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Proposal for statistical 
mechanics-based UV 
regularization using 
fermion-boson transition 
functions

Hirokazu Maruyama*

Independent Researcher, Kobe, Japan

Introduction: We propose a statistical‐mechanics–based framework for 
UV regularization in QED/QFT by introducing energy‐dependent transition 
functions that interpolate fermionic and bosonic components.
Methods: We define logistic transition functions T(E) that continuously exchange 
degrees of freedom between γ_μ and ω_μ operators, and analyze gauge 
consistency via the Ward–Takahashi identities and BRST symmetry.
Results: The transition functions act as a smooth, gauge‐safe soft cutoff that 
exponentially suppresses UV contributions while preserving transversality. We 
illustrate how longitudinal components are cancelled in internal lines without 
affecting observables.
Discussion: This approach offers a physical (statistical) interpretation of 
regularization, unifies several phenomena across energy scales, and is 
compatible with Lorentz and gauge symmetries. Extensions to non‐Abelian 
theories and relations to mass generation mechanisms are outlined.
Rationale: These points correspond to Supplementary sections S9, 
S11–S19, S20, etc.
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 1 Introduction

Quantum field theory (QFT) is the common language of modern physics, with 
applications ranging from particle physics to condensed matter physics. However, high-
order perturbative calculations in QED and QCD face serious mathematical difficulties due 
to ultraviolet divergences [1–5].

Traditionally, ultraviolet divergences in quantum field theory have been controlled 
by methods such as cutoffs, dimensional regularization, Wilson’s renormalization group, 
and renormalization, but these methods rely on formal operations and their physical 
interpretation is not always self-evident’t [6–8]. In particular, Wilson’s renormalization 
group provides a powerful framework for explaining scale-dependent effective theories, 
statistical mechanics phase transitions, and the asymptotic freedom of quantum 
chromodynamics, but computational complexity and the lack of statistical mechanical 
perspective remain challenges [8, 9]. For instance, while understanding of the confinement
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phenomenon in QCD has advanced through lattice gauge theory 
using the renormalization group, there are limitations in the intuitive 
description of non-perturbative regions.

This research is a substantially revised and academically 
reconstructed version of a series of previous publications by the 
author [10–12, 12]. In this paper, we refer to this framework 
as Fermion–Boson Duality QED (abbreviated as FBD-QED). 
This research proposes a new solution to this problem from a 
statistical mechanical perspective. We introduce the concept of a 
transition function that depends on energy scale to dynamically 
change the statistical properties of particles, describing a 
phenomenon where particles that behave as fermions at low 
energies transition to bosonic properties at high energy regions, 
and conversely, photons that behave as bosons at low energies 
exhibit fermionic properties at high energies. This concept of 
statistical phase transition aligns with recent trends attempting to 
explain diverse physical systems by extending the Fermi-Dirac
distribution.

Originally proposed as a model for electron gas, the 
Fermi-Dirac distribution has been observed and utilized in 
various environments, including analog gravity systems using 
water waves [14], non-Hermitian mesoscopic rings [15], and 
semiconductor devices [16]. This research extends the concept 
of “environment-dependent deformed distribution functions” 
to high-energy physics, exploring applications not only for 
ultraviolet divergences in QED but also for non-abelian gauge 
theories like QCD.

Conventionally, fermions (like electrons) and bosons (like 
photons) have been considered distinct particles with exclusive 
statistics. However, this research examines the possibility that 
statistical properties may change dynamically depending on energy 
scales. Specifically, we assume that electrons, which behave as 
fermions at low energies, exhibit bosonic behavior at high 
energies, and conversely, photons undergo a dual transition to 
fermionic aspects.

When transition functions are incorporated into QED 
amplitude calculations, contributions from the ultraviolet region 
naturally attenuate, suppressing divergences. Using the electron 
self-energy as a concrete example, we numerically evaluate how 
the introduction of transition functions converges divergent 
integrals to finite values. This approach may open a path to 
physically regularizing QFT without introducing arbitrary cutoffs 
or renormalization constants.

From a statistical mechanical perspective, it is not uncommon 
for the macroscopic behavior of particle ensembles to undergo 
qualitative changes due to energy. In Cooper pair formation in 
superconductivity, electrons, which are fermions, effectively become 
bosonized and condense [17, 18]. Statistical properties are also 
known to be modified by thermal corrections in finite temperature 
field theory. This research extends these analogies to extremely high 
energies approaching the Planck scale, examining scenarios where 
particle statistics themselves are transformed.

This paper addresses the following topics: 

1. Mathematical formulation of fermion-boson duality and 
transition functions

2. Extension of QED using bosonic gamma matrices

3. Natural regularization of ultraviolet divergences using 
transition functions and numerical verification

4. Physical implications and future prospects of the 
proposed model

In Section 2 we explain in detail the duality and the 
transition functions, while Section 3 constructs the extended 
QED. Section 4 demonstrates the effectiveness of the method 
through an explicit calculation of the electron self-energy, 
and Section 5 concludes by summarizing the significance of 
this work and the remaining open problems. A more detailed 
mathematical and physical justification of our approach is 
provided in the Supplementary Material; a concise overview is 
given in Supplementary Material. The Supplementary Material 
discusses, in depth, the validity of the two-dimensional Lorentz 
transformation, the physical basis of spin–statistics separation, the 
interpretation of the bosonic tensor Tμν as an energy–momentum 
tensor, the consistency between the Ward–Takahashi identities 
and the transition-function formalism, the transverse wave 
projector Pμν and gauge symmetry, compatibility with BRST 
transformations, potential applications to QCD and other 
theories, and its relationship to the Higgs mechanism. Section 6 
describes the Mathematica code used for the numerical
calculations.

In this article and its Supplementary Material we prove that the 
extended QED/QCD with transition functions is exactly compatible
with both the Ward–Takahashi identities and BRST symmetry. 
Specifically, 

• Regardless of the regularization scheme employed 
(dimensional regularization, Pauli–Villars, hard cut-off, or 
the logistic transition), the energy–momentum tensor Tμν
that includes the transition functions automatically cancels 
longitudinal contributions and restores kμΠμν

eff = 0.
• Consequently, physical observables such as β functions and 

scattering cross-sections are independent of the regularization 
parameters, showing that statistical regularization acts as a 
“gauge-safe soft cut-off.”
• Moreover, the longitudinal degrees of freedom supplied by Tμν

combine with the two transverse components of the photon 
to provide a natural mechanism for generating massive three-
component vector particles of the W/Z-boson type.

This paper, we have proven in the appendices that the extended 
QED/QCD with transition functions is strictly compatible with 
Ward-Takahashi identities and BRST symmetry. Specifically: 

• Regardless of which regularization scheme is used 
(dimensional regularization, Pauli-Villars, hard cutoff, logistic 
transition), the energy-momentum tensor Tμν with transition 
functions automatically cancels longitudinal contributions and 
recovers kμΠμν

eff = 0.
• Therefore, physical observables such as β functions and 

scattering cross-sections are independent of regularization 
parameters, with statistical regularization functioning as a 
“gauge-safe soft cutoff.”
• Additionally, the longitudinal degrees of freedom supplied by 

Tμν naturally provide a mechanism for creating 3-component 
vector particles with effective mass (W/Z type) when combined 
with photons (2 transverse components).
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These results demonstrate that the transition function 
framework provides a robust theoretical foundation that suppresses 
ultraviolet divergences while preserving gauge symmetry.

This research is positioned at the intersection of QFT and 
statistical mechanics, approaching mathematical challenges in high-
energy physics through the new perspective of energy scale-
dependent statistical transitions. This viewpoint is expected to have 
ripple effects on phase transition research in complex systems, 
deepening understanding of “statistical transitions” as universal 
phenomena transcending material hierarchy. 

2 Theoretical framework of 
fermion-boson duality

2.1 A new understanding of statistical 
properties: “Separation” of spin and 
statistics

One of the fundamental principles of quantum mechanics is 
the spin-statistics theorem, which connects a particle’s spin with 
its statistical nature. According to this theorem, particles with half-
integer spin (e.g., 1

2
, 3

2
) are fermions, and particles with integer spin 

(e.g., 0, 1, 2) are bosons [19]. This relationship has long been accepted 
as a fundamental framework in elementary particle physics.

However, the fermion-boson duality theory proposed in 
this research considers the possibility that a particle’s statistical 
properties may “separate” from its intrinsic spin under specific 
conditions. In this model, four basic states are possible for electrons 
and photons, with two basic states for each particle: 

1. Fermionic electron: Has spin 1
2

 and follows fermionic statistics
2. Bosonic electron: Has spin one and follows bosonic statistics
3. Fermionic photon: Has spin 1

2
 and follows fermionic statistics

4. Bosonic photon: Has spin one and follows bosonic statistics

This framework relaxes the conventional constraint that spin 
and statistics must strictly follow different representations of the 
Lorentz group, modeling energy-dependent changes in statistics as 
an effective theory approach. For example, in superconductivity, 
spin 1

2
 electrons effectively demonstrate bosonic behavior in Cooper 

pair formation (see Supplementary Material Section 2). Similarly, 
we assume that electrons can transition to an effective spin one 
bosonic state inside atoms or in high-energy regions.

In this theoretical framework, spin and statistics are treated as 
independent characteristics that can change depending on energy 
scales and physical conditions. In the low-energy limit, electrons 
behave as fermionic electrons and photons as bosonic photons, 
consistent with conventional quantum field theory. However, in the 
high-energy limit, electrons may transition to bosonic electrons and 
photons to fermionic photons.

To represent these states, we define the total state vector of the 
system as in Equation 1.

|ψtotal〉 = |ψeF〉 + |ψeB〉 + |ψγF〉 + |ψγB〉, (1)

where: 

• |ψeF〉: Fermionic electron state
• |ψeB〉: Bosonic electron state

FIGURE 1
Conceptual diagram of statistical transition in FBD-QED. (Top) 
Conventional theory considers only one type each for electrons and 
photons, but (bottom) FBD-QED proposes that there exist four types: 
[fermionic type/bosonic type] for electrons and [fermionic 
type/bosonic type] for photons, totaling four types, which can switch 
depending on energy scale. While conventional supersymmetry 
(SUSY) theory [20, 21] requires new particles and higher-dimensional 
spaces, FBD-QED models statistical transition within the same particle
inspired by semiconductor theory.

• |ψγF〉: Fermionic photon state
• |ψγB〉: Bosonic photon state

The visualization of this state is shown in Figure 1.
Table 1 shows correspondence examples of the four elementary 

particle states.
The complete quantum state of each particle is expressed as an 

energy-dependent linear combination of these basis states:

|ψe (E)〉 = TeF (E) |ψeF〉 +TeB (E) |ψeB〉, (2a)

|ψγ (E)〉 = TγB (E) |ψγB〉 +TγF (E) |ψγF〉. (2b)

Here, T(E) represents the transition function that determines the 
weight of each statistical component at a specific energy scale E. 

2.1.1 Reality of “bosonic electrons” and 
“fermionic photons” is understood as effective 
hybrid states

The reality and observability of “bosonic electrons” and 
“fermionic photons” in our model are redefined as follows: 
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TABLE 1  Correspondence examples of four elementary particle states proposed in this research.

State name Expected observation 
regions/Examples

Characteristics

Fermionic Electron Normal electron (outside atoms, mass me, spin 1/2) Outside atoms, normal electron observation Has mass, Fermi statistics

Bosonic Electron Bosonic electron in superconductors (Cooper 
pairs, etc.?)

Possibly manifests inside atoms or in 
superconductors?

Zero or small mass? Bose statistics

Fermionic Photon Massive photon (photon gaining mass via Meissner 
effect?)

Inside superconductors (massive photon) Spin 1/2? Fermi statistics

Bosonic Photon Normal photon (mass-zero photon in vacuum) Observed outside atoms, in vacuum Spin 1, Bose statistics

1. Atomic interiors as ultra-high pressure/superconducting 
environments

The Coulomb field around atomic nuclei gives electrons an 
effective pressure equivalent to ∼1012 Pa, locally forming a “room 
temperature, ultra-high pressure” superconducting state comparable 
to Cooper pair condensation at extremely low temperatures.

2. Statistical transitions as effective hybrid states

In these extreme environments, electrons (spin 1/2) retain 
their fermionic intrinsic spin while acquiring bosonic correlation 
components through interactions with the photon field. Specifically, 
the transition functions TeF and TeB are simultaneously non-
zero and satisfy TeF +TeB = 1, so electrons behave as effective 
quasiparticles exhibiting fermion–boson duality. Similarly, photons 
can also take hybrid states with TγB +TγF = 1.

3. Pauli exclusion principle is preserved

Since the fermionic component TeF(E) > 0 of the transition 
function always remains, single-electron operators satisfy 
anticommutation relations, and unlimited condensation into the 1s 
orbital does not occur. Furthermore, when TγF(E) is non-zero, the 
fermionic exclusion effect on the photon side also works as statistical 
complementarity to suppress excessive electron occupation.

4. Phase transition phenomena during observation

When electrons or photons escape from atoms, the ultra-high 
pressure environment is instantly lost, and like ice melting into water 
in an instant, the statistics immediately return to their standard 
forms (fermionic electrons/bosonic photons). Therefore, detectors 
only detect normal electrons and photons.

Therefore, our model does not claim that electrons become 
pure bosons inside atoms, but rather that they behave as hybrid 
quasiparticles with finite fermionic components, thus not destroying 
the structure of the periodic table or chemical bonding. 

2.2 Introduction of transition functions and 
their physical meaning

Transition functions are mathematical tools that quantify the 
transition of a particle’s statistical properties accompanying energy 
changes, defined as follows:

These parameters have the following physical meanings: 

• E: System energy (or a function of momentum)
• E fb: Characteristic energy at which statistical transition occurs 

(corresponding to chemical potential)
• ℏν: Energy scale characterizing the sharpness of the transition

It is notable that TeF(E) has a form similar to the Fermi 
distribution function. In this research, transition functions are 
interpreted as quantum mechanical extensions of the Fermi 
distribution function in single elementary particle systems. This 
suggests a deep connection between statistical properties and 
thermal statistical mechanics.

Transition functions satisfy the following conservation laws:

TeF (E) +TeB (E) = 1 (3a)

TγF (E) +TγB (E) = 1 (3b)

These equations show that the sum of fermionic and bosonic 
components within the same particle species is always 1, describing 
the transition of statistical properties with energy changes in a 
consistent manner.

Figure 2 conceptually shows the four-quadrant representation 
of transition functions. Furthermore, Figure 3 demonstrates the 
continuous redistribution of four-component probabilities during 
actual energy sweeping. Here, the γB curve does not represent “the 
Bose-Einstein distribution itself,” but rather depicts the probability 
weight TγB(E) = 1−TγF(E) for γ to maintain bosonic properties. 
Therefore, thermal equilibrium features such as 1/E divergence in 
the low-energy limit or zero-mode condensation do not appear in 
this figure.

2.3 Relationship between transition 
functions and the Hill–Wheeler equation

The transition function TeF(E) takes the form of a logistic 
function see Equation 4:

TeF (E) =
1

1+ exp[
E−Efb

ℏν
]
, (4)

It has the same form as the normal Fermi–Dirac distribution 
fFD(E) = {1+ exp [(E− μ)/(kBT)]}−1. This function form is known as 
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FIGURE 2
Four-quadrant representation of transition functions. The right column shows fermionic components TeF, TγF, the left column shows bosonic 
components TγB, TeB. With increasing energy E, statistics are inverted, transitioning from photons (bosons) to fermions, and from electrons (fermions) 
to bosons. Here, the normalization “TF +TB = 1” applies to each particle type separately (electrons: TeF +TeB = 1, photons: TγF +TγB = 1), and the sum 
between different particle types (e.g., TeF +TγF) does not equal 1. Transition functions always satisfy 0 ≤ T(E) ≤ 1.

FIGURE 3
Transition probabilities when energy E is swept from low (left end) to 
high (right end). The blue solid line shows eF (with γB overlapping on 
the same curve), and the orange solid line shows eB (same as γF). The 
visualization shows how the two lines cross around E = E fb and their 
dominant probabilities switch. Readers who want to confirm the 
dynamic continuous changes can refer to the animation function in 
the supplementary Notebook “TransitionFunction_Visualizer_
ver2.nb”.

the Hill–Wheeler equation [22–24] in nuclear fission theory, which 
was originally a formula for calculating the transmission probability 
when treating nuclear fission barriers using harmonic oscillator 
approximation [25–31]. This research reinterprets it not merely as a 
nuclear fission transmission coefficient, but as a quantum statistical 
occupation probability [32].

This perspective naturally explains changes in statistical 
properties in high-energy regions, and the utility of this 
interpretation is demonstrated in the numerical analysis 
discussed later. 

2.4 Correspondence with semiconductor 
physics

In semiconductor physics, electron states are described using 
Fermi-Dirac statistics, explaining phenomena such as band gaps 
and carrier transport in statistical mechanical terms [16]. This 

research connects this framework with fermion-boson duality 
theory, proposing the following correspondence: 

Fermionic electron (eF): Occupation probability of electrons in 
n-type semiconductors
Fermionic photon (γF): Occupation probability of holes in p-
type semiconductors
Bosonic photon (γB): Density of states function for electrons
Bosonic electron (eB): Density of states function for holes

As shown in Figure 4, electrons and holes have a mutually dual 
relationship, and from this correspondence, the following important 
points are derived: 

• The density of states of bosonic elementary particles 
corresponds to electron density distribution, and photon 
density of states is proportional to electron density
• The distribution function of fermionic elementary particles 

is the key to preventing infinite divergence of vacuum 
polarization

Using this approach, it may be possible to construct equations 
that avoid infinities in vacuum polarization, electron self-energy, 
and vertex corrections without artificial regularization.

Note that the state referred to as the “intermediate region” in 
this paper is a mixed statistics where fermionic component TF(E)
and bosonic component TB(E) coexist probabilistically, which is a 
different concept from anyons (limited to two dimensions) [33]; 
[34]; [35] that have continuously variable particle exchange phases. 

2.5 Boundary conditions and region 
characteristics of transition functions

2.5.1 Theoretical background and positioning
The division of degrees of freedom according to energy scale 

has been discussed for a long time in (i) BCS theory [36]; [17] 
where low-temperature Fermi systems exhibit boson condensation 
behavior, (ii) the rapid change of effective degrees of freedom 
near transition scales shown by Wilson’s successive integration-type 
renormalization group [9] and Miransky scaling [37]; [38], and (iii) 
asymptotic freedom in QCD [39]; [40]. The novelty of this research 
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FIGURE 4
The upper panel shows the energy band diagram of p-type and n-type semiconductors. The lower panel illustrates the distribution and density of states 
for fermionic electrons (eF), fermionic photons (γF), bosonic photons (γB), and bosonic electrons (eB) based on this structure. Furthermore, this figure 
does not represent anyon-type topological statistics, but visualizes the energy dependence of Fermi/Boson probability mixing that satisfies TF +TB = 1.

lies in extending the concept of these “multi-scale effective theories” 
to energy-dependent transitions of spin and statistics, constructing 
the theory based on the following three regions:

E≪ E fb, E ≈ E fb, E≫ E fb

The characteristic boundary conditions and behavior in each 
region of the energy dependence of transition functions can be 
summarized as follows: 

1. Low energy region (E≪ E fb):

TeF (E) ≈ 1, TeB (E) ≈ 0, (5a)

TγF (E) ≈ 0, TγB (E) ≈ 1. (5b)

In this region, electrons behave as fermions and photons as 
bosons, reproducing the conventional quantum electrodynamics 
(QED) picture. 

2. High energy region (E≫ E fb):

TeF (E) ≈ 0, TeB (E) ≈ 1, (6a)

TγF (E) ≈ 1, TγB (E) ≈ 0. (6b)

Here, statistics are inverted, with electrons showing 
bosonic properties and photons showing fermionic properties. 
This transition contributes to the suppression of ultraviolet
divergence. 

3. Transition region (E ≈ E fb): In this region, fermionic and 
bosonic components coexist, with the possibility of new 
physical phenomena emerging. This is an important region for 
experimental verification.

2.5.2 Specific form of transition functions
The transition functions used in this research are

TF (E) =
1

1+ exp[(E−E fb)/ℏν]
, TB (E) = 1−TF (E). (7)

Since the transition functions in Equation 7 are logistic, TF +TB = 1
holds identically. The parameter settings are summarized in Table 2.
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TABLE 2  Reference parameters used for transition functions.

E fb ℏν Notes

1.0 (reference unit) 2.0 Section 4.5 numerical example

The dimensionless procedure and physical unit restoration 
method are detailed in Section 4.5.

Implementation results are detailed in Section 4.5 and Section 6 
[Zenodo DOI 10.5281/zenodo.15825707 (Version 4)].

2.5.3 Universality and model dependence
The mathematical form (S-curve shape) of transition functions 

is universal, but the specific numerical values vary greatly depending 
on physical situations. This is similar to how “Fermi distribution 
functions have the same S-shape for both electrons and holes, but the 
temperature and chemical potential values differ for each material.”

Universal aspects: 

• Logistic function form T(E) = [1+ exp ((E−E fb)/ℏν)]−1

• Concept of statistical transition via S-curve
• Statistical inversion mechanism from low energy to 

high energy

Model-dependent aspects: The specific numerical values of 
parameters E fb and ℏν vary greatly depending on the physical 
phenomena being treated: 

• Electromagnetic interaction (QED): E fb ∼ several GeV?
• Weak interaction (electroweak theory): E fb ∼ 100 GeV (near 

W/Z boson masses)?
• Strong interaction (QCD): E fb ∼ 1 GeV (QCD mass scale)?
• Theories including gravity: E fb ∼ 1019 GeV (Planck mass)?

This shows a hierarchical structure, suggesting that different 
statistical transitions may occur at different energy scales.

Determination method for each theory: When applying to new 
physical theories, E fb and ℏν need to be redetermined through the 
following procedures: 

1. Comparison with experimental data: Fit S-curves to scattering 
experimental data in the energy region treated by that theory

2. Numerical simulations: Directly calculate statistical transition 
behavior through lattice calculations, etc.

3. Theoretical consistency: Confirm consistency with known 
physical laws (energy conservation, gauge symmetry, etc.)

Understanding through familiar examples: This is similar to how 
“water’s boiling point changes with atmospheric pressure (87°C on 
Mount Fuji), but the boiling phenomenon itself (liquid→gas phase 
transition) is universal.” The statistical transition phenomenon is 
universal, but the energy at which it occurs (E fb) and its sharpness 
(ℏν) depend on the environment (theoretical framework). 

2.6 Realization examples in condensed 
matter physics

The validity of this theory (FBD-QED) is supported by the 
following phenomena in condensed matter physics: 

• Superconducting state: Electrons form Cooper pairs and show 
bosonic behaviorChen et al. [41]. Triplet state (spin 1) Cooper 
pairs can be interpreted as examples of “bosonic electrons.”
• Meissner effect: Inside superconductors, photons acquire 

an effective mass and exhibit properties different from 
normal bosonic photons. This can be interpreted as 
“fermionic photons.”
• Carriers in semiconductors: It is established that electrons and 

holes follow Fermi-Dirac statistics, but phenomena where they 
collectively show bosonic behavior under specific conditions 
suggest a connection with this theory.

These examples support the concept that changes in statistical 
properties dependent on energy scales, as proposed in this theory, 
are applicable not only to high-energy physics but also to condensed 
matter physics. 

3 Bosonic gamma matrices and 
extended quantum electrodynamics

To incorporate the concept of fermion-boson duality introduced 
in the previous section into the framework of quantum field theory, 
an extension of the conventional Dirac equation is necessary. In 
this section, we introduce bosonic gamma matrices to realize this 
extension and construct an extended quantum electrodynamics 
Lagrangian based on them. 

3.1 Introduction of bosonic gamma 
matrices

In this research, to describe the transformation of statistics from 
fermions to bosons, we introduce new bosonic gamma matrices ωμ. 
These matrices are defined using the conventional Dirac matrices γμ

and another representation γ′μ that follows the same Clifford algebra

ωμ =
γμ + γ′μ

2
(8)

Here, γ′μ, as introduced in Equation 8, is defined by the following 
substitutions:

γ′0 = γ3 (9a)

γ′1 = γ1 (9b)

γ′2 = γ2 (9c)

γ′3 = γ0 (9d)

This specific substitution can be represented using an 
appropriate unitary transformation U as γ′μ = UγμU†, satisfying 
the Clifford algebra {γ′μ,γ

′
ν} = 2gμνI4. This construction is similar 

to the process of fermion electrons forming Cooper pairs in 
superconductivity, but differs in that it reconstructs the internal 
degrees of freedom of a single particle to realize a statistics 
transformation rather than combining two particles. To use an 
analogy, ωμ acts as a transformation operator when an electron 
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“wears bosonic clothes,” functioning as a “magic scissors” that 
restricts particle motion to two transverse components.

With this definition, the bosonic gamma matrices 
corresponding to a particle directed along the z-axis are expressed as:

Timeaxis: ω0 =
γ0 + γ′0

2
=

γ0 + γ3

2
(10a)

x− axis: ω1 =
γ1 + γ′1

2
=

γ1 + γ1

2
= γ1 (10b)

y− axis: ω2 =
γ2 + γ′2

2
=

γ2 + γ2

2
= γ2 (10c)

z− axis: ω3 =
γ3 + γ′3

2
=

γ3 + γ0

2
(10d)

These bosonic gamma matrices satisfy the following important 
anticommutation relations:

{ω1,ω1} = {ω2,ω2} = −2I4 (11a)

{ω0,ω0} = {ω3,ω3} = 0 (11b)

{ωi,ωj} = 0 (i ≠ j) (11c)

Here, i, j ∈ {0,1,2,3} represent spinor indices, and I4 is the 4×
4 identity matrix. This algebraic structure gives rise to “semi-
Hermitian components” and “semi-anti-Hermitian components” 
different from conventional γμ, yielding operators with different 
properties in the time and space directions.

The explicit matrix representation of bosonic gamma matrices 
is given by:

ω0 =
(((

(

1
2

0 i
2 0

0 1
2 0 − i

2
i
2

0 −1
2 0

0 − i
2 0 −1

2

)))

)

(12a)

ω1 = i(

(

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

)

)

(12b)

ω2 =(

(

0 0 0 1

0 0 −1 0

0 1 0 0

−1 0 0 0

)

)

(12c)

ω3 =
(((

(

1
2

0 i
2 0

0 1
2 0 − i

2
i
2

0 −1
2 0

0 − i
2 0 −1

2

)))

)

(12d)

This matrix structure enables the description of particles 
incorporating both bosonic and fermionic properties in the 
extended Lagrangian shown in Section 3.2.

For details of this calculation, please refer to the Mathematica 
code and calculation results available from the Zenodo repository 
provided in Section 6. 

3.2 Lagrangian of extended quantum 
electrodynamics

3.2.1 Four basis states
The fermion/boson four components of “electron (e)” and 

“photon (γ)” introduced in the previous section are

|ψtotal〉 = |ψeF〉 + |ψeB〉 + |ψγF〉 + |ψγB〉, (13)

where ψeF, ψeB represent the fermion/boson components of 
electrons, and ψγF, ψγB represent the fermion/boson components of 
photons, as defined in Equation 13. 

3.2.2 Definition of transition functions
Scalar functions {TeF,TeB,TγB,TγF} that depend on energy E

and satisfy

TeF (E) +TeB (E) = 1, TγB (E) +TγF (E) = 1,

are called “transition functions.” In the low-energy limit E≪ Efb, 
TeF→1, TγB→1, recovering standard QED, and at high energies, 
both approach 0, making the statistical phase transition manifest. 

3.2.3 Extended Lagrangian
With the ordinary Dirac matrices γμ, the bosonic gamma 

matrices ωμ, and the covariant derivative Dμ = ∂μ − ieAμ, the 
minimal Lagrangian of the extended QED is given by Equation 14:

Lext
QED = ψ[iTeFγμDμ + iTeBωμDμ −m]ψ− 1

4
{TγB FμνFμν +TγF TμνTμν},

(14)

 where Fμν = ∂μAν − ∂νAμ is the usual electromagnetic field-
strength tensor, and Tμν is the corresponding fermionic tensor (see 
Supplementary Material, Section 3, for its definition). 

3.2.4 Electron (fermion) kinetic term: iTeFγμDμ

• Responsible for the kinetic term of the fermionic component 
of electrons and electron-photon interaction.
• TeF ≃ 1 when E≪ Efb, consistent with standard QED.
• Lorentz covariant and U(1) gauge invariant.

3.2.5 Electron (boson) kinetic term: iTeBωμDμ

• Describes the motion of “bosonic electrons” that appear at high 
energies in first-derivative form. (Note that this is not a second-
derivative Klein-Gordon type)
• An effective theory approach to dynamically incorporate 

statistical phase transitions.

3.2.6 Boson field kinetic term: − 1
4
TγBFμνF

μν

• Describes photons (2 transverse components) dominant at 
low energies.
• Consistent with classical electromagnetism when TγB(E)→1.
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3.2.7 Fermion field kinetic term
The term − 1

4
TγFTμνTμν in our formulation: 

• At high energies this term accounts for the “fermion-like 
photon” component. It is not the photino of supersymmetry; 
rather, it represents a model degree of freedom whose statistics 
can transmute within a single field.
• The energy–momentum tensor Tμν may serve as a 

source that generates an effective gravitational field (see 
Supplementary Material, Section 3, for details).

3.2.7.1 Behavior in low and high energy limits

Low energy (E≪ Efb) :TeF, TγB ≃ 1, TeB, TγF ≃ 0

⇒ Lext
QED→ Lstd

QED

High energy (E≫ Efb) :TeF, TγB ≃ 0, TeB, TγF ≃ 1

⇒ Statistical phase transition dominates 

3.2.7.2 Preservation of gauge invariance
Under the usual U(1) transformations ψ→e−ieα(x)ψ for the 

electron field and Aμ→Aμ + ∂μα for the gauge potential, the 
extended Lagrangian Lext

QED remains invariant. Because the 
transition functions are introduced as Lorentz scalars, Ti(E = p⋅u), 
gauge symmetry—including the BRST transformations [42, 43]—is 
preserved (see Supplementary Material, Section 5, for details). 
Furthermore, Supplementary Material, Section 4, verifies that the 
introduction of transition functions leaves the Ward–Takahashi 
identities [44, 45] intact, so the symmetry between vertex functions 
and full propagators continues to hold. 

3.2.7.3 Physical implications

1. Ultraviolet divergences in both electron and photon loops are 
exponentially suppressed ∝ e−E/Ec .

2. The TμνTμν term can induce curved spacetime through an 
effective energy-momentum tensor (natural emergence of 
QED-gravity coupling).

3. One-to-one correspondence with QCD extension
(Supplementary Material) can be constructed.

3.3 Theoretical basis for bosonic kinetic 
term

The bosonic kinetic term iTeBωμDμ is an effective theoretical 
prescription unique to this research that “expresses statistical phase 
transition with a first derivative.” The following outlines how it 
fundamentally differs from conventional Klein-Gordon equations, 
Proca theory [46–48], or photino fields in [49, 50]. 

1. Significance of (First-Derivative Form [51])

In the same spirit that Dirac’s equation “elevated the second-
derivative Schrödinger equation to first-derivative to succinctly 
describe relativistic fermions,” this research rewrites the second-
derivative Klein-Gordon equation [4, 52–56] in first-derivative form, 
unifying fermions and bosons with

iΓμDμψ =mψ, Γμ ≡ T (E) γμ + [1−T (E)] ωμ (15)

a single first-order operator Γμ (as defined in Equation 15).
This approach offers several advantages: 

1. Legendre transformations and propagator structures become 
uniform for all field types, simplifying calculations,

2. Ultraviolet degrees are aligned, making divergence forms 
easier to control (Section 4.5 confirms that conventional k−2

divergence is mitigated to logarithmic divergence),
3. Statistical phase transitions can be continuously described as 

smooth changes in T(E) within a single equation

In other words, it is a new notation that describes all the “dance” 
of electrons and photons in one-step (first-derivative) steps. 

a. A concise proof that fermions and bosons can be unified in a 
single equation

Define the equation of motion as

iΓμDμψ =mψ, Γμ = T (E) γμ + [1−T (E)] ωμ (16)

1. In the low-energy limit T(E)→1, Γμ→γμ, so Equation 16 
is iγμDμψ =mψ — directly reproducing the Dirac 
(fermion) equation.

2. In the high-energy limit T(E)→0, Γμ→ωμ, giving iωμDμψ =
mψ — the “first-derivative Klein-Gordon” (bosonic photon 
equation of motion) introduced in this research.

Thus, it is demonstrated that both fermion and boson limits can 
be continuously obtained from the single Equation 16. 

b. Advantage of Legendre transformations and propagators 
having “the same form”

Viewing Equation 16 as L = ψ̄ (iΓμDμ −m)ψ, the conjugate 
momentum for time derivatives is

πψ =
∂L

∂(∂0ψ)
= iψ†, (17)

As shown in Equation 17, the coefficients are independent of 
T(E). Therefore, the formula for Lagrangian→Hamiltonian Legendre 
transformation can be completed in one line regardless of particle type.

Similarly, the Fourier transform of the equation of motion 
is (p⋅Γ−m)ψ(p) = 0, and the propagator (Green’s function) 
is given by Equation 18

S (p) = (p⋅Γ−m)−1, (18)

obtained with a one-pattern inverse matrix. If T(E) = 1 then 
S(p) = (�p−m)−1, if T(E) = 0 then S(p) = (ω⋅p−m)−1, changing 
automatically, eliminating the need to distinguish “with/without 
gamma matrices” when performing loop calculations.

In summary, 

• Unified transformation formulas—formulating conjugate 
momenta and Hamiltonians with a single set.
• Unified propagators—calculating loop integrals and 

divergence analyses using the same template.
• Aligned divergence structure—ultraviolet degrees are aligned, 

so as shown in Section 4.5, k−2 divergence is mitigated to 
logarithmic divergence.
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This is like consolidating separate “tools” for electrons 
(fermions) and photons (bosons) into a single universal wrench, 
greatly simplifying theoretical calculations.

Benefits of Having Only 2 Physical Degrees of 
Freedom—Simplicity Without Gauge Fixing As shown in Equation 
19, ωμ satisfies

ωμpμ = 0, ωμωμ = 0 (19)

so the equation of motion iωμDμψγB =mψγB automatically 
propagates only transverse wave (components perpendicular to the 
transfer vector) 2 degrees of freedom. As a result— 

• There is no need to separately impose Coulomb gauge or Lorenz 
gauge ([48, 52, 57, 58].
• No procedure is required to eliminate unphysical (negative 

norm) states by projection afterward, as in Gupta–Bleuler ([3, 
52, 59, 60].
• Faddeev–Popov ghosts are non-existent from the beginning 

[2, 57, 61], greatly reducing the number of diagrams in loop 
calculations.

In essence, ωμ is “a screwdriver with only two handles from 
the start,” with no superfluous contact points with screw holes 
(physical states). When quantizing fields, the three-step ritual of 
“gauge fixing → constraint conditions → physical state selection” 
becomes entirely unnecessary, making both theory construction and 
practical calculations instantly simpler. 

4 Automatic avoidance of ultraviolet 
divergence—natural regularization by 
transition functions

In this section, we demonstrate how the transition functions 
TeF(E) (fermionic degree of electrons) and TγB(E) (bosonic degree 
of photons) can be inserted into the three types of one-loop 
integrals—vacuum polarization, electron self-energy, and vertex 
correction—to suppress ultraviolet divergence. In each example, we 
can observe a consistent mechanism that “reproduces standard QED 
at low energies and introduces exponential decay at high energies.” 

4.1 Vacuum polarization

The vacuum polarization tensor in standard QED is given by 
Equation 20 [1, 4, 52–54, 62–66]:

Πμν (k) = −ie2∫
d4p
(2π)4

Tr[γμ (�p+m)γν (�p+�k+m)]

(p2 −m2)[(p+ k)2 −m2]
, (20)

which has a divergence proportional to k4 lnk2 in the high-energy 
region. Modifying this with the substitution of transition functions 
for electron lines (�p+m)−1→TeF(p) (�p+m)−1 + [1−TeF(p)]�p

−1

yields the expression in Equation 21

Πμν
(T) (k) = −ie

2∫
d4p
(2π)4

Tr [γμ N (p) γν N (p+ k)]
De (p) De (p+ k)

, (21)

N (p) = TeF ⁢ (p) ⁢ (�p+m) + [1−TeF ⁢ (p)] ⁢�p,

De ⁢ (p) = TeF ⁢ (p) ⁢ (p2 −m2) + [1−TeF ⁢ (p)] p2.

As p2→∞, the exponential factor TeF(p) ∼ exp [−p/E fb] appears 
twice, making the integral kernel k4 exp [−2p/E fb] decay rapidly and 
eliminating the divergence. 

4.2 Electron self-energy

In a scalar toy model (omitting spinor traces), the standard self-
energy is given by Equation 22 [4, 52–54, 62–64, 67–69]:

Σstd (p) = ie2∫ d4k
(2π)4

1
k2

1
(p− k)2 −m2 . (22)

Inserting transition functions for both electrons and 
photons gives Equation 23

Σ(T) ⁢ (p) = ie2∫ d4k
(2π)4
[TγB ⁢ (k) ⁢

1
k2 + (1−TγB ⁢ (k)) ⁢

1
k2 −m2

γ
]

×[TeF ⁢ (p− k) ⁢ 1
(p− k)2 −m2 + (1−TeF ⁢ (p− k)) ⁢ 1

(p− k)2
].

(23)

 As k2→∞, TγB(k)→0 and TeF(p− k)→0, causing the integral kernel 
to be suppressed by exp [−(k+ |p− k|)/E fb], making Σ(T) converge 
to a finite value (In the numerical example of Sec. 4.5, Σstd ∝ Λ2 is 
suppressed to Σ(T) ∝ const.). 

4.3 Vertex correction

One-loop vertex function (scalar approximation) [4, 44, 52–54, 
62–65, 70] is given by Equation 24:

Γμ
std (p,p

′) = ie3∫ d4k
(2π)4

(2p− k)μ

k2 [(p− k)2 −m2][(p′ − k)2 −m2]
. (24)

With similar substitutions, we obtain Equation 25:

Γμ
(T) ⁢ (p,p

′) = ie3∫ d4k
(2π)4
(2p− k)μ ⁢ [TγB ⁢ (k) ⁢

1
k2 + (1−TγB ⁢ (k)) ⁢

1
k2 −m2

γ
]

× ∏
r=p,p′
[TeF ⁢ (r− k) ⁢ 1

(r− k)2 −m2 + (1−TeF ⁢ (r− k)) ⁢ 1
(r− k)2
].

(25)

In the k2→∞ limit, the presence of the transition functions 
with a cubic power leads to an exponential suppression that is 
even faster than the standard k−2 fall-off, ensuring convergence 
to a finite value. The Ward–Takahashi identity qμΓμ = Σ(p′) −Σ(p)
remains valid after the inclusion of the transition functions (see 
Supplementary Material, Section 4, for the proof). 

4.4 Specific form of transition functions

TeF (E) =
1

1+ e(E−Efb)/Δ
, TγB (E) =

1

1+ e−(E−Efb)/Δ
, (26)

E fb:Statistical transitionthreshold, Δ:Transitionwidth.
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FIGURE 5
Comparison of conventional theory (top) and this research’s theory 
(bottom). Conventionally, force becomes infinite at distance = 0, but 
by considering the transition of statistical properties, it is finitely 
suppressed.

At E≪ E fb, TeF ≃ 1, TγB ≃ 1, reproducing standard QED, and 
at E≫ E fb, both fall exponentially to 0, suppressing divergent 
terms (see Equation 26).

Summary: For vacuum polarization, self-energy, and vertex 
correction, all integrals have “transition functions cubed or less” 
as exponential decay factors, automatically converging without 
introducing cutoffs or renormalization constants. This is the core 
result of “statistical regularization.”

In other words, whereas the conventional theory predicts a 
divergence as the separation approaches zero, the model proposed 
herein suppresses this singularity to a finite value through the 
transition mechanism. This idea is illustrated in Figure 5.

4.5 Numerical calculation example of 
electron self-energy correction and natural 
regularization by transition functions

This calculation verifies the effect of transition function T (k) in 
suppressing divergence in high-energy regions using electron self-
energy correction in quantum electrodynamics (QED) as a subject. 
We adopt a scalar toy model that omits spinor structure and gauge 
fixing in rigorous QED calculations to demonstrate the principles 
of transition functions. Details are provided in Appendix6. The 

simplified self-energy equation presented in Section 4.2 provides the 
conceptual foundation for this toy model, but here we explain the 
transition from rigorous QED equations to the toy model. 

4.5.1 Numerical calculation as a toy model and its 
results

Electron self-energy is a typical example of QED one-loop 
corrections that diverges as global momentum k→∞. In this 
section, we introduce fermion-boson transition function T (k)
and quantitatively demonstrate how divergence is exponentially 
suppressed using a simplified model. 

4.5.1.1 Exact expression and simplification
Standard QED electron self-energy is given by Equation 27:

Σ (p) = −ie2∫ d4k
(2π)4
 γμ �p−�k+m
(p− k)2 −m2 + iϵ

γμ
1

k2 + iϵ
. (27)

To demonstrate the core of the calculation method, we simplify by: 

a. Spinor structure γμ(p⋅γ− k⋅γ+m)γμ → 1 (absorbed into 
the overall coefficient, ultraviolet degree unchanged)

b. Omitting gauge fixing term iϵ
c. 4-dimensional integral → radial k 1-dimensional integral 

(assuming spherical symmetry, retaining volume element 
2π2k3)

d. Fixing external momentum p2 = Q2

reducing to the scalar toy model in Equation 28:

Σtoy (Q) = ∫
kmax

0
dk 2π2k3  1

(k2 +m2)[(Q− k)2 +m2]
. (28)

With m = 10−5, Q = 2.0, kmax = 210, we get

Σ(notrans)
toy ≃ 1.24026× 107, (29)

reproducing divergent growth (see Equation 29). 

4.5.1.2 Introduction of transition functions
Modeling statistical phase transition with

T (k) = 1
1+ exp[(k−Efb)/Δ]

, Efb = 1.0, Δ = 2.0,

and applying it to internal lines of both electrons and photons gives 
Equation 30

Σ(trans)
toy (Q) = ∫

kmax

0
dk 2π2k3 T (k) T (|Q− k|)

k2 [(Q− k)2 +m2]
. (30)

With the same parameters, numerical integration yields Equation 31

Σ(trans)
toy ≃ 3.69083× 10−15, (31)

showing ∼22 orders of magnitude reduction compared to the 
no-transition case, demonstrating a pronounced exponential 
cutoff effect.

Note: The numerical values in this section are rough estimates 
from deterministic one-dimensional integration toy models, and 
statistical confidence intervals (χ2-fit or Monte Carlo errors) have 
not been evaluated. 
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TABLE 3  Sensitivity of transition width Δ and self-energy.

Δ Σ(trans)
toy Notes

1.0 3.23× 10−31 Sharp transition

2.0 3.69× 10−15 Main text setting

3.0 8.31× 10−10 Gradual transition

4.5.1.3 Parameter sensitivity
Results with varying transition width Δ are shown in Table 3. 

Smaller widths make the logistic function steeper, strengthening 
suppression, which can be quantitatively confirmed.

4.5.1.4 Theoretical consistency

• No gauge fixing required: Because the bosonic matrices ωμ

propagate only the two transverse components, the propagator 
takes the form

Dij (k) =
−i
k2 (δij −

kikj

k2 ),

making any gauge parameter ξ unnecessary. The Ward–Takahashi 
identity kμΠμν = 0 is therefore satisfied as is (see 
Supplementary Material, Section 4). 

• Interpretation of the photon mass: The longitudinal 
part of Πμν is cancelled automatically, so Π(0) = 0 is 
preserved. The effective mass mγ of the F-type photon 
introduced in Section 4.2 can be interpreted as the massive 
photon observed, for example, in the Meissner effect inside a 
superconductor. In vacuum, however, the transition function 
TγF is exponentially suppressed; hence the F-type photon 
contribution is negligible at observable scales, the photon 
remains effectively massless, and full consistency with standard 
QED is maintained.

Thus, transition functions have been numerically verified to play 
the role of “naturally” cutting off ultraviolet divergence. 

4.5.2 Physical interpretation of transition 
function parameters

The parameters E fb and ℏν appearing in the transition function 
characterize important physical quantities regarding the scale 
at which statistical inversion occurs and the sharpness of the 
transition. 

• Characteristic Energy E fb: In the transition function T(E) =
1

1+exp[E−Efbℏν]
, E fb represents the threshold energy at which 

statistical transition occurs. In the low-energy regime 
(E≪ E fb), electrons behave fermionically and photons 
bosonically, but when E ≳ E fb, both particles begin to undergo 
statistical inversion. While the strict chemical potential μ is 
a thermodynamic parameter conjugate to particle number 
conservation, E fb is the gate energy where the statistical phase 
of vacuum and excited states inverts and does not require 

particle number conservation. Therefore, in the degenerate 
limit (kBT≪ E fb, dilute systems), it functions as a “threshold” 
similar to μ, but when external sources independently 
determine μ, identifying both parameters would lead to 
double counting.

4.5.2.1 Discussion
As shown in Table 4, E fb is mathematically isomorphic to 

the Fermi level μintr located at the center of the gap in intrinsic 
semiconductors. However, while μ is tied to particle number 
conservation, E fb is the gate of statistical phase transition and is 
independent of particle number conservation. Just as doping in 
semiconductors shifts μ, in FBD-QED, external density sources or 
strong background fields can shift or split E fb, potentially causing the 
logistic approximation to break down [71]; [38]. In the zero-density, 
weak external field limit treated in this paper, the single-threshold 
picture with TF +TB = 1 remains valid. 

• Transition Sharpness ℏν: The denominator ℏν in the above 
equation is an important parameter that determines how 
rapidly the transition occurs. Numerically larger values make 
the transition more gradual, while smaller values make it 
more abrupt. This form is analogous to kBT in the Fermi 
distribution function 1

1+exp[ E−μ
kBT
]

, and the “temperature” in 

thermodynamics can be considered to correspond to ℏν. 
Whether the occupation number (distribution) of electrons or 
photons in high-energy regions changes abruptly or gradually 
depends on this ℏν parameter.

 4.5.2.1.1 Physical Insights and Condensed Matter Analogies. 
The magnitude of the parameter ℏν representing the sharpness 
of statistical transitions leads to dramatically different physical 
phenomena. This resembles phase transition phenomena observed 
in everyday life. 

• Small ℏν — Abrupt Transition (Nearly Discontinuous 
Transition)

When ℏν is small, the change in statistical properties occurs 
abruptly like flipping a switch. This resembles first-order phase 
transitions where ice suddenly turns to water at 0 °C.
∗∗Similar Examples in Condensed Matter:∗∗Metal-insulator 

transitions where metals suddenly become insulators, or 
ferromagnetic transitions where magnetic properties are 
suddenly lost [72]. 

• Large ℏν — Smooth Transition (Smooth Crossover)
When ℏν is large, the change in statistical properties occurs 

gradually over a wide energy range. This resembles continuous 
changes like sugar gradually dissolving in water.
∗∗Physical Consequences:∗∗- Divergence suppression also 

becomes gradual, with intermediate statistical mixed states existing 
widely - The region where fermionic and bosonic components 
coexist expands - Example: Phenomena where photons partially 
exhibit fermionic properties become more observable.
∗∗Similar Examples in Condensed Matter:∗∗BCS-BEC 

crossover in superconductors [41] (where properties of electron 
pairs change continuously), or smooth transitions to quark-
gluon plasma [73]. 
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TABLE 4  Correspondence between semiconductor analogy and FBD-QED

Aspect Intrinsic semiconductor FBD-QED

Threshold Fermi level μintr at Eg/2 Transition point E fb (TF = TB)

Width/Temperature kBT determines slope ℏν determines transition sharpness

Redistributed degrees of freedom Expectation values of electrons e− and holes h+ Weights TF/B(E) of eF, eB, γB, γF

Conserved quantities Total electronic charge Qe Electronic charge, photon U(1) charge

Doping equivalent n/p donors and acceptors External density sources, curved spacetime, background fields

Breakdown scenarios Heavy doping/optical excitation/band tails Finite baryon density/ℏν→ 0/strong external fields

• Experimental Determination Methods
The value of ℏν can potentially be determined through the 

following methods:
∗∗Scattering Experiments:∗∗Using experimental apparatus with 

good energy resolution to precisely measure the energy dependence 
of scattering cross-sections, estimating ℏν from the “steepness of the 
slope” of the S-curve.
∗∗Semiconductor Analogy:∗∗The same statistical analysis used 

in semiconductors to measure changes in electron concentration 
while varying temperature Street [74] can be applied. Energy 
replaces temperature, and statistical component ratios replace 
electron concentration.

Key points: Small ℏν: Abrupt transition, clear threshold effects 
- Large ℏν: Smooth transition, coexistence phenomena - Both 
correspond deeply to phase transition phenomena in nature.

From the above interpretation, it is understood that E fb
represents the typical scale at which statistics transition, and ℏν
represents the width (sharpness) of the transition. Therefore, if 
these two parameters can be determined through experimental 
or numerical approaches, it becomes possible to quantitatively 
grasp “at which energy region and with what sharpness statistical 
properties switch”. This is a major feature of this theory and is key to 
explaining the suppression mechanism of divergence in high-energy 
regions in a form different from conventional renormalization
methods. 

4.5.2.2 Practical procedures for parameter extraction
E fb and ℏν can potentially be determined through experiments 

or numerical calculations. These parameters can, in principle, be 
obtained by fitting actual measurement data to an “S-curve” (logistic 
function). The following outlines the anticipated procedure. 

1. Experimental Method: Possibilities in High-Energy Scattering 
Experiments 
a. In electron-positron collision experiments (e+e−→ γγ), 

measuring photon production rates σ(Q) at various 
energies Q might capture signatures of statistical 
transitions.

b. By comparing with conventional theory predictions 
σQED(Q) and calculating the ratio R(Q) = σ/σQED, 
this ratio’s systematic deviation from one might trace 
an S-curve.

c. The energy where R = 1/2 would be E fb, and ℏν could 
be estimated from the curve’s steepness (applying logistic 
regression from statistics).

In actual physics, analogies with semiconductor bandgap 
measurements would be useful. In semiconductors, established 
techniques exist for determining the central energy of bandgaps 
(corresponding to E fb) and transition steepness (corresponding 
to ℏν) by measuring changes in electron concentration while 
varying temperature and analyzing the resulting “S-curves.” This 
suggests that similar statistical analysis methods could be applied to 
our theory. 

4.5.2.3 Physical image of convergence by statistical 
transition

This research’s fermion-boson duality theory naturally 
suppresses divergence in high-energy regions through energy-
dependent transition of particle statistics.

Figure 4 shows the energy band diagram, density of 
states, and distribution function of fermionic electrons. At 
the Fermi energy (E fb), the existence probability of fermionic 
electrons decreases sharply, with some transitioning to bosonic 
electrons. This transition stabilizes the electron distribution and 
suppresses excessive contributions at high energies. This numerical 
calculation (Σwith−trans ≈ 3.69083× 10−15) quantitatively supports 
this stabilization.

Figure 5 compares conventional QED models with this 
framework. In conventional models, interactions of fermionic 
electrons (eF) or bosonic photons (γB) diverge as r→ 0 (high-
energy region), but in this framework, as r→ 0, fermionic electrons 
transition to bosonic electrons (eB) and bosonic photons to 
fermionic photons (γF), causing interactions to converge finitely. 
This statistical transition is realized through the logistic form of 
the transition function T (k), exponentially suppressing existence 
probability at high energies.

Conventional renormalization theory derives effective physical 
quantities through infinite-infinite subtraction, ignoring the 
physical reality that existence probability at high energies follows 
T (k) ∼ e−k/E0 , approaching zero. In this framework, the logistic form 
of transition functions naturally suppresses divergence, avoiding 
the artificiality of renormalization. This natural regularization 
is intuitively understood through the statistical transition in 
Figures 4, 5, emphasizing the novelty of this theory. 
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4.5.2.4 Scale setting and dimensionless analysis
The numerical examples in this section (1) adopt natural units 

ℏ = c = 1, and (2) calculate after dimensionless normalization by 
dividing all momenta and masses by the transition threshold energy 
E fb. Specifically, as defined in Equation 32:

k = κE fb, Q = qE fb,

m = μE fb, Δ = δE fb. (32)

 The integration variable dk is replaced by E fb dκ, and to 
restore the dimension of self-energy, we use Σphys(Qphys) = E fb Σ(q). 
Therefore, the notation E fb = 1.0, Δ = 2.0 in the numerical 
examples represents the dimensionless coefficient δ = 2.0 with E fb as 
the reference unit. The actual physical values can be easily rescaled 
according to the choice of E fb (e.g., 10 MeV). 

4.5.2.5 Quantitative relationship between transition width 
ℏν and UV suppression

Since the high-momentum asymptotic behavior of the transition 
function is T(k) ∼ exp [−(k−E fb)/ℏν], the one-loop self-energy 
integral is approximately given by Equation 33

Σ∝∫
∞

Efb

k3 e−(k−Efb)/ℏν dk

≃ Cℏνe−Efb/ℏν. (33)

 That is
Σ (ℏν) ∝ ℏνe−Efb/ℏν, (34)

As shown in Equation 34, ℏν also appears in the denominator of 
the exponential decay factor. Therefore, smaller ℏν (steep transition) 
results in stronger exponential cutoff, significantly suppressing UV 
divergence. In the numerical implementation of Section 4.5, merely 
halving ℏν from 2.0→ 1.0 reduces the self-energy by approximately 
1016 times (see Table 3). This sharpening/softening corresponds 
to condensed matter analogies such as gap opening/closing rates 
in BCS–BEC crossovers or metal-insulator transitions Imada et al. 
[72]; Chen et al. [41]. 

5 Conclusions and outlook

In this work we introduced a transition function T (E), by 
which particle statistics change continuously from Fermi–Dirac to 
Bose–Einstein as the energy increases. On this basis we proposed 
a statistical regularization scheme that treats ultraviolet (UV) 
divergences and mass generation in quantum electrodynamics 
(QED) within a single, unified framework. Below we summarize 
the main achievements and outline future tasks together with the 
broader perspective opened by the present approach. 

5.1 Key achievements

1. Statistical removal of UV divergences

 By multiplying the fermion and boson propagators with the 
logistic transition function

T (k) = 1
1+ exp[(k−E fb)/Δ]

,

we rendered finite all one–loop integrals for the electron self-energy, 
vacuum polarization, and vertex corrections. Because the Ward 
identity kμΠμν = 0 remains exactly satisfied, the scheme reproduces 
the same physical quantities as dimensional regularization, 
Pauli–Villars, or a hard cut-off, yet attains scheme independence. 

2. Mechanism for mass and longitudinal degrees of freedom

 The energy–momentum tensor Tμν, constructed from a bi-
spinor, “lends” one longitudinal component to the two transverse 
components of the photon, thereby furnishing a unified description 
of the mass origin of an effective three-component vector field of the 
W/Z type. 

3. Step toward non-Abelian gauge theories and the mass gap

As shown in Supplementary Material, Section 6, extending 
the same transition function to quarks and gluons yields an SU(3)
Lagrangian, producing a qualitative scenario in which the gluon 
mass and color confinement are explained by a single logistic 
transition. 

5.2 Future prospects

• Multi-loop and lattice validation

Higher-order calculations (two loops and beyond) of the 
transition-function β function, together with comparisons to lattice 
QED/QCD simulations, will quantify the universality of the UV-
suppression effect.

• Hadron spectroscopy and data fitting

By fitting the threshold E fb and width Δ to hadron masses and 
scattering data, the experimental scale of the transition parameters 
can be determined.

• Extension to quantum gravity and curved spacetime

A unified treatment of thermodynamic and geometric entropy 
may connect this framework to black-hole evaporation and early- 
Universe inflation.

• Universality of “statistical transitions” across matter 
hierarchies

By comparing fermion↔boson conversions in superconducting 
gap formation and exciton condensation, the transition concept 
could be systematized as a cross-disciplinary theme spanning 
condensed-matter and high-energy physics.

• Introduction of Uncertainty Quantification (UQ)

The toy model in this paper only treated deterministic integrals. 
In the future, we plan to use Monte Carlo integration and 
Bayesian error propagation to estimate posterior distributions of 
{E fb,ℏν} parameters, and compare them with multi-loop and lattice 
calculations to demonstrate divergence suppression quantities with 
error bounds. 
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5.3 Summary

The transition-function framework reinterprets the traditional 
“mathematical tricks” of regularization and renormalization as 
a statistical-mechanical process, thereby opening a new path 
for simultaneous control of UV divergences, mass generation, 
and gauge symmetry. The results presented here constitute a 
conceptual blueprint, and a rich program of higher-order theory, 
numerical implementation, and experimental confrontation is 
expected to promote a multifaceted bridge between high-energy and 
statistical physics. 

6 Attached mathematica programs

The Mathematica code and calculation results (PDF files) used 
in this research are available from the following repository: 

• Zenodo Archive: (DOI: 10.5281/zenodo.15825707, version 4)

Below is a brief explanation of the calculation content of the two 
MATHEMATICA programs included in the repository. 

6.1 ElectronSelfEnergy_Regularization.nb

This program implements a toy model for calculating electron 
self-energy in simplified 4-dimensional Euclidean space. It verifies 
the method of suppressing divergence in high-energy regions using 
transition function T (k) = 1

1+exp( k−Efb
hv
)

. Specifically, it performs 

momentum k integration up to kmax = 210 and obtains the 
following results: 

• Without transition function: Σ = 1.24026× 107

(divergent trend)
• With transition function: Σ = 3.69083× 10−15 (convergent)

This demonstrates that the introduction of transition functions 
suppresses contributions from high momentum regions, yielding 
finite values without renormalization. 

6.2 omega_matrix_properties.nb

This program defines standard 4×  four gamma matrices γμ

(μ = 0,1,2,3) and confirms their properties. It is used to verify two-
dimensional Lorentz transformations in the extended QED of this 
research. Specifically, it explicitly describes γ0,γ1,γ2,γ3 and attempts 
to confirm anticommutation relations by calculating products 
such as γ2γ2. This provides the foundation for the possibility of 
introducing bosonic gamma matrices ωμ. 

6.3 TransitionFunction_Visualizer.nb

This notebook is a visualization tool that generates probability 
distributions of the four components {eF,eB,γF,γB} based on the 
logistic transition function T(E) = [1+ exp((E−E fb)/ℏν)]−1 as 
(1) interactive manipulation, (2) static snapshots, (3) GIF/MP4 

animations. The default values E fb = 1.0, ℏν = 0.2 clearly 
reproduce TeF ≈ 1 at low energies and TeB ≈ 1 at high energies.
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