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Dynamical interaction network in
urban traffic
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Introduction: Urban traffic systems transition dynamically between congestion
and free-flow states, driven by local interactions between road segments
or regions. Understanding how these interactions contribute to congestion,
including system-wide congestion, is crucial for effective traffic management.
However, existing research has overlooked the dynamical nature of these
interactions, which are essential for capturing the changing behavior of
urban traffic.

Methods: In this study, we use a pairwise maximum entropy model to infer
interaction networks from sliding time windows and analyze their dynamics
during typical daily periods: morning peak, noon off-peak, and evening peak.

Results: We find that (1) interaction networks remain stable within each period
but exhibit structural shifts between periods, especially between peak and off-
peak periods; (2) stable high-strength edges in dynamical interaction network
are characterized by long-range and negative interactions; (3) the proportion
and modularity of positive interactions, along with the strength of negative
interactions, are important structural features that distinguish peak from off-
peak hours.

Discussion: These results provide new insights into how local interaction
dynamics drive global state transitions in urban traffic, offering guidance for
improving traffic resilience through targeted control strategies.

KEYWORDS

urban traffic, interaction network, maximum entropy model, dynamical network,
network structure

1 Introduction

Urban traffic systems are complex dynamic systems [1], frequently transitioning
between congestion and free-flow states. This dynamic nature amplifies the impact of
peak-hour demand, leading to extreme congestion that imposes significant societal
and economic costs. For example, in 2024, drivers in New York and Chicago lost an
average of 102 h and over $1,800 annually due to traffic delays [2]. Understanding
the mechanisms behind traffic state transitions is crucial for effective congestion
management and urban traffic optimization. Traditional studies have advanced microscale
vehicle behavior modeling (e.g., car-following models [3], cellular automata [4])
and macroscale fundamental diagram (MFD) theory [5]. However, these single-
scale approaches fail to capture cross-scale emergent behaviors in urban traffic
systems, specifically, how local traffic interactions give rise to global congestion.
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To bridge this gap, mesoscopic approaches such as percolation
theory offer promise for analyzing urban traffic phase transitions. Li
et al. [6] use percolation theory to demonstrate how local free-flow
components contribute to global connectivity, and further identify
critical bottleneck roads whose regulation can significantly improve
overall traffic performance. Building on this, Zeng et al. [7] identify
different percolation behaviors in peak and off-peak periods: peak-
hour networks resemble two-dimensional lattices with short-range
interactions, while off-peak networks exhibit small-world properties
due to long-range highway connections. In contrast to these studies
focusing on free-flow interactions, Duan et al. [8] view congestion
propagation between road segments as a tree-like growth process.
They find that congestion dissipation duration follows a power-law
distribution and that early congestion growth rates correlate with
final congestion size, providing early warnings for large-scale jams.
Despite these insights, the underlying local interaction mechanisms
within urban traffic networks remain incompletely understood.

In terms of modeling interactions within road networks, much
of the prior research has focused on local dependencies between
road segments during congestion propagation. For example, Li
et al. [9] apply spatial correlation analysis to uncover long-range
power-law dependencies in congestion propagation, linking them
to criticality in overload cascading failures. Nguyen et al. [10]
utilize causal congestion trees and dynamic Bayesian networks
to model spatiotemporal propagation probabilities, identifying
frequent substructures in congestion patterns. Chen et al. [11]
propose a Space-Temporal Congestion Subgraph (STCS) framework
to model congestion propagation as dynamic graphs. They use
temporal-spatial edge-filling strategies to uncover complex patterns
in Shanghai Road network, outperforming traditional tree-based
models in detecting large-scale recurrent congestion clusters.
Further, Luan et al. [12] integrate dynamic Bayesian networks
with graph convolutional networks (GCNs) to infer congestion
propagation patterns, using data-driven adjacency matrices
to capture time-varying relationships between road segments.
However, most segment-level interaction inference methods have
been applied only to small-scale road networks, limiting their
scalability to city-wide systems.

Recent advancements have shifted focus toward regional
interactions within urban traffic networks. For instance, Wang et al.
[13] propose a POI-guided meta-block to model inter-regional
interactions, where regional land-use functions (e.g., commercial,
residential) are incorporated into GCN-based traffic prediction.
By leveraging self-attention mechanisms, the model dynamically
captures spatiotemporal correlations between regionswith divergent
functions, thereby enabling more accurate predictions of traffic flow
across different urban zones. Rajeh et al. [14] develop a Multi-
Region Correlation (MRC) framework combined with a Multiple
Linear Regression Unit (MLRU) to model the temporal correlations
between regions for urban traffic flow prediction. This approach
integrates historical traffic data fromneighboring regions to improve
prediction accuracy, without relying on external factors such as
weather or point-of-interest data. While these studies effectively
reduce the modeling dimension of large-scale road networks, they
primarily focus on region-level traffic flow prediction, with limited
exploration of how inter-regional interactions shape themacro-state
of the entire system.

In our prior work [15], we used a pairwise maximum entropy
model to infer a regional interaction network during a single peak-
hour time window. By reconstructing an energy landscape from
the inferred regional interaction network, we identified hidden
high-risk traffic states. This interaction network highlights both
positive interactions (e.g., congestion propagation) and negative
interactions (e.g., congestion mitigation) between regions. Unlike
other local interaction inference methods, this approach accounts
for the collective behavior of the entire system, characterizing how
local interactions shape global state distributions. However, urban
traffic systems are subject to continuous disturbances that alter local
interaction dynamics, shifting the energy landscape and impacting
decision-making. The fixed interaction network in our previous
research is insufficient to capture such temporal variations. This
highlights the need to analyze how interaction networks evolve
over time. Building on this, the current study extends our earlier
work by examining regional interaction networks across multiple
consecutive time windows, including morning peak, noon off-peak,
and evening peak periods. Key findings include: (1) interaction
networks remain stable within each period but show structural shifts
between periods, particularly between peak and off-peak periods;
(2) stable high-strength edges in dynamical interaction network
are characterized by long-range and negative interactions; (3) the
proportion and modularity of positive interactions, along with the
strength of negative interactions, are important structural features
that distinguish peak from off-peak hours.

The remainder of this paper is structured as follows. Section 2
presents the main results, including interaction networks across
traffic periods, macroscopic dynamics of interaction networks,
microscopic dynamics of high-strength edges, and evolution of
structural features in dynamical interaction network. Section 3
summarizes our research and presents future research directions.
Finally, details of the data sources and methods are provided.

2 Results

2.1 Interaction networks across traffic
periods

To analyze the dynamical interaction network in urban traffic,
this study focuses on the road network within Beijing fourth Ring
Road. This road network is divided into 20 predefined hexagonal
regions (Figure 1a). We use 1-min interval speed records from
floating vehicles collected during 17 workdays in October 2015.
Raw speed data from over 33,000 road segments are aggregated to
construct a global traffic state for each time step (Figure 1b). Each
global traffic state is represented as a 20-dimensional binary vector of
regional states, defined by a congestion proportion f and a regional
jam threshold l (see Data and methods).

We apply a pairwisemaximumentropymodel [15] (Equations 9,
10) to infer regional interaction networks over 24 consecutive
1-h time windows (7:00–18:30, with half-hour sliding intervals).
The 24 time windows mentioned below refer to these consecutive
1-h intervals. For each time window, the model input includes
global traffic states (Figure 1b) from all time steps within that
window over the 17 workdays (see Methods). The resulting
interaction network (Figure 1c) consists of nodes representing
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FIGURE 1
Inference of interaction network in urban traffic using the pairwise maximum entropy model. (a). The road network within Beijing fourth Ring Road is
divided into 20 hexagonal regions. (b). Observed global traffic states (see Methods) at different time steps. (c). Interaction network inferred from model
parameters [15]. The model input includes observed global traffic states from all time steps within a given time window across 17 workdays. The model
outputs (Jij) are used to build interaction network, where |Jij| represents the edge strength between regions i and j, and the sign of Jij indicates whether
the interaction between the two regions promotes congestion (Jij >0) or mitigates congestion (Jij <0). All maps in this article are from OpenStreetMap.

the 20 predefined road regions (Figure 1a), and edges defined
by the inferred model parameters J ij = J ji. These interaction
networks are weighted and heterogeneous. The absolute value
|J ij| represents interaction strength, and the sign distinguishes
mutual congestion propagation (J ij >0) and mitigation (J ij <0) [16].

This maximum entropy model infers a local interaction network
capturing the statistical distribution of system-level macroscopic
performance (Appendix A). By accounting for the collective
behavior of the entire system, it characterizes how local interactions
shape global state distributions.
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FIGURE 2
Traffic efficiency and interaction networks across different time windows. (a, b, c). Spatial distributions of the top 5% strongest interaction edges in the
8:00–9:00, 12:00–13:00, and 17:30–18:30 time windows. Green edges indicate positive Jij, while purple edges indicate negative Jij. (d). Traffic
efficiency varies with the start time of each 1-h time window (7:00–18:30, with half-hour sliding intervals). The morning peak period includes four 1-h
time windows (7:00–8:30, with half-hour sliding intervals), the noon off-peak period includes five 1-h time windows (11:30–13:30, with half-hour
sliding intervals), and the evening peak period includes five 1-h time windows (16:30–18:30, with half-hour sliding intervals). Traffic efficiency is
quantified by the mean relative speed ⟨v⟩ and the mean size of the largest functional cluster ⟨G⟩, both averaged over all time steps within each 1-h
window across 17 workdays (see Methods).

Next, we compare interaction networks across traffic periods
with different efficiency levels. Traffic efficiency (see Methods) is
measured by the mean relative speed ⟨v⟩ (Equation 7) and the mean
size of the largest functional cluster ⟨G⟩ (Equation 8) [6]. These
metrics vary considerably across the 24 time windows and display
a clear pattern of morning peak, noon off-peak, and evening peak
periods (Figure 2d). Based on this, we choose three typical time
windows for comparison: 8:00–9:00 in morning peak, 12:00–13:00
in noon off-peak, and 17:30–18:30 in evening peak. As shown
in Figures 2a–c, the spatial distributions of the top 5% strongest
interaction edges are very different in these three time windows.
Compared to noon off-peak period (Figure 2b), peak periods
(Figures 2a, c) have more strong positive links, suggesting a greater
likelihood of congestion propagation between regions. Moreover,
the strong positive links during peak periods tend to cluster in space.
For instance, in the morning peak (Figure 2a), Region 5 has strong
positive connections with three other regions. In the evening peak
(Figure 2c), Region 12 exhibits a similar clustering pattern. This
spatial clustering suggests the emergence of critical regions during
peak hours. In these regions, localized congestion is more likely to
spread and trigger large-scale gridlock [17], thereby reducing overall
network efficiency. These findings imply that temporal variations
in traffic efficiency (Figure 2d) may be influenced by structural
dynamics of the interaction networks. This highlights the need to
further investigate their dynamical characteristics, extending the
previous model [15] that focusing on a single typical time window.

2.2 Macroscopic dynamics of interaction
networks

To quantify macroscopic dynamics of interaction networks, we
analyze their structural differences across distinct traffic periods.
Specifically, we compare interaction networks during the morning
peak, noon off-peak, and evening peak periods (Figure 2d), both
within and across these periods. Structural dissimilarity is measured
using the Jaccard index, which is the ratio of common edges
with identical signs to the total number of edges (Equation 11). A
low Jaccard index indicates a large structural difference, while a
high index suggests great structural similarity. We compute Jaccard
indices for all intra-period and inter-period interaction network
pairs, generating empirical distributions of these indices. To assess
these distributions, we perform a one-tailed Mann-Whitney U
test [18] (see Methods) to compare the empirical Jaccard index
distribution with that of shuffled edge-sign networks. A one-tailed
p-value below the predefined significance level indicates that the
empirical Jaccard indices are statistically significantly greater than
that of the shuffled networks, suggesting that empirical interaction
networks exhibit stronger structural similarity than expected by
chance. In addition, we report Cliff ’s Δ (Effect size; Equation 12) to
quantify the extent to which the structural similarity in empirical
interaction networks exceeds that of the shuffled baseline. Larger
positive values of Cliff ’s Δ indicate a greater proportion of empirical
Jaccard indices exceeding those from shuffled networks.
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FIGURE 3
Macroscopic structural differences of interaction networks within and across periods (morning peak, noon off-peak, evening peak). A small Jaccard
index indicates great structural difference, while a large index suggests strong similarity. (a, b, c). Intra-period Jaccard index distributions: Jaccard
indices for all time window pairs within the same period (a: morning peak; b: noon off-peak; c: evening peak). (d, e, f). Inter-period Jaccard index
distributions: Jaccard indices for all time window pairs between different periods (d: morning–evening peak; e: morning peak–noon off-peak; f evening
peak–noon off-peak). ∗Note: Asterisks above distributions denote statistical significance from one-tailed Mann–Whitney U tests (∗∗∗= p < 0.001, ∗∗= p
< 0.01, ∗= p < 0.05), comparing empirical Jaccard indices to null distributions generated by 1,000 shuffled edge-sign networks. The one-tailed p-value
below the predefined significance level indicates that the empirical Jaccard indices are statistically significantly greater than that of the shuffled
networks, suggesting that empirical interaction networks exhibit stronger structural similarity than expected by chance. In addition, we report
Cliff’s Δ (Equation 12) to quantify the extent to which the structural similarity in empirical interaction networks exceeds that of the shuffled baseline.
Larger positive values of Cliff’s Δ indicate a greater proportion of empirical Jaccard indices exceeding those from shuffled networks (see Methods).

As shown in Figures 3a–c, intra-period interaction networks
exhibit significantly high structural similarity, with most Jaccard
indices exceeding 0.6 and some surpassing 0.7. Statistical
comparisons with shuffled null networks confirm the stability of
within-period structures (morning peak: p < 0.001, Cliff ’s Δ =
0.905; noon off-peak: p < 0.001, Cliff ’s Δ = 0.889; evening peak:
p < 0.001, Cliff ’s Δ = 0.871). In contrast, inter-period interaction
networks show lower Jaccard indices (about 0.5 in Figures 3d–f),
indicating greater structural dissimilarity. Notably, peak-off-peak
comparisons (Figures 3e, f) show p-values greater than 0.1 and very
low effect sizes (Cliff ’s Δ < 0.16), providing no statistical evidence
that empirical interaction networks exhibit greater structural
similarity across peak and off-peak periods than shuffled networks.
These results suggest that interaction networks remain stable
within each period but show structural shifts between periods,
particularly between peak and off-peak periods. High within-
period similarity indicates consistent regional interaction patterns,
maintaining relatively consistent traffic behavior under stable traffic
conditions. In contrast, lower between-period similarity reflects
interaction reconfigurations, which drive transitions between
distinct traffic states.

2.3 Microscopic dynamics of high-strength
edges

To investigate the microscopic dynamics of interaction
networks, we examine the fluctuations of strongly interacting
edges over consecutive time windows. First, we rank all edges
based on their average interaction strength (⟨|J ij|⟩) across the
24 time windows. As shown in Figure 4a, edges in the top
30% by ⟨|J ij|⟩ are considered high-strength edges, while the
rest are classified as low-strength edges. The threshold for
high-strength edges is ⟨|J ij|⟩(30) = 0.299, meaning that most
edges (70%) have relatively low average interaction strength
smaller than that. To quantify the fluctuations of these high-
strength edges, we measure two aspects: strength volatility and
sign volatility. Strength volatility (CV(|J ij|) in Equation 13) is
the coefficient of variation of |J ij| across the consecutive time
windows, with higherCV(|J ij|) values indicating greater fluctuations
in interaction strength. Sign volatility (SF(J ij) in Equation 14)
is the number of sign flips in J ij across the consecutive time
windows, with more flips indicating higher instability in
interaction sign.
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FIGURE 4
Microscopic edge dynamics in interaction networks across consecutive time windows. (a). Rank of edges by the mean of |Jij| (denoted as ⟨|Jij|⟩) across
multiple time windows. Here, the 24 time windows covering morning peak, noon off–peak, and evening peak periods are selected to analyze edge
dynamics. Edges in the top 30% by ⟨|Jij|⟩ are classified as high-strength edges, while the rest are low-strength edges. The threshold ⟨|Jij|⟩(30) = 0.299 is
marked by the red dashed line. (b). Volatility of high–strength edges. The mean coefficient of variation (⟨CV(|Jij|)⟩ = 1.349) is used as the threshold for
strength volatility, and the mean number of sign flips (⟨SF(Jij)⟩ = 6.088) as the threshold for sign volatility, both marked by black dashed lines.
High-strength edges with CV(|Jij|)≥⟨CV(|Jij|)⟩ and SF(Jij)≥⟨SF(Jij)⟩ are classified as unstable high-strength edges, while those with CV(|Jij|) < ⟨CV(|Jij|)⟩ and
SF(Jij) < ⟨SF(Jij)⟩ are classified as stable high-strength edges. (c, d). Spatial distributions of stable and unstable high-strength edges. Green edges
indicate those with Jij >0 in at least half of the 24 time windows (i.e., consistently positive interactions), while purple edges indicate those with Jij <0 in
more than half of the 24 time windows (i.e., consistently negative interactions).

As shown in Figure 4b, high-strength edges exhibit a wide
range of both strength and sign volatility. Specifically, CV(|J ij|)
ranges from 0.8 to 2.1, while SF(J ij) ranges from 2 to 12. We
classify edges as stable if both volatility measures are below their
mean values, and as unstable if both volatility measures are
greater than or equal to their mean values. Among these high-
strength edges, stable edges account for 24.6%, while unstable
edges make up 19.3%. Notably, stable high-strength edges have a
higher proportion of negative interactions occurring in more than
50% of the time windows (purple points in Figure 4b), compared
to unstable high-strength edges. This indicates that stable high-
strength edges consistently suppress congestion. Spatial analysis
further reveals that some stable negative high-strength edges (e.g.,
edge between regions 3 and 17 in Figure 4c) span longer distances
than unstable ones (Figure 4d). These long-range, negative-effect
stable edges form a geographically dispersed network. Showing
negative interactions across distant regions, theymay reflect negative
feedbacks to prevent congestion from spreading into widespread
gridlock [17], demonstrating the inherent resilience [19] of
urban traffic.

2.4 Evolution of structural features in
dynamical interaction network

After analyzing the dynamics of macroscopic structure and
microscopic edge, we further investigate the evolution of structural
features in dynamical interaction network. We quantify this
evolution using four structural metrics (denoted as P+, Ps+,
Qw
p , and ⟨k⟩

w
n ; see Methods), which capture both network-level

and node-level properties of the weighted and heterogeneous
interaction networks. For each of the 24 interaction networks
(corresponding to the 24 time windows), we compute these
metrics, which reveal distinct temporal patterns and exhibit strong
interpretability (Figure 5).

The proportion of positive interactions (P+; Equation 15)
quantifies the overall positive polarity of interactions within the
network. A higher P+ value indicates more mutual reinforcement
between regions, increasing the likelihood of congestion
propagation. As shown in Figure 5a, P+ is significantly higher
during the morning and evening peak hours compared to noon
off-peak. Specifically, P+ reaches approximately 0.6 in the morning
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FIGURE 5
Evolution of four structural features in dynamical interaction networks. These four structural features (see Method), including P+ (a), P

s
+ (b), Q

w
p (c), and

⟨k⟩wn (d), exhibit temporal variation across the 24 time windows. All four metrics show clear differences among the morning peak, noon off-peak, and
evening peak periods.

peak, 0.5 in the evening peak, and 0.3 during noon off-peak. This
suggests that peak hours havemore positive interactions, facilitating
congestion spread. A similar trend is observed for the proportion of
strong positive interactions (Ps+, calculated from subnetwork with
|J ij| >0.2): peak values are much higher than off-peak (Figure 5b),
enhancing congestion spread effects.

The weighted modularity of positive interactions (Qw
p ; Equation

16) reflects whether positive links tend to form community-like
structures. A higher Qw

p value implies that congestion propagation
is more likely to remain within specific regional clusters rather
than spread globally. As shown in Figure 5c, Qw

p is much higher
during noon off-peak compared to peak hours. Most Qw

p values are
around 0.4 during noon off-peak, while they are about 0.2 during
peak hours. This indicates that positive interactions during off-peak
periods are more likely to form community structures, helping to
confine congestion within local regions. In contrast, during peak
hours, positive interactions are less likely to form such structures,
resulting in widespread congestion.

The average node strength of negative interactions (⟨k⟩wn ;
Equation 17) represents the strength of inhibitory effects between
regions. A higher ⟨k⟩wn signifies stronger suppression of congestion.
As shown in Figure 5d, ⟨k⟩wn is lower during peak hours (around
1.5) and higher during off-peak hours (approaching 6.0). This
demonstrates that inhibitory effects of regions are significantly
stronger during off-peak periods, preventing congestion from
spreading between regions.

Our findings reveal that the proportion and modularity
of positive interactions, along with the strength of negative

interactions, are important structural features distinguishing
peak from off-peak hours. During peak hours, the network is
dominated by a high proportion and low modularity of positive
interactions, along with weak inhibitory interactions. These
structural characteristics reduce the ability of the interaction
network to localize congestion, leading to large-scale traffic
congestion. In contrast, off-peak periods are characterized by a low
proportion and high modularity of positive interactions, and strong
inhibitory effects, which help localize congestion and maintain
overall traffic efficiency.

3 Discussion

This study extends our previous work [15], which used a pairwise
maximum entropy model to infer a regional interaction network
for a single peak-hour time window and identify hidden high-
risk states through energy landscape reconstruction. While [15]
characterized static interactionsduringpeak congestion, it overlooked
dynamic evolutions of interaction networks across periods with
varying trafficefficiency(morningpeak,noonoff-peak,eveningpeak).
These variations can reshape energy landscapes and impact risk-based
decision-making. Here, we apply the pairwise maximum entropy
model to multiple consecutive time windows, analyzing dynamical
interaction networks to derive three key findings.

First, interaction networks remain stable within each period
(morning peak, noon off-peak, and evening peak), but show
structural shifts between periods, especially between peak and off-
peak hours. High similarity of within-period network structure
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indicates consistent regional interaction patterns,maintaining traffic
behavior. In contrast, lower between-period similarity reflects
structural reconfigurations, which likely drive transitions between
distinct traffic states [20]. Second, compared with unstable high-
strength edges, stable high-strength edges in dynamical interaction
network are characterized by long-range and negative interactions.
These interactions help suppress congestion spread across distant
regions. This prevents localized congestion from turning into
widespread gridlock [17] and highlights the inherent resilience [19]
of urban traffic. Third, the proportion and modularity of positive
interactions, along with the strength of negative interactions, are
important structural features that distinguish peak from off-peak
hours. Compared to off-peak periods, peak hours feature a higher
proportion and lower modularity [21] of positive interactions,
along with weaker inhibitory effects, which may lead to large-scale
congestion.

These findings address the limitations of our prior study [15],
which applied a static analysis of interaction networks during
a single peak-hour time window and overlooked the dynamic
evolution of interactions across different traffic periods. The
discovery that interaction networks remain stable within individual
periods (e.g., morning peak, noon off-peak) but undergo structural
shifts between periods emphasizes the importance of temporal
dynamics in reshaping the energy landscape, a factor not captured in
staticmodels. Furthermore, the identification of long-range negative
interactions as the dominant feature of stable high-strength edges
in dynamic networks uncovers a key resilience mechanism—the
suppression of congestion spread across distant regions—which was
undetected in the prior staticmodel. Additionally, the differentiation
of peak and off-peak periods based on structural features such as
positive interaction modularity and negative interaction strength
introduces the temporal context missing in our previous work,
enabling a deeper understanding of how interaction configurations
contribute to macroscale congestion transitions.

While these findings enhance our understanding of dynamical
interaction network underlying traffic state transitions, there are
still several limitations. First, the model relies on predefined time
window data and may perform poorly in extreme scenarios [22]
(e.g., sudden demand surges or infrastructure failures) due to data
scarcity. Second, the analysis focuses on a regional scale and may
not capture finer-scale local interaction complexity. As urban traffic
systems are complex and multiscale [23], these findings might not
directly apply to interaction networks with higher spatial resolution.
Future research should develop multi-scale adaptive models [24] to
capture interactions across local road network scales and adapt to
data-scarce extremes. These models may reflect inherent robustness
in real-world applications, particularly as autonomous driving [25]
and other technologies reshape local interaction patterns.

4 Data and methods

4.1 Data

4.1.1 Raw traffic dataset
The empirical road network in this study covers the area

within Beijing fourth Ring Road (Figure 1a). Road segments are
modeled as edges and intersections as nodes, with the network

comprising over 18,000 nodes and 33,000 edges.Thedataset includes
1-min interval speed records from GPS-equipped floating vehicles
across all workdays in October 2015, excluding October 19 due to
data anomalies. This results in 17 valid workdays. To account for
road type heterogeneity, we use relative velocity instead of raw speed
values. As defined in [6], the relative velocity of a segment e at
time t is computed as the ratio of its observed speed to its standard
maximum speed, defined as the 95th percentile of its historical daily
speed records:

ve(t) =
ue(t)

u free
e

, (1)

where ue(t) is the observed speed of segment e at time t, and u free
e

denotes the 95th percentile of daily speed records for segment e.

4.2 Data pre-processing

To study the interactions between local components of the road
network, we focus on regional interactions rather than segment-
level interactions to avoid combinatorial explosion in state space.
Following our previous work [15], we divide the entire road network
into 20 hexagonal regions (Figure 1a), and aggregate road segment
states into global traffic states for each time step. The aggregation
procedure is as follows.

4.2.1 Segment-level state (congestion proportion
f)

For each road segment e at time t, we define its state based on the
relative velocity ve(t) (Equation 1). Given a congestion proportion
threshold f, we mark the bottom f × 100% of segments (by relative
velocity) as congested at time t, and the rest as non-congested.
The value of f represents the proportion of congested roads in
the network, influencing its performance distribution. Based on
the discovery of the multi-stability phenomenon in Beijing Road
network [20], when f is high (e.g., >0.4), most roads are congested,
resulting in a poor steady state.When f is low (e.g., <0.2), most roads
are uncongested, leading to a good steady state. When f is between
0.2 and 0.4, the network exhibits multiple steady states due to the
varying spatial distributions of congested links over time.Thismulti-
stability reflects the inner system resilience [20]. Here, we chose f =
0.25, as it lies in this range, with the model showing robustness for
other values within this interval, as demonstrated in [15].

4.2.2 Region-level state (regional jam threshold l)
For region i at time t, we calculate the jam ratio based on the

congested segments in that region, which is defined as:

ri(t) =
Ccon
i (t)
Ni
, (2)

whereNi is the total number of road segments in region i, andCcon
i (t)

is the number of congested segments in the largest connected cluster
formed by congested segments at time t. If the jam ratio (Equation
2) exceeds a threshold l, the region is classified as a jam region;
otherwise, it is classified as a free region.The state of region i at time
t is:

si(t) = {
1, if ri(t) > l (jam region)
−1,otherwise (free region)

. (3)
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Here, we set l to be 0.09. The value of l represents the
threshold for the maximum congestion cluster within each region.
It influences the system performance distribution at mesoscopic
level. When l is large, all regions are considered free, resulting in
the performance distribution concentrated in a better state at the
mesoscopic level. When l is small, all regions are jam, leading to
the performance distribution concentrated in a worse state. At l =
0.09, the mesoscopic network performance shows multi-stability,
aligning closely with the performance at the microscopic level,
as shown in [15].

4.2.3 Global traffic state
At time t, the global traffic state is represented as a binary vector

over all regions:

s(t) = {s1(t), s2(t),…, si(t),…, s20(t)}, (4)

where si(t) ∈ {1,−1}.

5 Methods

5.1 Traffic efficiency of each time window

To quantify the traffic efficiency of each 1-h time window, we
compute two metrics: the mean relative speed ⟨v⟩, reflecting overall
traffic conditions, and the mean size of the largest functional cluster
⟨G⟩, which captures the interplay between traffic dynamics and road
network topology [6]. Both metrics are averaged over all time steps
within a given time window across 17 workdays.

For a given time step t, we define.

(1) Average relative speed v(t) as themean of the relative velocities
of all road segments:

v(t) = 1
NE

NE

∑
e=1

ve(t), (5)

where NE is the total number of road segments, and ve(t) is the
relative velocity (Equation 1) of road segment e at time t.

(2) Size of the largest functional cluster G(t) as the proportion of
road segments in the largest functional cluster formed by non-
congested segments:

G(t) =
Cnon(t)
NE
, (6)

where Cnon(t) is the number of segments in the largest functional
cluster formed by non-congested segments at time t.

Based on Equations 5, 6, the aggregate metrics for each time
window are then computed as:

⟨v⟩ = 1
T
∑
t∈T

v(t), (7)

⟨G⟩ = 1
T
∑
t∈T

G(t), (8)

where T is the set of all time steps within the time window across all
17 workdays, and T = |T| is the total number of such time steps.

5.2 Interaction network inference through
pairwise maximum entropy model

Here, we infer the interaction network between regions for
each time window using a pairwise maximum entropy model [15].
This model has been applied to neuron interaction network [16],
brain functional connectivity [26], and genetic interaction networks
[27]. The model maximizes (Gibbs) entropy under constraints
of first- and second-order statistics, yielding the probability
distribution p(sk):

max H = − ∑
1≤k≤n

p(sk) log p(sk)

s.t.

∑
1≤k≤n

p(sk) = 1

∑
1≤k≤n

p(sk)s
i
k = ∑

sd∈D
f(sd)s

i
d, 1 ≤ i ≤m

∑
1≤k≤n

p(sk)s
i
ks
j
k = ∑

sd∈D
f(sd)s

i
ds

j
d, 1 ≤ i < j ≤m

, (9)

where the state space consists of n = 2m possible states, withm = 20
representing the number of road network regions, and k denoting
a particular state within this space. Specifically, sk represents a
global traffic state vector (Equation 4) composed of the states of 20
regions, where sik = 1 indicates a jam region and sik = − 1 indicates
a free region (Equation 3). sd and f(sd) denote observed global
traffic states and their frequencies in datasetD. Solving the Lagrange
function yields the Boltzmann distribution:

p(sk) = (1/Z)e
∑

1≤i≤m
his

i
k+ ∑

1≤i<j≤m
Jijs

i
ks
j
k , (10)

where hi captures the regional congestion tendency of region i, J ij
quantifies the pairwise interaction between regions i and j, and Z is
the partition function ∑1≤k≤ne

∑1≤i≤mhis
i
k+∑1≤i<j≤mJijs

i
ks
j
k .

For each 1-h time window (e.g., 8:00–9:00), we construct
a dataset D comprising global traffic states obtained from
60 time steps within the window across 17 workdays. We
then compute the empirical moments ∑sd∈D f(sd)s

i
d and

∑sd∈D f(sd)s
i
ds

j
d . These moments are used to ensure that the

resulting distribution p(sk) in Equation 10 satisfies the moment
constraints specified in Equation 9. The inferred model parameters
J ij are used to define the regional interaction network. Due
to the intractability of the state space (220), we approximate
parameter estimation using the minimum probability flow (MPF)
algorithm [28].

Model validation evaluates the model ability to reproduce
distribution of macroscopic traffic properties [15], such as region-
level traffic performance. This performance is defined as the
proportion of regions in the largest connected cluster formed by
free regions, relative to total regions. As shown in Appendix A,
the model accurately fits the 24 time windows, and captures
unimodal or bimodal patterns in region-level traffic performance
distributions.

5.3 Structural dissimilarity quantification of
interaction networks

To quantify structural dissimilarity of interaction networks
within the same period (intra-period) or across different periods
(inter-period), we calculate the Jaccard indices for all interaction
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network pairs and compare their distributions with the null
distribution generated by shuffled networks.

5.3.1 Jaccard index calculation
The Jaccard index between two interaction networks A and B is

calculated as follows:

J(A,B) =
|{(i, j) ∈ EA ∩EB|sign(JAij) = sign(J

B
ij)}|

|EA ∪EB|
, (11)

where EA and EB are the edge sets of interaction networks A
and B, respectively; sign(JAij) and sign(JBij) denote the signs of
J ij in A and B, respectively, with the sign being +1 when J ij
is positive and −1 otherwise. The numerator is the number of
common edges with the same sign in both networks, and the
denominator is the total number of edges in the union of both
networks. Only the signs of edges are considered in the calculation,
while the weights of edges are ignored. A smaller Jaccard index
indicates a greater structural difference between two networks,
while a larger Jaccard index suggests more structural similarity
between networks.

5.3.2 Statistical significance testing
To assess the structural similarity of interaction networks,

we use both p-value and Cliff ’s Δ (Effect Size). The p-value
assesses statistical significance of structural similarity, while Cliff ’s
Δ quantifies the magnitude of structural similarity. Specifically, we
perform significance testing of Jaccard index distributions derived
from two scenarios.

• Intra-period similarity: Given n1 timewindowswithin the same
period, we construct n1(n1 − 1)/2 unique interaction network
pairs. Next, we compute the Jaccard indices (Equation 11)
of these pairs to obtain the empirical intra-period Jaccard
index distribution. To generate shuffled interaction network
pairs, we randomly shuffle the edge signs of each network
pair 1,000 times while preserving edge weights and
topology. Calculating the Jaccard indices of these shuffled
pairs yields a null distribution of 1000× n1(n1 − 1)/2
Jaccard indices.

• Inter-period similarity: Given two periods with n1 and
n2 time windows respectively, we construct n1n2 cross-
period network pairs. The empirical Jaccard indices of
these pairs form the inter-period Jaccard index distribution.
Analogously, a null distribution of 1000× n1n2 Jaccard indices
is generated by performing sign shuffling 1,000 times on each
network pair.

5.3.2.1 P-value calculation
To assess whether the empirical interaction networks exhibit

stronger structural similarity than expected by chance, we perform
a one-tailed Mann–Whitney U test [18] comparing the distribution
of Jaccard indices computed between empirical networks with that
computed between shuffled networks.

• Null hypothesis (H0): The Jaccard index distributions of the
empirical and shuffled interaction networks are drawn from the
same population.

• Alternative hypothesis (H1): The empirical Jaccard indices are
stochastically greater than the shuffled ones.

If the one-tailed p-value derived from the test is smaller
than the pre-defined significance level, we reject the null
hypothesis. This indicates that the Jaccard index distribution of
the empirical interaction networks is statistically significantly
greater than that of the shuffled networks, suggesting that empirical
interaction networks exhibit stronger structural similarity than
expected by chance.

5.3.3 Cliff’s Δ (effect size)
In addition to the p-value, we compute Cliff ’s Δ as a non-

parametric effect size measure to quantify the degree of separation
between two distributions. Specifically:

Cliff′sΔ =
NC>D −NC<D

nC · nD
, (12)

where NC>D and NC<D are the number of times a Jaccard index in
sample C (the empirical Jaccard index distribution) is greater than
or less than a Jaccard index in distribution D (the shuffled Jaccard
index distribution), respectively. nC and nD are the sizes of the two
samples. A large positive Δ indicates that Jaccard indices in C tend
to be large than those inD, suggesting strong structural similarity in
the empirical network.

5.3.4 Edge volatility
To analyze the edge dynamics across consecutive time windows,

two aspects are considered: strength and sign. Here, we use the 24
time windows, covering morning peak, noon off-peak, and evening
peak periods. For each edge (i, j), we calculate the following two
indicators.

5.3.4.1 Strength volatility
Strength volatility quantifies the relative variability of interaction

strengths over time. It is measured using the coefficient of
variation:

CV(|Jij|) =
std(|Jij|)

mean(|Jij|)
, (13)

where the absolute value |J ij| quantifies interaction strength. A high
CV(|Jij|) value indicates great fluctuations in the strength of edge (i,
j).

5.3.4.2 Sign volatility
Sign volatility measures the number of times the sign of an

edge changes (positive to negative or vice versa) across consecutive
time windows:

SF(Jij) =
Tn−1

∑
T=1

1sign(J(T)ij )≠sign(J(T+1)ij )
, (14)

where Tn is the number of consecutive time windows. A high SF(J ij)
value indicates great fluctuations in the sign of edge (i, j).

5.4 Structural metrics of interaction
network

To characterize the weighted and heterogeneous properties of
interaction networks, we define four structural metrics that reflect
topological aspects such as interaction polarity, modularity, and
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node connectivity. These include both network-level and node-
level metrics.

5.4.1 Network-level metrics
5.4.1.1 Proportion of positive interactions

The proportion of positive interactions (P+; Equation 15) is
calculated as:

P+ =
N+edge
Nedge
, (15)

where N+edge is the number of edges with J ij >0, and Nedge is the total
number of edges in the interaction network.We also define a variant,
Ps+, computed for the subnetwork with strong interactions where
|J ij| >0.2.

5.4.1.2 Weighted modularity of positive interactions
To quantify the modular structure of positive interactions, we

compute the weighted modularity for the subnetwork consisting
only of positive interactions (J ij >0), defined as:

Qw
p =

1
2Mp
∑

i,j:Jij>0
(Jij −

kwi k
w
j

2Mp
)δ(ci,cj), (16)

where Mp =
1
2
∑i,j:Jij>0Jij is the total positive edge weight, kwi =

∑j:Jij>0Jij is the positive strength of node i, and δ(ci,cj) = 1
if nodes i and j are in the same community [29] of the
subnetwork with J ij>0, and 0 otherwise. A high Qw

p indicates
a strong community structure within the network of positive
interactions.

5.4.2 Node-level metrics
5.4.2.1 Average node strength of negative interactions

The average node strength for negative interactions ⟨k⟩w is
calculated as:

⟨k⟩wn =
1

Nnode
∑
i
∑
j
|Jij|, for Jij < 0 (17)

where Nnode is the number of nodes in the interaction network.
This metric captures the average magnitude of negative interaction
strength per node.
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Appendix A Fitting performance of the
pairwise maximum entropy model

Appendix Figure A1 Fitting performance of the pairwise
maximum entropy model for different time windows. Model
fitting performance is evaluated based on its ability to reproduce
distribution of macroscopic traffic properties, such as the region-
level traffic performance. This performance is defined as the

proportion of regions in the largest connected cluster formed by free
regions, relative to the total regions. The green curve represents the
observed distribution of region-level traffic performance , while the
orange curve represents the model-generated distribution. For 24
consecutive 1-h time windows (7:00–18:30, with half-hour sliding
intervals), themodel achieves a goodfitting performance (R2 >0.94),
successfully capturing both unimodal and bimodal distribution
patterns of region-level traffic performance.

FIGURE A1
Fitting performance of the pairwise maximum entropy model for different time windows. Model fitting performance is evaluated based on its ability to
reproduce distribution of macroscopic traffic properties, such as the region-level traffic performance. This performance is defined as the proportion of
regions in the largest connected cluster formed by free regions, relative to the total regions. The green curve represents the observed distribution of
region-level traffic performance, while the orange curve represents the model-generated distribution. For 24 consecutive one-hour time windows
(7:00–18:30, with half-hour sliding intervals), the model achieves a good fitting performance (R2>0.94), successfully capturing both unimodal and
bimodal distribution patterns of region-level traffic performance.
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