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Introduction: We propose a statistical-mechanics—based framework for
UV regularization in QED/QFT by introducing energy-dependent transition
functions that interpolate fermionic and bosonic components.

Methods: We define logistic transition functions T(E) that continuously exchange
degrees of freedom between y_p and w_p operators, and analyze gauge
consistency via the Ward—Takahashi identities and BRST symmetry.

Results: The transition functions act as a smooth, gauge-safe soft cutoff that
exponentially suppresses UV contributions while preserving transversality. We
illustrate how longitudinal components are cancelled in internal lines without
affecting observables.

Discussion: This approach offers a physical (statistical) interpretation of
regularization, unifies several phenomena across energy scales, and is
compatible with Lorentz and gauge symmetries. Extensions to non-Abelian
theories and relations to mass generation mechanisms are outlined.

Rationale: These points correspond to Supplementary sections S9,
S11-519, S20, etc.

fermion-boson duality, statistical regularization, ultraviolet divergence, Ward-
Takahashi identity, BRST symmetry, phase transition

1 Introduction

Quantum field theory (QFT) is the common language of modern physics, with
applications ranging from particle physics to condensed matter physics. However, high-
order perturbative calculations in QED and QCD face serious mathematical difficulties due
to ultraviolet divergences [1-5].

Traditionally, ultraviolet divergences in quantum field theory have been controlled
by methods such as cutoffs, dimensional regularization, Wilson’s renormalization group,
and renormalization, but these methods rely on formal operations and their physical
interpretation is not always self-evidentt [6-8]. In particular, Wilson’s renormalization
group provides a powerful framework for explaining scale-dependent effective theories,
statistical mechanics phase transitions, and the asymptotic freedom of quantum
chromodynamics, but computational complexity and the lack of statistical mechanical
perspective remain challenges [8, 9]. For instance, while understanding of the confinement
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phenomenon in QCD has advanced through lattice gauge theory
using the renormalization group, there are limitations in the intuitive
description of non-perturbative regions.

This research is a substantially revised and academically
reconstructed version of a series of previous publications by the
author [10-12, 12]. In this paper, we refer to this framework
as Fermion-Boson Duality QED (abbreviated as FBD-QED).
This research proposes a new solution to this problem from a
statistical mechanical perspective. We introduce the concept of a
transition function that depends on energy scale to dynamically
change the statistical properties of particles, describing a
phenomenon where particles that behave as fermions at low
energies transition to bosonic properties at high energy regions,
and conversely, photons that behave as bosons at low energies
exhibit fermionic properties at high energies. This concept of
statistical phase transition aligns with recent trends attempting to
explain diverse physical systems by extending the Fermi-Dirac
distribution.

Originally proposed as a model for electron gas, the
Fermi-Dirac distribution has been observed and utilized in
various environments, including analog gravity systems using
water waves [14], non-Hermitian mesoscopic rings [15], and
semiconductor devices [16]. This research extends the concept
of “environment-dependent deformed distribution functions”
to high-energy physics, exploring applications not only for
ultraviolet divergences in QED but also for non-abelian gauge
theories like QCD.

Conventionally, fermions (like electrons) and bosons (like
photons) have been considered distinct particles with exclusive
statistics. However, this research examines the possibility that
statistical properties may change dynamically depending on energy
scales. Specifically, we assume that electrons, which behave as
fermions at low energies, exhibit bosonic behavior at high
energies, and conversely, photons undergo a dual transition to
fermionic aspects.

When transition functions are incorporated into QED
amplitude calculations, contributions from the ultraviolet region
naturally attenuate, suppressing divergences. Using the electron
self-energy as a concrete example, we numerically evaluate how
the introduction of transition functions converges divergent
integrals to finite values. This approach may open a path to
physically regularizing QFT without introducing arbitrary cutoffs
or renormalization constants.

From a statistical mechanical perspective, it is not uncommon
for the macroscopic behavior of particle ensembles to undergo
qualitative changes due to energy. In Cooper pair formation in
superconductivity, electrons, which are fermions, effectively become
bosonized and condense [17, 18]. Statistical properties are also
known to be modified by thermal corrections in finite temperature
field theory. This research extends these analogies to extremely high
energies approaching the Planck scale, examining scenarios where
particle statistics themselves are transformed.

This paper addresses the following topics:

1. Mathematical formulation of fermion-boson duality and
transition functions
2. Extension of QED using bosonic gamma matrices
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3. Natural regularization of ultraviolet divergences using
transition functions and numerical verification

4. Physical prospects
proposed model

implications and future of the

In Section2 we explain in detail the duality and the
transition functions, while Section 3 constructs the extended
QED. Section 4 demonstrates the effectiveness of the method
through an explicit calculation of the electron self-energy,
and Section 5 concludes by summarizing the significance of
this work and the remaining open problems. A more detailed
mathematical and physical justification of our approach is
provided in the Supplementary Material; a concise overview is
given in Supplementary Material. The Supplementary Material
discusses, in depth, the validity of the two-dimensional Lorentz
transformation, the physical basis of spin-statistics separation, the
interpretation of the bosonic tensor T, as an energy-momentum
tensor, the consistency between the Ward-Takahashi identities
and the transition-function formalism, the transverse wave
projector P*’ and gauge symmetry, compatibility with BRST
transformations, potential applications to QCD and other
theories, and its relationship to the Higgs mechanism. Section 6
describes the Mathematica code used for the numerical
calculations.

In this article and its Supplementary Material we prove that the
extended QED/QCD with transition functions is exactly compatible
with both the Ward-Takahashi identities and BRST symmetry.
Specifically,

of the
(dimensional regularization, Pauli-Villars, hard cut-off, or

e Regardless regularization scheme employed
the logistic transition), the energy-momentum tensor T,
that includes the transition functions automatically cancels
longitudinal contributions and restores k#HZfVf =0.

e Consequently, physical observables such as  functions and
scattering cross-sections are independent of the regularization
parameters, showing that statistical regularization acts as a
“gauge-safe soft cut-off”

e Moreover, the longitudinal degrees of freedom supplied by T,,
combine with the two transverse components of the photon
to provide a natural mechanism for generating massive three-

component vector particles of the W/Z-boson type.

This paper, we have proven in the appendices that the extended
QED/QCD with transition functions is strictly compatible with
Ward-Takahashi identities and BRST symmetry. Specifically:

of which
(dimensional regularization, Pauli-Villars, hard cutoff, logistic

e Regardless regularization scheme is used
transition), the energy-momentum tensor T, with transition
functions automatically cancels longitudinal contributions and
recovers k#H:fvf =0.

e Therefore, physical observables such as f functions and
scattering cross-sections are independent of regularization
parameters, with statistical regularization functioning as a
“gauge-safe soft cutoft”

o Additionally, the longitudinal degrees of freedom supplied by
T, naturally provide a mechanism for creating 3-component
vector particles with effective mass (W/Z type) when combined

with photons (2 transverse components).
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These results demonstrate that the transition function
framework provides a robust theoretical foundation that suppresses
ultraviolet divergences while preserving gauge symmetry.

This research is positioned at the intersection of QFT and
statistical mechanics, approaching mathematical challenges in high-
energy physics through the new perspective of energy scale-
dependent statistical transitions. This viewpoint is expected to have
ripple effects on phase transition research in complex systems,
deepening understanding of “statistical transitions” as universal

phenomena transcending material hierarchy.

2 Theoretical framework of
fermion-boson duality

2.1 A new understanding of statistical
properties: “Separation” of spin and
statistics

One of the fundamental principles of quantum mechanics is
the spin-statistics theorem, which connects a particle’s spin with
its statistical nature. According to this theorem, particles with half-
integer spin (e.g., %, %) are fermions, and particles with integer spin
(e.g.,0,1,2) are bosons [19]. This relationship has long been accepted
as a fundamental framework in elementary particle physics.

However, the fermion-boson duality theory proposed in
this research considers the possibility that a particle’s statistical
properties may “separate” from its intrinsic spin under specific
conditions. In this model, four basic states are possible for electrons
and photons, with two basic states for each particle:

1. Fermionic electron: Has spin % and follows fermionic statistics
2. Bosonic electron: Has spin one and follows bosonic statistics
3. Fermionic photon: Has spin % and follows fermionic statistics
4. Bosonic photon: Has spin one and follows bosonic statistics

This framework relaxes the conventional constraint that spin
and statistics must strictly follow different representations of the
Lorentz group, modeling energy-dependent changes in statistics as
an effective theory approach. For example, in superconductivity,
spin % electrons effectively demonstrate bosonic behavior in Cooper
pair formation (see Supplementary Material Section 2). Similarly,
we assume that electrons can transition to an effective spin one
bosonic state inside atoms or in high-energy regions.

In this theoretical framework, spin and statistics are treated as
independent characteristics that can change depending on energy
scales and physical conditions. In the low-energy limit, electrons
behave as fermionic electrons and photons as bosonic photons,
consistent with conventional quantum field theory. However, in the
high-energy limit, electrons may transition to bosonic electrons and
photons to fermionic photons.

To represent these states, we define the total state vector of the
system as in Equation 1.

Wiota? = Wep? + Vg + 1V, + 19,55 1)

where:

e |y,>: Fermionic electron state
e |y,5): Bosonic electron state
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+

Photons

Conventional Theory |

Change

Fermionic Bosonic Fermionic Bosonic

electrons electrons photons photons

Proposal of This Study

FIGURE 1

Conceptual diagram of statistical transition in FBD-QED. (Top)
Conventional theory considers only one type each for electrons and
photons, but (bottom) FBD-QED proposes that there exist four types:
[fermionic type/bosonic type] for electrons and [fermionic
type/bosonic type] for photons, totaling four types, which can switch
depending on energy scale. While conventional supersymmetry
(SUSY) theory [20, 21] requires new particles and higher-dimensional
spaces, FBD-QED models statistical transition within the same particle
inspired by semiconductor theory.

° |l[/yF>: Fermionic photon state
* |y,5>: Bosonic photon state

The visualization of this state is shown in Figure 1.

Table 1 shows correspondence examples of the four elementary
particle states.

The complete quantum state of each particle is expressed as an
energy-dependent linear combination of these basis states:

[, (E)) = Ty (E) ly,p) + T s (E) l¥,5s (22)

I, (B)) = Ty (B) l,5) + Tye () [y, - (2b)

Here, T(E) represents the transition function that determines the
weight of each statistical component at a specific energy scale E.

2.1.1 Reality of “bosonic electrons” and
“fermionic photons” is understood as effective
hybrid states

The reality and observability of “bosonic electrons” and
“fermionic photons” in our model are redefined as follows:
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TABLE 1 Correspondence examples of four elementary particle states proposed in this research.

State name

Expected observation

Characteristics

regions/Examples

Fermionic Electron Normal electron (outside atoms, mass #1,, spin 1/2)

Outside atoms, normal electron observation

Has mass, Fermi statistics

Bosonic Electron Bosonic electron in superconductors (Cooper

pairs, etc.?)

Possibly manifests inside atoms or in
superconductors?

Zero or small mass? Bose statistics

Fermionic Photon Massive photon (photon gaining mass via Meissner

effect?)

Inside superconductors (massive photon)

Spin 1/22 Fermi statistics

Bosonic Photon Normal photon (mass-zero photon in vacuum)

Observed outside atoms, in vacuum

Spin 1, Bose statistics

1. Atomic interiors as ultra-high pressure/superconducting
environments

The Coulomb field around atomic nuclei gives electrons an
effective pressure equivalent to ~10'%Pa, locally forming a “room
temperature, ultra-high pressure” superconducting state comparable
to Cooper pair condensation at extremely low temperatures.

2. Statistical transitions as effective hybrid states

In these extreme environments, electrons (spin 1/2) retain
their fermionic intrinsic spin while acquiring bosonic correlation
components through interactions with the photon field. Specifically,
the transition functions T,; and T, are simultaneously non-
zero and satisfy T,p+T,3=1, so electrons behave as effective
quasiparticles exhibiting fermion-boson duality. Similarly, photons
can also take hybrid states with T)p + T, = 1.

3. Pauli exclusion principle is preserved

Since the fermionic component T,;(E) > 0 of the transition

function always remains, single-electron operators satisfy
anticommutation relations, and unlimited condensation into the 1s
orbital does not occur. Furthermore, when TyF(E) is non-zero, the
fermionic exclusion effect on the photon side also works as statistical

complementarity to suppress excessive electron occupation.
4. Phase transition phenomena during observation

When electrons or photons escape from atoms, the ultra-high
pressure environment is instantly lost, and like ice melting into water
in an instant, the statistics immediately return to their standard
forms (fermionic electrons/bosonic photons). Therefore, detectors
only detect normal electrons and photons.

Therefore, our model does not claim that electrons become
pure bosons inside atoms, but rather that they behave as hybrid
quasiparticles with finite fermionic components, thus not destroying
the structure of the periodic table or chemical bonding.

2.2 Introduction of transition functions and
their physical meaning

Transition functions are mathematical tools that quantify the

transition of a particle’s statistical properties accompanying energy
changes, defined as follows:

Frontiers in Physics

These parameters have the following physical meanings:

e E: System energy (or a function of momentum)

e Eg: Characteristic energy at which statistical transition occurs
(corresponding to chemical potential)

o 7iv: Energy scale characterizing the sharpness of the transition

It is notable that T,z(E) has a form similar to the Fermi
distribution function. In this research, transition functions are
interpreted as quantum mechanical extensions of the Fermi
distribution function in single elementary particle systems. This
suggests a deep connection between statistical properties and
thermal statistical mechanics.

Transition functions satisfy the following conservation laws:

Tr(E)+T,(E)=1 (3a)

Ty (E) + Ty () = 1 (3b)

These equations show that the sum of fermionic and bosonic
components within the same particle species is always 1, describing
the transition of statistical properties with energy changes in a
consistent manner.

Figure 2 conceptually shows the four-quadrant representation
of transition functions. Furthermore, Figure 3 demonstrates the
continuous redistribution of four-component probabilities during
actual energy sweeping. Here, the y, curve does not represent “the
Bose-Einstein distribution itself,” but rather depicts the probability
weight TyB(E) =1- TyF(E) for y to maintain bosonic properties.
Therefore, thermal equilibrium features such as 1/E divergence in
the low-energy limit or zero-mode condensation do not appear in
this figure.

2.3 Relationship between transition
functions and the Hill-Wheeler equation

The transition function T,(E) takes the form of a logistic
function see Equation 4:

(4)

It has the same form as the normal Fermi-Dirac distribution
fep(E) = {1 +exp [(E-u)/(kyT)]}"". This function form is known as

frontiersin.org
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Normal state (Iow energy region I < E'y)
1 1
T’yB(E) - r E_Efb- Te (E) - 'E_Efb‘
l+exp | ——L 1+exp | ——
hv hv
{ Phase transition due to energy increase J}
1 1
TeB(E) - r E_Efb- T’Y (E) - 'E_Efb‘
14exp |——— 14+exp | —
hv hv
Phase transition state (high energy region £ > FEp)
FIGURE 2

Four-quadrant representation of transition functions. The right column shows fermionic components Tz, T, the left column shows bosonic
components T, Tg. With increasing energy £, statistics are inverted, transitioning from photons (bosons) to fermions, and from electrons (fermions)
to bosons. Here, the normalization "T, + T = 1" applies to each particle type separately (electrons: Tog+ Teg = 1, photons: T+ 7,5 = 1), and the sum
between different particle types (e.g., Tor+ TVF) does not equal 1. Transition functions always satisfy 0 < T(E) < 1.

Probability
1.0

— eF (yB)
— eB (yF)

0.0 0.5 1.0 15 20 25 30

FIGURE 3

Transition probabilities when energy E is swept from low (left end) to
high (right end). The blue solid line shows e (with y; overlapping on
the same curve), and the orange solid line shows ez (same as y,). The
visualization shows how the two lines cross around E = £, and their
dominant probabilities switch. Readers who want to confirm the
dynamic continuous changes can refer to the animation function in
the supplementary Notebook “TransitionFunction_Visualizer_
ver2.nb"

the Hill-Wheeler equation [22-24] in nuclear fission theory, which
was originally a formula for calculating the transmission probability
when treating nuclear fission barriers using harmonic oscillator
approximation [25-31]. This research reinterprets it not merely as a
nuclear fission transmission coefficient, but as a quantum statistical
occupation probability [32].

This perspective naturally explains changes in statistical
properties in high-energy regions, and the utility of this
demonstrated in the numerical

interpretation is analysis

discussed later.

2.4 Correspondence with semiconductor
physics

In semiconductor physics, electron states are described using

Fermi-Dirac statistics, explaining phenomena such as band gaps
and carrier transport in statistical mechanical terms [16]. This

Frontiers in Physics

research connects this framework with fermion-boson duality
theory, proposing the following correspondence:

Fermionic electron (eF): Occupation probability of electrons in
n-type semiconductors

Fermionic photon (yF): Occupation probability of holes in p-
type semiconductors

Bosonic photon (yB): Density of states function for electrons
Bosonic electron (eB): Density of states function for holes

As shown in Figure 4, electrons and holes have a mutually dual
relationship, and from this correspondence, the following important
points are derived:

e The density of states of bosonic elementary particles
corresponds to electron density distribution, and photon
density of states is proportional to electron density

e The distribution function of fermionic elementary particles
is the key to preventing infinite divergence of vacuum
polarization

Using this approach, it may be possible to construct equations
that avoid infinities in vacuum polarization, electron self-energy,
and vertex corrections without artificial regularization.

Note that the state referred to as the “intermediate region” in
this paper is a mixed statistics where fermionic component T(E)
and bosonic component T(E) coexist probabilistically, which is a
different concept from anyons (limited to two dimensions) [33];
[34]; [35] that have continuously variable particle exchange phases.

2.5 Boundary conditions and region
characteristics of transition functions

2.5.1 Theoretical background and positioning

The division of degrees of freedom according to energy scale
has been discussed for a long time in (i) BCS theory [36]; [17]
where low-temperature Fermi systems exhibit boson condensation
behavior, (ii) the rapid change of effective degrees of freedom
near transition scales shown by Wilson’s successive integration-type
renormalization group [9] and Miransky scaling [37]; [38], and (iii)
asymptotic freedom in QCD [39]; [40]. The novelty of this research

frontiersin.org


https://doi.org/10.3389/fphy.2025.1618853
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org

Maruyama 10.3389/fphy.2025.1618853
4 » ’ 4
Conduction band /Available glectron states Hae oceupancy >Electron carrier densty
Fermi level
Valence band Available hole states Electron occupancy >Hde carrer densty
— — )
0 12 1
Energy band diagram Density of states Distribution function Carrier densty
! [ 1 | Toal (F+yB)
eF+B state VB densty of stetes  \ +F ocoupation probabilty o
/ Population density
Fermi level
Total (yF + eB)
{F+ eB state eB density ofstates |/ &F cccupation probabilty > Pegblghon disey
1 Iy l 3 3
v T T 4 4
0 12 1
Four possible particle states ~ Bosonic densty of states ~ Fermionic distribution ~ Population density
function
FIGURE 4
The upper panel shows the energy band diagram of p-type and n-type semiconductors. The lower panelillustrates the distribution and density of states
for fermionic electrons (ef), fermionic photons (yF), bosonic photons (yB), and bosonic electrons (eB) based on this structure. Furthermore, this figure
does not represent anyon-type topological statistics, but visualizes the energy dependence of Fermi/Boson probability mixing that satisfies T+ Tz = 1.

lies in extending the concept of these “multi-scale effective theories”
to energy-dependent transitions of spin and statistics, constructing
the theory based on the following three regions:
E<< Eﬂ?’ E:Eﬂ,, E>> Eﬂ7
The characteristic boundary conditions and behavior in each
region of the energy dependence of transition functions can be
summarized as follows:

1. Low energy region (E < Ep,):

Tp(E)=1, Tng(E)=O0, (5a)

Tyr(E)=0, Typ(E)~1. (5b)

In this region, electrons behave as fermions and photons as
bosons, reproducing the conventional quantum electrodynamics
(QED) picture.

2. High energy region (E > Ep):
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Tep (E)=0, TeB (B)=1, (6a)
T,p(E)=1, T,(E)=0. (6b)
Here, statistics are inverted, with electrons showing

bosonic properties and photons showing fermionic properties.
This transition contributes to the suppression of ultraviolet
divergence.

3. Transition region (E=~Eg): In this region, fermionic and
bosonic components coexist, with the possibility of new
physical phenomena emerging. This is an important region for
experimental verification.

2.5.2 Specific form of transition functions
The transition functions used in this research are

1
1+ exp[(E—Efb)/hv] ’

Ty(E) = Ty(E)=1-T(E).  (7)

Since the transition functions in Equation 7 are logistic, Tp+ Ty = 1
holds identically. The parameter settings are summarized in Table 2.
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TABLE 2 Reference parameters used for transition functions.

1.0 (reference unit) 2.0 Section 4.5 numerical example

The dimensionless procedure and physical unit restoration
method are detailed in Section 4.5.

Implementation results are detailed in Section 4.5 and Section 6
[Zenodo DOI 10.5281/zenodo.15825707 (Version 4)].

2.5.3 Universality and model dependence
The mathematical form (S-curve shape) of transition functions
is universal, but the specific numerical values vary greatly depending
on physical situations. This is similar to how “Fermi distribution
functions have the same S-shape for both electrons and holes, but the
temperature and chemical potential values differ for each material”
Universal aspects:

e Logistic function form T(E) = [1 +exp((E- Eﬂ,)/)‘?zv)]_1

e Concept of statistical transition via S-curve

e Statistical inversion mechanism from low energy to
high energy

Model-dependent aspects: The specific numerical values of
parameters Eg, and #iv vary greatly depending on the physical
phenomena being treated:

e Electromagnetic interaction (QED): E o~ several GeV?

e Weak interaction (electroweak theory): Ep, ~ 100 GeV (near
W/Z boson masses)?

e Strong interaction (QCD): Ep ~1GeV (QCD mass scale)?

o Theories including gravity: Eg, ~ 10" GeV (Planck mass)?

This shows a hierarchical structure, suggesting that different
statistical transitions may occur at different energy scales.

Determination method for each theory: When applying to new
physical theories, E, and /v need to be redetermined through the
following procedures:

1. Comparison with experimental data: Fit S-curves to scattering
experimental data in the energy region treated by that theory

. Numerical simulations: Directly calculate statistical transition
behavior through lattice calculations, etc.

. Theoretical consistency: Confirm consistency with known
physical laws (energy conservation, gauge symmetry, etc.)

Understanding through familiar examples: This is similar to how
“water’s boiling point changes with atmospheric pressure (87°C on
Mount Fuji), but the boiling phenomenon itself (liquid—gas phase
transition) is universal” The statistical transition phenomenon is
universal, but the energy at which it occurs (E,) and its sharpness
(fiv) depend on the environment (theoretical framework).

2.6 Realization examples in condensed
matter physics

The validity of this theory (FBD-QED) is supported by the
following phenomena in condensed matter physics:
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e Superconducting state: Electrons form Cooper pairs and show
bosonic behaviorChen et al. [41]. Triplet state (spin 1) Cooper
pairs can be interpreted as examples of “bosonic electrons.”

e Meissner effect: Inside superconductors, photons acquire
an effective mass and exhibit properties different from
normal bosonic photons. This can be interpreted as
“fermionic photons.”

o Carriers in semiconductors: It is established that electrons and
holes follow Fermi-Dirac statistics, but phenomena where they
collectively show bosonic behavior under specific conditions
suggest a connection with this theory.

These examples support the concept that changes in statistical
properties dependent on energy scales, as proposed in this theory,
are applicable not only to high-energy physics but also to condensed
matter physics.

3 Bosonic gamma matrices and
extended quantum electrodynamics

To incorporate the concept of fermion-boson duality introduced
in the previous section into the framework of quantum field theory,
an extension of the conventional Dirac equation is necessary. In
this section, we introduce bosonic gamma matrices to realize this
extension and construct an extended quantum electrodynamics
Lagrangian based on them.

3.1 Introduction of bosonic gamma
matrices

In this research, to describe the transformation of statistics from
fermions to bosons, we introduce new bosonic gamma matrices w".
These matrices are defined using the conventional Dirac matrices y*
and another representation y'# that follows the same Clifford algebra

Yy
W= 8
w 5 ®)
Here, y'#, as introduced in Equation 8, is defined by the following
substitutions:

Y=y (92)

Y=y (9b)

yi=y (%)

Y=y (9d)

This specific substitution can be represented using an
appropriate unitary transformation U as yl’l = UyMUr, satisfying
the Clifford algebra {y;,y,} = 2g,,I;. This construction is similar
to the process of fermion electrons forming Cooper pairs in
superconductivity, but differs in that it reconstructs the internal
degrees of freedom of a single particle to realize a statistics
transformation rather than combining two particles. To use an
analogy, w" acts as a transformation operator when an electron
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“wears bosonic clothes,” functioning as a “magic scissors” that
restricts particle motion to two transverse components.

With this definition, the
corresponding to a particle directed along the z-axis are expressed as:

bosonic gamma matrices

0 4 410 0443
Timeaxis: «°= yry _rry (10a)
2 2
1y 1 1,1
x—axiss ' = yry _v=+y =y1 (10b)
2 2
2. .02 2., .2
+ +
y —axis: w? = yry _Y*r_ y2 (10¢)
2 2
3. .03 3.0
+ +
z—axis: @ = yrv _rry (10d)

2 2

These bosonic gamma matrices satisfy the following important
anticommutation relations:

{wp o} ={wy, w,} =-21, (11a)
{wp, o} = {ws, w3} =0 (11b)
{wp} =0 (i#])) (11c)

Here, i,j € {0,1,2,3} represent spinor indices, and I, is the 4 x
4 identity matrix. This algebraic structure gives rise to “semi-
Hermitian components” and “semi-anti-Hermitian components”
different from conventional y,, yielding operators with different
properties in the time and space directions.

The explicit matrix representation of bosonic gamma matrices

is given by:
1 i
5 0 3 0
1 i
o L o -I
w=| . 2 2 (12a)
oy 1
2 2
o -5 0 -2
00 0 1
00 1 0
w =i (12b)
01 0 0
1000
0 0 0 1
0 0 -1 0
w, = (12¢)
01 0 0
-1 0 0 0
1 i
5 0 3 0
1 i
o 1 o -I
P 2 (12d)
’ R R S
2 2
o -+ o -1

This matrix structure enables the description of particles
incorporating both bosonic and fermionic properties in the
extended Lagrangian shown in Section 3.2.
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For details of this calculation, please refer to the Mathematica
code and calculation results available from the Zenodo repository
provided in Section 6.

3.2 Lagrangian of extended quantum
electrodynamics

3.2.1 Four basis states
The fermion/boson four components of “electron (e)” and
“photon (y)” introduced in the previous section are

|I//t0tal> = |V/eF> + |ll/eB> + |l//yF> + |l//yB>’ (13)

where ¥, ¥, represent the fermion/boson components of
electrons, and y,p, v, ; represent the fermion/boson components of
photons, as defined in Equation 13.

3.2.2 Definition of transition functions
Scalar functions {T,p, T,p, Tp, Tyr} that depend on energy E
and satisfy

Tp(B)+Tp(E)=1,  Tp(E)+T,p(B)=1,

are called “transition functions” In the low-energy limit E < Eg,,
Tp—1, T)p—1, recovering standard QED, and at high energies,
both approach 0, making the statistical phase transition manifest.

3.2.3 Extended Lagrangian

With the ordinary Dirac matrices §*, the bosonic gamma
matrices ", and the covariant derivative D# :aﬂ—ieA#, the
minimal Lagrangian of the extended QED is given by Equation 14:

—r. . 1
ES‘ED = u/[l Tp* Dy, +i T D, ~ m] vy {TyBFva(w +Typ TWT“V},
(14)

where F,,=0,A,-0,A, is the usual electromagnetic field-
strength tensor, and T, is the corresponding fermionic tensor (see
Supplementary Material, Section 3, for its definition).

3.2.4 Electron (fermion) kinetic term: iT.z*D,

e Responsible for the kinetic term of the fermionic component
of electrons and electron-photon interaction.

e T,.=1when E < Eg, consistent with standard QED.

o Lorentz covariant and U(1) gauge invariant.

3.2.5 Electron (boson) kinetic term: iT gD,

e Describes the motion of “bosonic electrons” that appear at high
energies in first-derivative form. (Note that this is not a second-
derivative Klein-Gordon type)

e An effective theory approach to dynamically incorporate
statistical phase transitions.

3.2.6 Boson field kinetic term: - T gF, F*"

e Describes photons (2 transverse components) dominant at
low energies.
e Consistent with classical electromagnetism when TyB(E)—> 1.
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3.2.7 Fermion field kinetic term
The term —i T,¢T,,T" in our formulation:

e At high energies this term accounts for the “fermion-like
photon” component. It is not the photino of supersymmetry;
rather, it represents a model degree of freedom whose statistics
can transmute within a single field.

o The energy-momentum tensor T,

source that generates an effective gravitational field (see

Supplementary Material, Section 3, for details).

may serve as a

3.2.7.1 Behavior in low and high energy limits

Low energy (E < Eg,):Top, Typ=1, Top, Typ=0
t std
= L3k ~ LaEp

High energy (E > Eg,):T,p, Typ =0, T, Typ=1

= Statistical phase transition dominates

3.2.7.2 Preservation of gauge invariance .

Under the usual U(1) transformations 1//—)6"“‘(")1// for the
electron field and A,—A, +0d,a for the gauge potential, the
extended Lagrangian L,
transition functions are introduced as Lorentz scalars, T;(E = p-u),

remains invariant. Because the
gauge symmetry—including the BRST transformations [42, 43]—is
preserved (see Supplementary Material, Section 5, for details).
Furthermore, Supplementary Material, Section 4, verifies that the
introduction of transition functions leaves the Ward-Takahashi
identities [44, 45] intact, so the symmetry between vertex functions

and full propagators continues to hold.
3.2.7.3 Physical implications

1. Ultraviolet divergences in both electron and photon loops are
exponentially suppressed oc e /e,

2. The T,,T* term can induce curved spacetime through an
effective energy-momentum tensor (natural emergence of
QED-gravity coupling).

with QCD

(Supplementary Material) can be constructed.

3. One-to-one  correspondence extension

3.3 Theoretical basis for bosonic kinetic
term

The bosonic kinetic term iT,zw"D, is an effective theoretical
prescription unique to this research that “expresses statistical phase
transition with a first derivative” The following outlines how it
fundamentally differs from conventional Klein-Gordon equations,
Proca theory [46-48], or photino fields in [49, 50].

1. Significance of (First-Derivative Form [51])

In the same spirit that Dirac’s equation “elevated the second-
derivative Schrédinger equation to first-derivative to succinctly
describe relativistic fermions,” this research rewrites the second-
derivative Klein-Gordon equation [4, 52-56] in first-derivative form,
unifying fermions and bosons with

iT"Dy=my, T*=TE) Y +[1-TE)] o (15
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a single first-order operator T* (as defined in Equation 15).
This approach offers several advantages:

1. Legendre transformations and propagator structures become
uniform for all field types, simplifying calculations,

2. Ultraviolet degrees are aligned, making divergence forms
easier to control (Section 4.5 confirms that conventional k™
divergence is mitigated to logarithmic divergence),

3. Statistical phase transitions can be continuously described as
smooth changes in T(E) within a single equation

In other words, it is a new notation that describes all the “dance”
of electrons and photons in one-step (first-derivative) steps.

a. A concise proof that fermions and bosons can be unified in a
single equation

Define the equation of motion as

iM"Dy=my, T'=T(E)Y+1-TE]*  (16)

1. In the low-energy limit T(E)—1, I¥—y*, so Equation 16
is i*D,y=my — directly reproducing the Dirac
(fermion) equation.

2. In the high-energy limit T(E)—0, I*—w*, giving iw“D,y =
my — the “first-derivative Klein-Gordon” (bosonic photon
equation of motion) introduced in this research.

Thus, it is demonstrated that both fermion and boson limits can
be continuously obtained from the single Equation 16.

b. Advantage of Legendre transformations and propagators
having “the same form”

Viewing Equation 16 as L = (il*D,-m)y, the conjugate
momentum for time derivatives is

oL ok
m,= ——— =iy, (17)
Y a(0y)

As shown in Equation 17, the coeflicients are independent of
T(E). Therefore, the formula for Lagrangian— Hamiltonian Legendre
transformation can be completed in one line regardless of particle type.

Similarly, the Fourier transform of the equation of motion
is (pT-m)y(p)=0, and the propagator (Green’s function)
is given by Equation 18

S(p)=(pT-m)™, (18)

obtained with a ome-pattern inverse matrix. If T(E)=1 then
S(p) = (}71— m)Y, if T(E)=0 then S(p) = (wp— m)7, changing
automatically, eliminating the need to distinguish “with/without
gamma matrices” when performing loop calculations.

In summary,

e Unified transformation formulas—formulating conjugate
momenta and Hamiltonians with a single set.

loop

divergence analyses using the same template.

e Unified propagators—calculating integrals and

o Aligned divergence structure—ultraviolet degrees are aligned,

so as shown in Section 4.5, k™ divergence is mitigated to
logarithmic divergence.
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This is like consolidating separate “tools” for electrons
(fermions) and photons (bosons) into a single universal wrench,
greatly simplifying theoretical calculations.

Benefits of Having Only 2
Freedom—Simplicity Without Gauge Fixing As shown in Equation
19, w” satisfies

Physical ~Degrees of

w"p# =0, w“w# =0 (19)

so the equation of motion iw“D,y,;=my,; automatically
propagates only transverse wave (components perpendicular to the
transfer vector) 2 degrees of freedom. As a result—

e There is no need to separately impose Coulomb gauge or Lorenz
gauge ([48, 52,57, 58].

e No procedure is required to eliminate unphysical (negative
norm) states by projection afterward, as in Gupta-Bleuler ([3,
52, 59, 60].

o Faddeev-Popov ghosts are non-existent from the beginning
(2, 57, 61], greatly reducing the number of diagrams in loop
calculations.

In essence, w" is “a screwdriver with only two handles from
the start with no superfluous contact points with screw holes
(physical states). When quantizing fields, the three-step ritual of
“gauge fixing — constraint conditions — physical state selection”
becomes entirely unnecessary, making both theory construction and
practical calculations instantly simpler.

4 Automatic avoidance of ultraviolet
divergence—natural regularization by
transition functions

In this section, we demonstrate how the transition functions
T,z(E) (fermionic degree of electrons) and TyB(E) (bosonic degree
of photons) can be inserted into the three types of one-loop
integrals—vacuum polarization, electron self-energy, and vertex
correction—to suppress ultraviolet divergence. In each example, we
can observe a consistent mechanism that “reproduces standard QED
at low energies and introduces exponential decay at high energies”

4.1 Vacuum polarization

The vacuum polarization tensor in standard QED is given by
Equation 20 [1, 4, 52-54, 62-66]:
dp Tr [y*‘ (#+m)y” (lzf+}€+ m)]
ent (PP -m?)[(p+k)*—m?]

which has a divergence proportional to k* Ink? in the high-energy

, (20)

I* (k) = —ie J

region. Modifying this with the substitution of transition functions
for electron lines (ff+m)™" —T,p(p) (f+m)™" +[1-T(p)] !
yields the expression in Equation 21

d*p Tr[y*N(p) y'N(p+k)]
em*  D.(p)D.(p+k)

"T;(k) = —ieZJ. , (21)

N(p)=Tep(p) (F+m)+[1-Tr(p)]p,
D,(p)=T(p) (p*—m*)+[1-T,(p)] p.
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As p*— oo, the exponential factor T,(p) ~ exp [-p/Ep,] appears
twice, making the integral kernel k* exp [-2p/E '] decay rapidly and
eliminating the divergence.

4.2 Electron self-energy

In a scalar toy model (omitting spinor traces), the standard self-
energy is given by Equation 22 [4, 52-54, 62-64, 67-69]:

d*k 1 1

et K (p-kP—m? @)

%4 (p) = i J

Inserting transition functions for both electrons and

photons gives Equation 23

. d*k
2 (p) = i’ Jw

T+ (1 Ta0) |
Y

1
1-T(p-k) ——|.
1= Tatp0) |
(23)

T -k
X[ R T

As k*— oo, T,5(k)—0and T,x(p — k)—0, causing the integral kernel
to be suppressed by exp [(k+|p — kI)/Ej,], making X converge
to a finite value (In the numerical example of Sec. 4.5, £ 4 oc A? is
suppressed to Zp) const.).

4.3 Vertex correction

One-loop vertex function (scalar approximation) [4, 44, 52-54,
62-65, 70] is given by Equation 24:

24

L[ A% 2p— k)
r.“ , 1y — i3 .
std(pp ) e j(2”)4 K2 [(p_k)z_mZ] [(pl _k)l_m2]

With similar substitutions, we obtain Equation 25:

(')

1 1
-y Ty ()5 + (1-T)p (k) e }

[

(
1
=p.p’

e + (1= T, (r—k))

4
ie3j dk 2p—ky
X

[TeF(r_k) (r—lk)z } .
(25)

In the k¥*— oo limit, the presence of the transition functions
with a cubic power leads to an exponential suppression that is
even faster than the standard k™ fall-off, ensuring convergence
to a finite value. The Ward-Takahashi identity g,I'* = (p") - Z(p)
remains valid after the inclusion of the transition functions (see
Supplementary Material, Section 4, for the proof).

4.4 Specific form of transition functions

1 1

T (E) = ———, T g (E)=
) 1+ e(EEn)/a e (®) E-Ep,)/A

, (26)
1+ e’(

E ﬂa:Statistical transition threshold, A:Transitionwidth.
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Hence, we prop: that elect and ph
partially change their statistics as follows:

Bosonic\ Fermionic
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Fermionic [ Bosonic
Electron | Electron
(eB)

Fermionic
Photon
(vF)

Fermionic
Photon
(vF)

(eF)

Force is finiteasr — O

Our Proposed Framework

FIGURE 5

Comparison of conventional theory (top) and this research’s theory
(bottom). Conventionally, force becomes infinite at distance =0, but
by considering the transition of statistical properties, it is finitely
suppressed.

At Ex Eﬂi’ TeF = 1,
at E>» Eg, both fall exponentially to 0, suppressing divergent
terms (see Equation 26).

T, =1, reproducing standard QED, and

Summary: For vacuum polarization, self-energy, and vertex
correction, all integrals have “transition functions cubed or less”
as exponential decay factors, automatically converging without
introducing cutoffs or renormalization constants. This is the core
result of “statistical regularization.”

In other words, whereas the conventional theory predicts a
divergence as the separation approaches zero, the model proposed
herein suppresses this singularity to a finite value through the
transition mechanism. This idea is illustrated in Figure 5.

4.5 Numerical calculation example of
electron self-energy correction and natural
regularization by transition functions

This calculation verifies the effect of transition function 7 (k) in
suppressing divergence in high-energy regions using electron self-
energy correction in quantum electrodynamics (QED) as a subject.
We adopt a scalar toy model that omits spinor structure and gauge
fixing in rigorous QED calculations to demonstrate the principles
of transition functions. Details are provided in Appendix6. The
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simplified self-energy equation presented in Section 4.2 provides the
conceptual foundation for this toy model, but here we explain the
transition from rigorous QED equations to the toy model.

4.5.1 Numerical calculation as a toy model and its
results

Electron self-energy is a typical example of QED one-loop
corrections that diverges as global momentum k — co. In this
section, we introduce fermion-boson transition function 7 (k)
and quantitatively demonstrate how divergence is exponentially
suppressed using a simplified model.

4.5.1.1 Exact expression and simplification
Standard QED electron self-energy is given by Equation 27:

p-K+m 1

(p—k)z—m2+i(y"k2+i('

d*k
@2n)*

3 (p) = —ie? j (27)

To demonstrate the core of the calculation method, we simplify by:

— 1 (absorbed into

the overall coefficient, ultraviolet degree unchanged)

a. Spinor structure y*(p-y —k-y+m)y,

. Omitting gauge fixing term ie

c. 4-dimensional integral — radial k 1-dimensional integral
(assuming spherical symmetry, retaining volume element
2m%k%)

Fixing external momentum p? = Q>

d.

reducing to the scalar toy model in Equation 28:

s 1
S (Q)= J k22K L 28)
oy 0 (K +m?) [(Q-k)* +m?]
With m =107, Q = 2.0, k,,, = 2'°, we get
S = 1.24026 x 107, (29)

reproducing divergent growth (see Equation 29).

4.5.1.2 Introduction of transition functions
Modeling statistical phase transition with

1

N A epl(k—F) /Al A=20,

Eg = 1.0,

and applying it to internal lines of both electrons and photons gives

Equation 30
(trans) Ko T(k) 7-(|Q - kl)
2 = dk 27k —————. 30
oy (@ Jo K(Q-k)*+m?] G0

With the same parameters, numerical integration yields Equation 31

Z(trans)

oy =3.69083x 107",

(31)

showing ~22 orders of magnitude reduction compared to the
no-transition case, demonstrating a pronounced exponential
cutoft effect.

Note: The numerical values in this section are rough estimates
from deterministic one-dimensional integration toy models, and
statistical confidence intervals (Xz—ﬁt or Monte Carlo errors) have
not been evaluated.
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TABLE 3 Sensitivity of transition width A and self-energy.

trans
A ’ Zioy ) Notes
1.0 3.23x107! Sharp transition
2.0 3.69x 107" Main text setting
3.0 8.31x 10710 Gradual transition

4.5.1.3 Parameter sensitivity

Results with varying transition width A are shown in Table 3.
Smaller widths make the logistic function steeper, strengthening
suppression, which can be quantitatively confirmed.

4.5.1.4 Theoretical consistency

e No gauge fixing required: Because the bosonic matrices w”
propagate only the two transverse components, the propagator
takes the form

_ i kikj
PO\ )

making any gauge parameter ¢ unnecessary. The Ward-Takahashi
identity k,JI*"=0 is
Supplementary Material, Section 4).

therefore satisfied as is (see

o Interpretation of the photon mass: The longitudinal

part of II*” is cancelled automatically, so II(0)=0 is
, of the F-type photon
introduced in Section 4.2 can be interpreted as the massive

preserved. The effective mass m

photon observed, for example, in the Meissner effect inside a
superconductor. In vacuum, however, the transition function
T, is exponentially suppressed; hence the F-type photon
contribution is negligible at observable scales, the photon
remains effectively massless, and full consistency with standard

QED is maintained.

Thus, transition functions have been numerically verified to play
the role of “naturally” cutting off ultraviolet divergence.

4.5.2 Physical interpretation of transition
function parameters

The parameters Ey, and 7iv appearing in the transition function
characterize important physical quantities regarding the scale
at which statistical inversion occurs and the sharpness of the
transition.

° Charalcteristic Energy Ep,: In the transition function T(E) =
TrerE ]’ Eg represents the threshold energy at which
statistical transition occurs. In the low-energy regime

(E< Eﬂ,), electrons behave fermionically and photons

bosonically, but when E 2 Eg, both particles begin to undergo

statistical inversion. While the strict chemical potential y is

a thermodynamic parameter conjugate to particle number

conservation, Ej, is the gate energy where the statistical phase

of vacuum and excited states inverts and does not require
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particle number conservation. Therefore, in the degenerate
limit (kgT < Ep,, dilute systems), it functions as a “threshold”
similar to y, but when external sources independently
determine y, identifying both parameters would lead to
double counting.

4.5.2.1 Discussion

As shown in Table 4, Eg, is mathematically isomorphic to
the Fermi level y, , located at the center of the gap in intrinsic
semiconductors. However, while yp is tied to particle number
conservation, Ey, is the gate of statistical phase transition and is
independent of particle number conservation. Just as doping in
semiconductors shifts y, in FBD-QED, external density sources or
strong background fields can shift or split E;,, potentially causing the
logistic approximation to break down [71]; [38]. In the zero-density,
weak external field limit treated in this paper, the single-threshold
picture with Ty + T = 1 remains valid.

e Transition Sharpness 7v: The denominator 7v in the above
equation is an important parameter that determines how
rapidly the transition occurs. Numerically larger values make
the transition more gradual, while smaller values make it
more abrupt. This form is analogous to kzT in the Fermi

1
1+ex;{f’%‘r

thermodynamics can be considered to correspond to #v.

distribution function , and the “temperature” in

Whether the occupation number (distribution) of electrons or
photons in high-energy regions changes abruptly or gradually
depends on this #v parameter.

4.5.2.1.1 Physical Insights and Condensed Matter Analogies.
The magnitude of the parameter 7v representing the sharpness
of statistical transitions leads to dramatically different physical
phenomena. This resembles phase transition phenomena observed
in everyday life.

e Small 7v — Abrupt Transition (Nearly Discontinuous
Transition)
When 7iv is small, the change in statistical properties occurs
abruptly like flipping a switch. This resembles first-order phase
transitions where ice suddenly turns to water at 0 °C.

**Similar Examples in Condensed Matter:**Metal-insulator

transitions where metals suddenly become insulators, or

ferromagnetic transitions where

suddenly lost [72].

magnetic properties are

e Large 7iv — Smooth Transition (Smooth Crossover)
When #v is large, the change in statistical properties occurs
gradually over a wide energy range. This resembles continuous
changes like sugar gradually dissolving in water.

“*Physical Consequences:**- Divergence suppression also
becomes gradual, with intermediate statistical mixed states existing
widely - The region where fermionic and bosonic components
coexist expands - Example: Phenomena where photons partially
exhibit fermionic properties become more observable.

Examples in Condensed Matter:**BCS-BEC
crossover in superconductors [41] (where properties of electron

**Similar

pairs change continuously), or smooth transitions to quark-
gluon plasma [73].
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TABLE 4 Correspondence between semiconductor analogy and FBD-QED

Intrinsic semiconductor

10.3389/fphy.2025.1618853

FBD-QED

Threshold Fermi level y; at E /2

Transition point Eﬂ7 (Tp=Tp)

‘Width/Temperature kpT determines slope

fiv determines transition sharpness

Redistributed degrees of freedom

Expectation values of electrons e~ and holes h*

Weights Ty/(E) of e, ey, yp, Vg

Conserved quantities Total electronic charge Q,

Electronic charge, photon U(1) charge

Doping equivalent n/p donors and acceptors

External density sources, curved spacetime, background fields

Breakdown scenarios

Heavy doping/optical excitation/band tails

Finite baryon density/#iv — 0/strong external fields

o Experimental Determination Methods
The value of /v can potentially be determined through the
following methods:

**Scattering Experiments:” * Using experimental apparatus with
good energy resolution to precisely measure the energy dependence
of scattering cross-sections, estimating v from the “steepness of the
slope” of the S-curve.

**Semiconductor Analogy:**The same statistical analysis used
in semiconductors to measure changes in electron concentration
while varying temperature Street [74] can be applied. Energy
replaces temperature, and statistical component ratios replace
electron concentration.

Key points: Small 7iv: Abrupt transition, clear threshold effects
- Large #v: Smooth transition, coexistence phenomena - Both
correspond deeply to phase transition phenomena in nature.

From the above interpretation, it is understood that Ep
represents the typical scale at which statistics transition, and fiv
represents the width (sharpness) of the transition. Therefore, if
these two parameters can be determined through experimental
or numerical approaches, it becomes possible to quantitatively
grasp ‘at which energy region and with what sharpness statistical
properties switch”. This is a major feature of this theory and is key to
explaining the suppression mechanism of divergence in high-energy
regions in a form different from conventional renormalization
methods.

4.5.2.2 Practical procedures for parameter extraction
Ep, and 7iv can potentially be determined through experiments

or numerical calculations. These parameters can, in principle, be
obtained by fitting actual measurement data to an “S-curve” (logistic
function). The following outlines the anticipated procedure.

1. Experimental Method: Possibilities in High-Energy Scattering
Experiments
a. In electron-positron collision experiments (e"e”™ — yy),
measuring photon production rates o(Q) at various
energies Q might capture signatures of statistical
transitions.
By comparing with conventional theory predictions
0qep(Q) and calculating the ratio R(Q) = 0/0qgp,
this ratios systematic deviation from one might trace
an S-curve.
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c. The energy where R=1/2 would be Ep, and #v could
be estimated from the curve’s steepness (applying logistic
regression from statistics).

In actual physics, analogies with semiconductor bandgap
measurements would be useful. In semiconductors, established
techniques exist for determining the central energy of bandgaps
(corresponding to Eg) and transition steepness (corresponding
to 7v) by measuring changes in electron concentration while
varying temperature and analyzing the resulting “S-curves” This
suggests that similar statistical analysis methods could be applied to
our theory.

4.5.2.3 Physical image of convergence by statistical
transition

This research’s
suppresses divergence in high-energy regions through energy-
dependent transition of particle statistics.

fermion-boson duality theory naturally

Figure4 shows the energy band diagram, density of
At
the Fermi energy (Eﬂg), the existence probability of fermionic

states, and distribution function of fermionic electrons.
electrons decreases sharply, with some transitioning to bosonic
electrons. This transition stabilizes the electron distribution and
suppresses excessive contributions at high energies. This numerical
calculation (2, irans = 3-69083 x 1071%) quantitatively supports
this stabilization.

Figure 5 compares conventional QED models with this
framework. In conventional models, interactions of fermionic
electrons (eF) or bosonic photons (yB) diverge as r — 0 (high-
energy region), but in this framework, as r — 0, fermionic electrons
transition to bosonic electrons (eB) and bosonic photons to
fermionic photons (yF), causing interactions to converge finitely.
This statistical transition is realized through the logistic form of
the transition function 7 (k), exponentially suppressing existence
probability at high energies.

Conventional renormalization theory derives effective physical
quantities through infinite-infinite subtraction, ignoring the
physical reality that existence probability at high energies follows
T (k) ~ e*/"o, approaching zero. In this framework, the logistic form
of transition functions naturally suppresses divergence, avoiding
the artificiality of renormalization. This natural regularization
is intuitively understood through the statistical transition in
Figures 4, 5, emphasizing the novelty of this theory.
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4.5.2.4 Scale setting and dimensionless analysis
The numerical examples in this section (1) adopt natural units

h=c=1, and (2) calculate after dimensionless normalization by
dividing all momenta and masses by the transition threshold energy
Ep,. Specifically, as defined in Equation 32:

Q= qub>

k = KEﬂ?’

m= [/lEﬂ,, (32)

The integration variable dk is replaced by Ep,dk, and to
restore the dimension of self-energy, we use X (Qppys) = Ep, 2(q).
Therefore, the notation E = 1.0,
examples represents the dimensionless coefficient § = 2.0 with Ey, as

A=2.0 in the numerical

the reference unit. The actual physical values can be easily rescaled
according to the choice of Eg, (e.g., 10 MeV).

4.5.2.5 Quantitative relationship between transition width

Av and UV suppression
Since the high-momentum asymptotic behavior of the transition

function is T(k) ~ exp[-(k—E ﬂ,) /fv], the one-loop self-energy
integral is approximately given by Equation 33

Yo JOO i3 e (k=En)/v g

Ep,
= Chve Bo/™, (33)
That is
S (hv) oc hve /M, (34)

As shown in Equation 34, Av also appears in the denominator of
the exponential decay factor. Therefore, smaller hiv (steep transition)
results in stronger exponential cutoff, significantly suppressing UV
divergence. In the numerical implementation of Section 4.5, merely
halving 7v from 2.0 — 1.0 reduces the self-energy by approximately
10'® times (see Table 3). This sharpening/softening corresponds
to condensed matter analogies such as gap opening/closing rates
in BCS-BEC crossovers or metal-insulator transitions Imada et al.
[72]; Chen et al. [41].

5 Conclusions and outlook

In this work we introduced a transition function T(E), by
which particle statistics change continuously from Fermi-Dirac to
Bose-Einstein as the energy increases. On this basis we proposed
a statistical regularization scheme that treats ultraviolet (UV)
divergences and mass generation in quantum electrodynamics
(QED) within a single, unified framework. Below we summarize
the main achievements and outline future tasks together with the
broader perspective opened by the present approach.

5.1 Key achievements

1. Statistical removal of UV divergences

By multiplying the fermion and boson propagators with the
logistic transition function

T (k) = L

1+eXp[(k—Efb)/A] ’
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we rendered finite all one-loop integrals for the electron self-energy,
vacuum polarization, and vertex corrections. Because the Ward
identity k,IT*" = 0 remains exactly satisfied, the scheme reproduces
the same physical quantities as dimensional regularization,
Pauli-Villars, or a hard cut-off, yet attains scheme independence.

2. Mechanism for mass and longitudinal degrees of freedom

The energy-momentum tensor T, constructed from a bi-
spinor, “lends” one longitudinal component to the two transverse
components of the photon, thereby furnishing a unified description
of the mass origin of an effective three-component vector field of the
W/Z type.

3. Step toward non-Abelian gauge theories and the mass gap

As shown in Supplementary Material, Section 6, extending
the same transition function to quarks and gluons yields an SU(3)
Lagrangian, producing a qualitative scenario in which the gluon
mass and color confinement are explained by a single logistic
transition.

5.2 Future prospects

e Multi-loop and lattice validation

Higher-order calculations (two loops and beyond) of the
transition-function f3 function, together with comparisons to lattice
QED/QCD simulations, will quantify the universality of the UV-
suppression effect.

e Hadron spectroscopy and data fitting

By fitting the threshold Ej, and width A to hadron masses and
scattering data, the experimental scale of the transition parameters
can be determined.

e Extension to quantum gravity and curved spacetime

A unified treatment of thermodynamic and geometric entropy
may connect this framework to black-hole evaporation and early-
Universe inflation.

e Universality of “statistical transitions” across matter

hierarchies

By comparing fermion—boson conversions in superconducting
gap formation and exciton condensation, the transition concept
could be systematized as a cross-disciplinary theme spanning
condensed-matter and high-energy physics.

e Introduction of Uncertainty Quantification (UQ)

The toy model in this paper only treated deterministic integrals.
In the future, we plan to use Monte Carlo integration and
Bayesian error propagation to estimate posterior distributions of
{E;, 7iv} parameters, and compare them with multi-loop and lattice
calculations to demonstrate divergence suppression quantities with
error bounds.
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5.3 Summary

The transition-function framework reinterprets the traditional
“mathematical tricks” of regularization and renormalization as
a statistical-mechanical process, thereby opening a new path
for simultaneous control of UV divergences, mass generation,
and gauge symmetry. The results presented here constitute a
conceptual blueprint, and a rich program of higher-order theory,
numerical implementation, and experimental confrontation is
expected to promote a multifaceted bridge between high-energy and
statistical physics.

6 Attached mathematica programs

The Mathematica code and calculation results (PDF files) used
in this research are available from the following repository:

e Zenodo Archive: (DOI: 10.5281/zenodo.15825707, version 4)

Below is a brief explanation of the calculation content of the two
MATHEMATICA programs included in the repository.

6.1 ElectronSelfEnergy_Regularization.nb

This program implements a toy model for calculating electron
self-energy in simplified 4-dimensional Euclidean space. It verifies
the method of suppressing divergence in high-energy regions using

1
1+exp( % )

momentum k integration up to k. =2'" and obtains the

transition function 7T (k)= . Specifically, it performs

following results:

e Without T =1.24026 x 107
(divergent trend)

o With transition function: = = 3.69083 x 10™'> (convergent)

transition function:

This demonstrates that the introduction of transition functions
suppresses contributions from high momentum regions, yielding
finite values without renormalization.

6.2 omega_matrix_properties.nb

This program defines standard 4 x four gamma matrices ¥
(4 =0,1,2,3) and confirms their properties. It is used to verify two-
dimensional Lorentz transformations in the extended QED of this
research. Specifically, it explicitly describes y°,y",y%,y* and attempts
to confirm anticommutation relations by calculating products
such as p*y*. This provides the foundation for the possibility of
introducing bosonic gamma matrices w*.

6.3 TransitionFunction_Visualizer.nb

This notebook is a visualization tool that generates probability
distributions of the four components {eg,eg,yp, 5} based on the
logistic transition function T(E)= [1 +exp ((E —Eﬁ)/hv)]_l as
(1) interactive manipulation, (2) static snapshots, (3) GIF/MP4
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animations. The default values Eg=1.0, #iv=0.2 clearly

reproduce T, = 1 at low energies and T, = 1 at high energies.

Data availability statement

All Mathematica codes and numerical outputs used
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