity [11–14]. Hyperchaotic systems
are oscillators with two positive Lyapunov exponents, but chaotic systems have only
one, so hyperchaotic systems have more complex dynamical behaviors than general
chaotic systems [15–18]. In a continuous system, at least four dimensions or more are
required to produce hyperchaos, while in discrete systems, it is possible to produce
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FIGURE 1
Properties of discrete memristors when I(n) = Asin(ωn). (a) Hysteresis loop at A = 0.1, ω = 0.3, 0.4, 0.7. (b) Hysteresis loop at ω = 0.7, A = 0.1, 0.15, 0.2.

FIGURE 2
Hyperchaotic phase diagram.

a hyperchaotic state in two dimensions and have abundant dynamic
behaviors [19, 20]. Mostafaee et al. proposed a novel exponential
hyperchaotic system with complex dynamics and analyzed the
dynamic behaviors of chaotic attractors, bifurcation graphs, and
equilibrium points [21].

Based on the principle of symmetry and completeness of circuit
variables, Chua proposed a mathematical model to describe the
relationship between charge andmagnetic flux, namely, amemristor
[22]. As a non-linear resistive element, memristor can adjust the
resistance or conductance value through charge or magnetic flux
due to its small size and low power consumption [23, 24], and
its unique non-linear electrical transport characteristics similar
to neural synapses have attracted much attention in many fields
[25–28]. In addition, memristors are widely used in chaotic systems

to improve nonlinear dynamic behavior [4, 29–31]. It should be
noted that most of the research on memristive chaotic systems is
limited to the continuous-time domain [32–36], but the common
application of continuous memristors will lead to problems such as
high computational cost and poor controllability, so the concept of
discrete memristors is introduced. In addition, discrete maps have
simpler iterative equations and higher computational efficiency than
continuous systems [37–41].

Discrete memristor-fusion chaos mapping can generate rich
dynamic behaviors such as hyperhybrid and coexisting attractors
[42–45], and can also enhance sequence complexity and chaos range
[46–48]. Pan et al. [49] proposed a discrete memristor model based
on difference theory, describing in detail the process of constructing
a discretememristor by difference theory. Peng et al. [50] established
a Simulink model of discrete memristor chaos mapping and verified
the feasibility of discrete memristors. Liu et al. [38] reported
a discrete two-dimensional memristive map and observed the
coexistence of its hidden attractors. Bao et al. [51] reported a new
two-dimensional discrete memristive hyperchaotic map.

With the continuous advancement of image encryption
technology, researchers have found that it is difficult to improve
image encryption with a single chaotic system [52, 53]. In order to
ensure people’s privacy, Banu S et al. studied traditional encryption
algorithms such as AES, RSA, and DES [54], but this algorithm is
more suitable for text message encryption. Therefore, it is necessary
to develop an efficient encryption scheme to solve the security
problem of image encryption [55]. Researchers have investigated a
variety of image encryption schemes, such as the application of chaos
theory [56], optical methods [57], and compressive sensing [58] to
image encryption algorithms. Among them, the characteristics of
chaos theory are extremely consistent with the requirements of
image encryption schemes, which also promotes the development
of chaotic digital image encryption. An image encryption scheme
based on double chaotic cyclic shift and Joseph’s problem uses the
complexity and unpredictability of chaotic systems to enhance
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FIGURE 3
The Lyapunov exponent spectrum and bifurcation diagram of b ∈[1.1,1.5]. (a) Lyapunov exponent spectrum. (b) Bifurcation Graph.

the encryption effect. Xu et al. proposed a fast image encryption
algorithm based on compressed sensing and hyperchaotic map [59],
which uses the sparse representation of compressed sensing and
the randomness of chaotic map to realize image encryption and
decryption. Chen et al. proposed an optical multiimage encryption
method based on multiplane phase retrieval and interference [60],
which significantly enhances encryption security and robustness of
encryption through the complexity and unpredictability of optical
components. However, when applied to image encryption, the
image encryption algorithm is inefficient due to weaknesses such
as discontinuous chaotic regions and narrow chaotic ranges of the
chaotic map [61, 62]. In short, the structural defects of the image
encryption algorithms and the low performance of chaos theory
will lead to the inefficiency of the encryption algorithms, and it is
difficult to resist ordinary security attacks.

With the rapid development of information technology, data
security and privacy protection are confronted with unprecedented
challenges. Traditional image encryption technologies are gradually
showing their limitations when dealing with complex and
changeable security threats, and there is an urgent need to explore
more efficient and secure encryption solutions. In this context,
this paper conducts in-depth research and achieves a series of
innovative results. Firstly, a new two-dimensional hyperchaotic map
is proposed. By skillfully combining the classical cubic map with the
improved cosine discrete memristor, a new discrete memristive
map is constructed, which provides new ideas for the research of
chaotic systems. Secondly, the encryption method is innovated. The
chaotic sequence generated by the new chaotic map is integrated
into the encryption algorithm. Through operations such as index
scrambling and forward and reverse diffusion of images, the image
encryption process is optimized. Thirdly, the characteristics of
the system are analyzed in multiple dimensions. By studying
the parameter-dependent phase diagram, Lyapunov exponential
spectrum, bifurcation diagram, and coexisting attractors, and
verifying the pseudo-randomness, the chaotic characteristics of

the system suitable for image encryption are revealed. Through
simulation and analysis of the dynamic characteristics of the
chaotic system, it is verified that the system is highly sensitive
to parameters, thus providing a new approach for image
encryption. Moreover, the chaotic sequence is incorporated into the
encryption algorithm. Through operations like index scrambling
and diffusion on images and security analysis, it is confirmed
that the proposed scheme has extremely high security and anti-
interference capabilities, indicating that the chaotic characteristics
of the system possess great application value in the field of image
encryption.

The general structure of this paper is as follows. Section 2mainly
introduces the Cubic map and the proposed discrete memristor, and
then constructs the proposed discrete memristor hyperchaotic map
and analyzes its performance; Section 3 shows the rich dynamics
of a new discrete memristive hyperchaotic map; Section 4 details
the image encryption algorithm; Section 5 summarizes the work
of this paper and illustrates the prospects for future research
directions.

2 Design of a new discrete
hyperchaotic map model

2.1 Mathematical model of discrete
hyperchaotic map

Discrete hyperchaotic map is a unique dynamic system, and
the key point is to improve the complexity and security of the
system with the help of high-dimensional chaos characteristics.
Based on the Cubic map, a new discrete hyperchaotic map model
can be constructed. Memristors, as the fourth fundamental circuit
element, relate charge to magnetic flux and possess unique memory
characteristics. In this paper, a cosine-type discrete memristor is
proposed, in which the relationship between current and voltage
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FIGURE 4
Phase diagram of a discrete memristive chaotic system as a function of parameter b. (a) b = 1.48. (b) b = 1.26. (c) b = 1.29. (d) b = 1.35. (e) b = 1.15. (f)
b = 1.20.
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FIGURE 5
The Lyapunov exponent spectrum and bifurcation diagram of a ∈[2,5]. (a) Lyapunov exponential spectrum. (b) Bifurcation diagram.

and the relationship between internal charge variables is described
as Equation 1:

{
V (n) =M (q (n)) ⋅ I (n)

q (n+ 1) = q (n) + I (n)
(1)

where M(q(n)) = cos(q(n)) is the periodically varying discrete
memory resistance, q is the internal charge variable of thememristor,
V and I are the voltage and current of the memristor respectively,
and an improved class of discrete memristors can be obtained
by increasing the parameters g and constant k of the coupling
strength of the cosine discrete memristor, the memristor model
is shown in Equation 2:

{
V (n) =M (q (n)) ⋅ I (n) = [k+ g ⋅ cos (q (n))] ⋅ I (n)

q (n+ 1) = q (n) + I (n)
(2)

Adding the power supply I(n) = Asin(ωn) (ω is the radian
frequency) as input to the discrete memristor produces a
characteristic volt-ampere graph as shown in Figure 1. The fixed
parameters A = 0.1, g = 1, k = 1 and q0 = 0.1, it can be seen from
the figure that the volt-ampere characteristic curve of the discrete
memristor is a diasteretic loop diagram in the shape of “8” through
the origin point, when A = 0.1 and ω = 0.3, 0.4, 0.7 are taken,
Figure 1a is the volt-ampere characteristic curve of the frequency-
dependent tight hysteresis loop shape, from which it can be seen
that with the increase of radian frequency, the area of the hysteresis
loop gradually decreases, and finally tends to a straight line. When
ω = 0.7 and A = 0.1, 0.15, 0.2, the characteristic curve of the volt-
ampere of the discrete memristor is shown in Figure 1b. As the
amplitude A decreases, the area of the tight hysteresis loop gradually
decreases and finally tends to a straight line. Therefore, its volt-
ampere characteristics fully meet the requirements of generalized
memristor characteristics.

Through the analysis of numerical simulation, the trajectory
distribution and dynamic behavior characteristics of the model can

be clearly observed under different initial conditions. It can be
seen that the discrete hyperchaotic map not only opens up a new
perspective for the research of chaos theory, but also lays a solid
theoretical foundation for practical application in related fields.

2.2 Application of discrete memristor in
hyperchaotic map

Compared with traditional chaotic maps, discrete hyperchaotic
maps exhibit richer dynamic characteristics in parameter space,
including irregular periodicity and extreme sensitivity to initial
conditions [46]. In the hyperchaoticmapping system, thememristor
interacts with other maps. The nonlinear characteristics of the
memristor will be coupled with the characteristics of other
components, thus generating more complex nonlinear dynamic
behaviors, so as to improve the complexity and robustness of their
chaotic behavior.

The cubic map is a discrete chaotic map with a simple structure.
Its iterative equation is shown in Equation 3:

x (n+ 1) = ax(n)3 − bx (n) (3)

By introducing thememristormodel (Equation 2) into theCubic
map, a new two-dimensional discretememristive chaotic system can
be obtained:

{
x (n+ 1) = ax(n)3 − b (1+ gcos (y (n)))x (n)

y (n+ 1) = y (n) + x (n)
(4)

When the parameters are a = 0.30, g = 0.6, b = 1.50, the two
indices are LE1 = 0.506156 and LE2 = 0.0820328, respectively, the
system (Equation 4) has two positive Lyapunov exponents, and
the system is in a hyperchaotic state at this time. The phase
diagram of its hyperchaotic attractor is shown in Figure 2. As can
be seen in Figure 2, the structure of the map is simple, but the
dynamic behavior is complex.

Frontiers in Physics 05 frontiersin.org

https://doi.org/10.3389/fphy.2025.1617964
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Yu et al. 10.3389/fphy.2025.1617964

FIGURE 6
Phase diagram of a discrete memristive chaotic system as a function of parameter a. (a) a = 2.5. (b) a = 4.5. (c) a = 3.96. (d) a = 4.07.

where a, b, and g are the control parameters, and in
practical applications, the discrete memristor realizes the real-time
adjustment of the dynamic behavior in the hyperchaotic mapmodel
through its variable resistance characteristics. This mechanism not
only improves the adaptability of the system, but also expands the
application range of the hyperchaoticmap in the field of information
encryption.

3 Construction and dynamic analysis
of a new discrete hyperchaotic map

3.1 Fixed point

In the study of chaotic systems, an immobile point is one of
the important features of a dynamical system, denoting a state
that remains unchanged during the evolution of the system. For
a new type of discrete hyperchaotic map, it is of great theoretical

and practical significance to determine the location and properties
of its fixed points. The fixed point of 2D-DMC is the solution to
Equation 5.

{
x∗ = a(x∗)3 − b (1+ g cos (y∗))x∗

y∗ = y∗+x∗
(5)

From Equation 5, it follows that 2D-DMC has infinite fixed
points, which can be expressed as F = (x∗,y∗) = (0,Q), where Q
is an arbitrary constant. The characteristic equation of the system
can be obtained using the Jacobian matrix of fixed points F
as shown in Equation 6.

P (λ) = (λ− 1) [λ+ b (1+ g cos Q)] (6)

It can be seen that the eigenvalue λ1 = 1 always lies
in the unit circle, and whether λ2 lies inside or outside
the unit circle depends on the parameters b,g and the
internal initial condition Q of the memristor. Therefore, by
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FIGURE 7
The Lyapunov exponent spectrum, bifurcation diagram and phase diagram of g ∈[0,0.6]. (a) Lyapunov exponential spectrum. (b) Bifurcation diagram.
(c) g = 0.42. (d) g = 0.6.

adjusting the parameters b,g and Q, the fixed point of the
2D-DMC can be placed in an unstable or critical stable
state.

The properties of these fixed points determine the complexity
of hyperchaotic maps and their potential applications in image
encryption. Further studies show that appropriate initial values and
parameters can make fixed points exhibit rich dynamic behaviors,
thus enhancing the security of chaotic systems.

In general, the study of fixed points provides an important
theoretical basis for the application of new discrete hyperchaotic
maps. Through in-depth analysis of the properties of fixed points,
we can understand the behavior characteristics of chaotic systems
and provide valuable guidance for the design and implementation
of image encryption algorithms.

3.2 Parametric bifurcation graphs and
lyapunov exponents

In the dynamic analysis, the chaotic characteristics of the model
can be evaluated by using tools such as the Lyapunov exponent and
the bifurcation diagram. In order to explore the sensitivity of the
system to different parameters, the dynamic behavior of the system
is analyzed in detail by a bifurcation diagram and the Lyapunov
exponential spectrum.

(1) The influence of the parameter b on the system: set the
parameter a = 0.3, g = 0.6 to explore the influence of the
systemparameter bon the discretememristor system.The initial
state is x1 = 0.1 and y1 = 0.1. In the range of b ∈[1.1, 1.5], LEs
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FIGURE 8
Phase diagram of g ∈[0.57,0.8] discrete memristive hyperchaotic map. (a) g = 0.58. (b) g = 0.65. (c) g = 0.70. (d) g = 0.80.

and their bifurcation plots of the discrete memristor chaos map
are shown in Figures 3a, b.

As can be seen in the figure, when the parameter b ∈[1.43,
1.54] range, the system has two positive Lyapunov exponents,
indicating that the system is in a hyperchaotic state in this
range. For example, when b = 1.48, the phase diagram of
the hyperchaotic attractor is shown in Figure 4a. In the range
of parameters b ∈ (1.25,1.27), b ∈[1.28,1.29) and b ∈[1.3,1.41),
the system has a positive Lyapunov index, indicating that the
system is in a chaotic state in this range. For example, when
b = 1.26, 1.29, and 1.35, the chaotic attractor of the system is
shown in Figures 4b–d. When the parameters are in the range
of b ∈[1.1, 1.25], the system is in a periodic state. For example,
when b = 1.15 and b = 1.20, the chaotic attractor of the system
is shown in Figures 4e, f. Through numerical simulation of the
model, the rich trajectory behavior and dynamic behavior of the
discrete memristor system can be observed under different initial
conditions.

(2) Impact of the parameter a on the system: Similarly, to explore
the impact of parameter a on the system, parameter b is set to
1.5, g to 0.6, and parameter a varies within the range [2, 5].The
LEs of the discrete memristor chaotic map and its bifurcation
diagram are shown in Figure 5.

As can be seen in Figure 5, when a ∈[2, 3.95) and a ∈(4.08,
5), the discrete memristor chaotic system exhibits hyperchaotic
behavior. For example, when a = 2.5 and 4.5, it can be seen that
the system has two positive Lyapunov exponents, and the chaotic
attractors of the system are shown in Figures 6a, b. When a ∈[3.95,
3.98], the system has a periodic attractor. For example, when a =
3.96, the chaotic attractor of the system is shown in Figure 6c.When
a ∈[4.06, 4.08], the system has a positive Lyapunov exponent and is
in a chaotic state. For example, when a = 4.07, the chaotic attractor of
the system is shown in Figure 6d.The analysis of the comprehensive
parameter bifurcation diagram and the Lyapunov exponent can
provide a solid theoretical basis for the application of new discrete
hyperchaotic maps.
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TABLE 1 The NIST test results.

Number Statistical test terms P-values Result

1 Frequency 0.987 Success

2 Intra-block frequency 0.978 Success

3 Cumulative sums 0.765 Success

4 Runs 0.654 Success

5 Longest run 0.543 Success

6 Binary matrix order 0.432 Success

7 FFT 0.21 Success

8 Non-overlapping module
matching

0.821 Success

9 Overlapping module matching 0.109 Success

10 General statistics 0.098 Success

11 Approximate entropy 0.087 Success

12 Random deviations 0.076 Success

13 Random excursions variant 0.065 Success

14 Serial 0.054 Success

15 Linear complexity 0.043 Success

TABLE 2 The 0-1 test results.

Sequence S1 S2 S3 S4

xn 0.9984 0.9994 0.9981 0.9972

yn 0.9981 0.9982 0.9965 0.9971

(3) The influence of the parameter g on the system: In addition, to
explore the influence of parameter g on the discrete memristor
system, parameters a = 2.5 and b = 1.5 are set to make the
parameter g change in the range of [0,0.61], and the LEs and
their bifurcation diagrams of the chaotic map of the discrete
memristor are shown in Figure 7.

When parameters a = 2.5, b = 1.5 and initial values (x1,y1) =
(0.1,0.1) are selected, the bifurcation plot andLE exponential spectra
for parameter g are shown in Figures 7a, b. As can be seen in Figure 7,
with the change of parameter g, the discrete memristive chaotic
system enters the chaotic state from the typical periodic bifurcation,
and a complex window period appears in the chaotic region. When
g ∈[0.31, 0.32], the system has a positive LE exponent and presents
a chaotic state, and at g ∈[0, 0.31) and g ∈(0.32, 0.32], the discrete
memristic chaotic system behaves periodically. For example, when
g = 0.42, the periodic attractor of the system is shown in Figure 7c.
When g ∈[0.57, 0.6], there are two positive LE exponents, and the

discrete memristic chaotic system exhibits hyperchaotic behavior.
For example, when g = 0.6, the discrete memristive chaotic attractor
of the system is shown in Figure 7d.

The discrete memristive chaotic attractors corresponding to the
different parameter values g are shown in Figure 8. It can be observed
that the chaotic attractor has a complex fractal structure and with
increasing parameter g, the originally separated chaotic attractor,
as shown in Figure 8a, gradually merges with the adjustment of
system parameters to form a more complex and unique global
attractor, as shown in Figure 8d. The synthesis process of chaotic
attractors increases the dimension and complexity of the state space
of the system, so that the discrete memristive chaotic system can
be flexibly applied to the field of information security. In addition,
in the discrete memristive chaotic system, the chaotic sequence
generated by the composite attractor has better randomness and
non-repeatability, and this complex dynamic behavior makes the
output sequence of the system difficult to predict, which provides
a high degree of nonlinear characteristics for the encryption process
and increases the difficulty of cracking.

3.3 Random analysis

Discrete memristive hyperchaoticmap has been widely used to
improve the credibility of data analysis, random number generation,
and encrypted communication. In these areas, randomness is
a critical requirement, as the resulting chaotic sequences that
do not have sufficient randomness can easily be cracked or
predicted, compromising the security of the application. Through
the randomness test, the randomness and safety of chaotic sequences
generated by the discrete memristive hyperchaotic map can be
evaluated. To test the randomness of chaotic sequences, we
performed two statistical tests, NIST and 0-1. NIST tests are a series
of standardized tests that are used to evaluate and verify the security
of random number generators and cryptographic algorithms to
check whether the generated data are random. The test results
are shown in Table 1, from which it can be found that all P values
are greater than 0.01, indicating that the key system has successfully
passed the test and the generated data have sufficient security and
randomness.

The “0-1 test” generally refers to a statistical test performed on a
randomnumber or chaotic sequence,mainly to evaluatewhether the
resulting sequence is sufficiently random to meet specific statistical
requirements and application needs. Firstly, a chaotic sequence with
a duration of more than 2000 was randomly selected, and the values
were selected at a certain step interval for testing, and the test results
are shown in Table 2. As you can see from the results in the table,
the test result value is close to 1. This indicates that the discrete
memristive hyperchaotic map exhibits a high degree of randomness.

Based on the results shown in Tables 1, 2, it can be concluded
that the key systemderived from the discretememristive hyperchaos
map has excellent randomness. Chaotic randomness testing is
of great significance in application security, data analysis, and
simulation, which can ensure the security of the application and
meet the security and reliability requirements required for image
encryption.
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FIGURE 9
Encryption and decryption process diagram. (a) Encryption Flow Diagram. (b) Decryption Process Diagram.

4 Design and implementation of
image encryption algorithm

4.1 An image encryption scheme based on
hyperchaotic map

In this section, a novel image encryption scheme based on a
two-dimensional hyperchaotic map based on cyclic shift, forward
and reverse diffusion, and global displacement is introduced. By

combining key steps such as pixel diffusion and displacement,
hyperchaotic sequences are used to reorder the pixel positions of the
original image and disrupt the overall structure of the image. On
the one hand, the displacement process ensures randomness, while
diffusion further enhances the complexity of image encryption.
The processed chaotic sequence and pixel value are used to
perform XOR operations to further improve the encryption
strength and reduce the risk of information leakage. The steps are
as follows:
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FIGURE 10
Encryption and decryption effects of images. (a) Plaintext image. (b) Encryption-image. (c) Decryption-image. (d) Plaintext image. (e)
Encryption-image. (f) Decryption-image. (g) Plaintext image. (h) Encryption-image. (i) Decryption-image.

1. Select the original image and perform channel separation, and
select a grayscale image of m × n as the original image. m ×
n chaotic sequences X(m),Y(n) are generated from the state
variables x0,y0, and two chaotic sequences X(m) and Y(n) are
generated using a Gaussian chaotic neural network, which is
used for row and column shifts, respectively.

2. Generate m× n chaotic sequences from the state variables
x0,y0 The chaotic sequences Z(m,n) and the scrambled
image are added pixel by pixel to achieve positive diffusion.
Regenerate m × n chaotic sequences W(m,n) from state
variables x0,y0. The chaotic sequence W(m,n) and the image
after forward diffusion are subtracted pixel by pixel to achieve
reverse diffusion.

3. Based on the chaotic characteristics of the hyperchaotic
sequences X(m) and Y(n), a permutation index matrix is

generated. According to the permutation index matrix, the
position of the image is rearranged after forward and reverse
diffusion processing. For each pixel position (i, j) in the image,
determine its corresponding displacement position (i′, j′) in
the permutation index matrix and move the pixel value from
position (i, j) to position (i′, j′). In this way, all pixels of the
image are rearranged in the order determined by the chaotic
sequence, which completely changes the pixel distribution of
the image and hides the structure and information of the
original image.

The image encryption algorithm of the new discrete memristive
chaotic system provides a secure and powerful encryption scheme
for grayscale image encryption. In the encryption stage, the
plaintext image undergoes cyclic shift, forward and reverse
diffusion, and global substitution operations, combined with the
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FIGURE 11
Histograms of plaintext and ciphertext images. (a) Plaintext-image. (b) Histogram of Plaintext-image. (c) Histogram of Encryption-image. (d) Histogram
of Decryption-image. (e) Plaintext-image. (f) Histogram of Plaintext-image. (g) Histogram of Encryption-image. (h) Histogram of Decryption-image. (i)
Plaintext image. (j) Histogram of Plaintext image. (k) Histogram of Encryption-image. (l) Histogram of Decryption-image.

FIGURE 12
Correlation between adjacent pixels in a plaintext image. (a) Horizontal. (b) Vertical. (c) Diagonal.
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FIGURE 13
Encrypted image adjacent pixel correlation. (a) Horizontal. (b) Vertical. (c) Diagonal.

TABLE 3 Correlation coefficient of ciphertext images.

Encryption
scheme

Horizontal Vertical Diagonal

Ref. [64] 0.0055 −0.0068 −0.0032

Ref. [65] −0.0158 −0.0042 −0.0039

Ref. [38] −0.0066 −0.0089 0.0424

This article −0.0036 0.0032 0.0010

TABLE 4 Information entropy of ciphertext images with different
encryption schemes.

Scheme Ref. [38] Ref. [40] This article

Information entropy 7.9909 7.9971 7.9993

dynamic key generated by the chaotic system, and finally generates
an irreversible ciphertext image,as shown in Figure 9a. During
decryption, global substitution, forward and reverse diffusion, and
cyclic shift are performed in reverse, and the original pixel value
and position are restored by the same chaos key to achieve lossless
decryption,as shown in Figure 9b.

4.2 Performance analysis of encryption
algorithms

In image encryption algorithms, the size of the key space directly
determines the security of the encryption. To verify the feasibility
and effectiveness of the proposed algorithm, simulation tests were
performed using Matlab 2023b, with the key set as g = 0.6, a =
3,b = 1.8 and (x0,y0) = (0.1,0.1). A chaotic sequence required for
encryption was generated using a discrete memristive chaotic
system, and then the image was encrypted through the encryption

algorithm. When establishing a new discrete hyperchaotic map,
the selection of the key depends on multiple parameters, such as
initial conditions and the dynamic characteristics of the system.
As shown in Figures 10a, d, g is the original image before the
above-mentioned algorithm is encrypted, Figures 10b, e, h are
the encrypted image after using the above-mentioned encryption
algorithm, and Figures 10c, f, i are the decryption image after using
the above-mentioned algorithm. In order to verify the security of the
encryption effect of the system, this paper conducted performance
analysis, mainly including key space analysis, histogram analysis,
correlation analysis, and information entropy analysis.

4.2.1 Key space analysis
In image encryption algorithms, the size of the key space directly

determines the security of the encryption. Studies have shown that
the larger the key space, the more difficult it is for attackers to crack.
It is generally accepted that the size of the key space should be greater
than 2,128 [45] to ensure security.The keys of IES-CTG are a,b,g,x0
and y0, and the parameter intervals a ∈[2,3], b ∈[1.6,1.8], g ∈[0.5,
0.6] and the initial value range x0 ∈[0.1, 0.3], y0 ∈ [0.1, 0.3], and the
results of image encryption and decryption are shown in Figure 10.
Therefore, the key space S of the IES-CTG is shown in Equation 7:

S = S1 × S2 × S3 × S4 × S5 = 8× 1071 ≈ 2238 (7)

where S1 = (3− 2) × 1015,S2 = (1.8− 1.6) × 1015,S3 = (0.6− 0.5) ×
1015,S4 = (0.3− 0.1) × 1015,S5 = (0.3− 0.1) × 1015.

Brute-force attack refers to the situation where an attacker tries
all possible key combinations until the correct key for decrypting
the information is found. The size of the key space determines the
number of possible key combinations. The larger the key space, the
more difficult it is for the attacker to find the correct key through
brute-force attempts. The key space designed for the novel discrete
hyperchaoticmap is 2238, significantly larger than the recommended
minimum of 2128 for the key space, which can effectively resist
brute-force attacks. Therefore, the algorithm has larger scale
and complexity, and the proposed image encryption scheme can
effectively resist external attacks and provide greater security.
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4.2.2 Histogram analysis
In image encryption, histogram analysis is an important

method to evaluate the encryption effect [63]. Figures 11a,
c, e are the original images, and their corresponding image
histograms are shown in Figures 11b, d, f, and their pixel value
distribution can be visually seen. By comparing the encrypted
histograms, as shown in Figures 11g, i, k, it can be observed
that the encrypted image histograms should show more uniform
distribution characteristics. The histogram of the decrypted image
is obtained by the decryption algorithm as shown in Figures
11h, j, l. This balance indicates that confusing and dispersing the
pixel information of the original image reduces its recognizability
and improves security. That is, the attacker cannot obtain the
histogram information of the plaintext image by statistically
analyzing the histogram of the ciphertext image, indicating that the
proposed algorithm has good diffusion and resistance to statistical
attacks.

The entropy of the histogram is also a key indicator to
evaluate the effectiveness of image encryption. The higher the
entropy value, the higher the complexity of the encrypted
image information and the stronger the ability to resist various
attacks, as shown in Figures 11d, h, i. In this study, the
encrypted image generated by the new discrete hyperchaotic
map has a high histogram entropy value, which shows the
effectiveness and security of the encryption algorithm in practical
applications.

4.2.3 Relevance analysis
In the design and implementation of image encryption

algorithms, correlation analysis is an important performance index.
Low correlation means that there is almost no linear or non-linear
relationship between the pixel values of the encrypted image, which
effectively increases the difficulty of cracking. In order to evaluate the
performance of the new discrete hyperchaotic map proposed in the
process of image encryption, it is necessary to analyze the correlation
of the images before and after encryption. Figures 12, 13 illustrate
the correlation between the adjacent pixels of the plaintext image
before image encryption and the ciphertext image after encryption,
respectively.

The image is very strong, as shown in Figures 12a–c, and
there is usually a correlation close to 1; However, the correlation
between adjacent pixels in a ciphertext image is close to zero,
as shown in Figures 13a–c. For different test images, different
chaotic sequences are used for encryption, and the correlation
difference between the encryption results can be observed,
which further verifies the randomness of the new discrete
hyperchaotic map, thus improving the security of the encrypted
images.

As can be seen from the correlation coefficient of the
ciphertext image in Table 3, the correlation between adjacent
pixels in the ciphertext image is close to 0, and they are almost
uncorrelated.The experimental results show that the designed image
encryption algorithm maintains a high encryption strength under
the condition of low correlation. Compared with traditional chaotic
encryption algorithms, this novel discrete hyperchaotic mapping
effectively reduces the correlation between different pixels, thereby
enhancing the security of the encrypted image. When compared
with more advanced chaotic encryption algorithms, this algorithm

also has obvious advantages in terms of processing speed. It can
complete the encryption and decryption processes of images more
rapidly. Moreover, when facing common attack methods such as
differential attacks and statistical attacks, it demonstrates stronger
attack resistance, providing amore reliable guarantee for the security
of image data.

4.2.4 Information entropy analysis
Information entropy is a basic concept of information theory.

It is an important index for measuring the randomness and
uncertainty of information. Generally, it is around 8.0, indicating
that the encrypted image has good randomness in the pixel
intensity distribution. In this study, a new encryption algorithm
based on a discrete hyperchaotic map is used to compare the
entropy of the original image and the encrypted image. It can
be seen from Table 4 that after IES - CTG encryption processing, the
information entropy of the ciphertext image is very close to the ideal
value of 8, and compared to some existing schemes, it has certain
advantages.

Furthermore, the variation law of the information entropy
under different chaotic parameters is analyzed, and the information
entropy performance of the encryption results is affected by
adjusting the parameters of the chaotic system. Under the
corresponding parameter settings, the increase in the entropy
value shows significant sensitivity, which further verifies the
effectiveness of chaos characteristics in enhancing the security of
image encryption.

5 Conclusion

In this paper, we conduct in-depth research and discussion
on a new type of discrete hyperchaotic map and its application
in image encryption. By designing and analyzing a novel discrete
hyperchaotic map model, we not only clarify its dynamic
characteristics, but also reveal its advantages in generating high-
quality chaotic sequences. Then, an image encryption algorithm
based on a novel discrete hyperchaotic map design is implemented
on the MATLAB platform. The key is used to scramble and diffuse
the digital image to be encrypted at the pixel level to improve
the security of the image. The experimental results show that
the proposed encryption algorithm has significant performance
advantages. By comparing images with different encryption effects,
the security of encrypted images was evaluated using methods
such as histogram analysis, information entropy calculation, and
adjacent pixel correlation detection. The experimental results
show that the encrypted image presents a good degree of visual
chaos and the information entropy value is significantly improved,
indicating that its security is better than that of traditional image
encryption methods.

The new discrete hyperchaotic map and its application in
image encryption have important theoretical value and practical
significance. Future research can further explore the application
potential of other chaos map models in different information
security fields, to promote the progress and innovation of overall
information encryption technology.
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