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Monophasic and biphasic
neurodynamics of bi-S-type
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1Zhejiang Key Laboratory of Intelligent Vehicle Electronics Research, Hangzhou Dianzi University,
Hangzhou, China, 2College of Computer and Information Engineering, Qilu Institute of Technology,
Jinan, Shandong, China

Inspired by the energy-efficient information processing of biological neural
systems, this paper proposes an artificial memristive neuron to reproduce
biological neuronal functions. By leveraging Chua’s unfolding theorem,
we establish a bi-S-type locally active memristor mathematical model
exhibiting negative differential resistance (NDR), which serve as fingerprints
for local activity. A second-order neuronal circuit is constructed to
emulate periodic spiking and excitability, while a third-order circuit extends
functionality to chaotic oscillations and bursting behaviors. Besides, the
constructed neuronal circuit generates biphasic action potential through
voltage symmetry modulation, replicating bidirectional signal transmission
akin to biological systems. Hardware emulation validates neurodynamics
under varying stimuli from theoretical analyses, offering a unit module
and theoretical reference for energy-efficient neuromorphic computing
network.
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1 Introduction

As information technology rapidly advances, traditional computing architectures face
growing limitations in energy efficiency and computational complexity. Against this
backdrop, neuromorphic computing has emerged as a novel computing paradigm [1,
2]. Its core concept is to emulate information processing mechanisms of biological
systems by constructing brain-like computing structures to achieve energy-efficient
computation [3, 4]. This brain-inspired approach demonstrates superior capabilities in
adaptive learning, positioning it as a cornerstone for next-generation intelligent systems
[5–7]. Central to this technology are neuroelectronic devices that emulate neuronal
functions, which are fundamental units in the construction of neuromorphic computing
systems [8, 9].

Current neuroelectronic implementations primarily employ Complementary Metal-
Oxide-Semiconductor (CMOS) circuits, leveraging mature fabrication techniques to
simulate membrane potential dynamics and action potential generation [10, 11]. However,
CMOS-based neurons suffer from inherent limitations including complex circuit topologies
and elevated power consumption hinder scalability in large neural networks [12].
Memristive devices present an alternative solution through their intrinsic nonlinearity
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and low-power operation [13], yet conventional passive memristors
require auxiliary negative impedance converters to achieve neuronal
dynamics, compromising system integration efficiency [14, 15].
These challenges have driven the exploration of locally active
memristors (LAMs) [16, 17], whose negative differential resistance
(NDR) enables weak signal amplification and action potential
generation without external circuitry [18–20].

Recent advancements in LAM-based neuronal modeling
demonstrate promising results. The FitzHugh-Nagumo circuit
modifications using N-type LAMs successfully replicate biological
spiking patterns [21, 22]. Enhanced LAM designs with ultra-robust
NDR characteristics further enable hardware implementation
of nine distinct neuronal firing modes [4]. However, these
advancements remain primarily confined to monophasic action
potential emulation. Emerging experimental evidence from sciatic
nerve electrophysiology and myocardial fiber studies demonstrates
that biphasic potentials constitute fundamental encoding
mechanisms in neural systems [23–25], enabling sophisticated
information processing [26]. Current neuromorphic platforms
predominantly neglect this biphasic paradigm, impeding hardware-
level implementation of biologically plausible neural networks.

Memristive neurons exhibit broad application potential in
neuromorphic systems, including frequency-based classifiers for
animal sound recognition [27], image protection systems [28, 29],
and cyclic neural networkswith self-adaptive synapses [30]. Notably,
their implementation in artificial neural networks has achieved
high-precisionMNISTdigit recognition and effective edge detection
in image processing [31].

The structure of this work is as follows: section 2 characterizes
the proposed bi-S-type LAM’s nonlinear dynamics; section 3
constructed a second-order neuronal circuit and demonstrates
spiking regimes; Section 4 illustrates various monophasic
neurodynamics, biphasic spikes, and symmetry behaviors in the
third-ordermemristive neuron. Section 5 gives the circuit simulated
validation.

2 Bi-S-type locally active memristor

Most nanoscale memristors fabricated using various materials
exhibit characteristics of generic or extended memristors. Chua’s
unfolding theorem provides a systematic method to construct
generic memristor models [32]. A generic current-controlled
memristor can be defined as

{{{{
{{{{
{

v = Rm(x)i = (
r

∑
k=0

dkx
k)i

dx
dt
= f(x, i) =

n

∑
k=0

αkx
k +

m

∑
k=0

βki
k +

p

∑
k=0

q

∑
l=0

δkli
kxl

(1)

where v, i, and x are the voltage, current, and state variable of the
memristor, respectively;Rm (x) representsmemristance; f (x, i) is the
state-controlled equation; αk, βk, δkl, and dk are tunable parameters.

Using Equation 1, we derive amemristormodel characterized by

{
{
{

vm = RM(x)im = (d2x2 + d0)im = f1(x, im)
dx
dt
= δ0 + α1x+ β2im

2 = f2(x, im)
(2)

with parameters: δ0 = 3 × 104, α1 = −3 × 103, β2 = −8 × 107, d2 = 2,
d0 = 20.

2.1 Fingerprints of locally active memristor

Chua indicates that a pinched hysteresis loop in the voltage-
current plane constitutes a definitive memristor signature [33].
The negative differential resistance (NDR) regions on the DC V-
I curve serve as critical indicators of local activity in one-port
memristors [34]. These are fingerprints of LAMs.

2.1.1 fingerprint 1: pinched hysteresis loop
Let us apply a sinusoidal voltage v = Asin(2πft) with amplitude

A = 5 V and frequencies f = 2 kHz, 5 kHz, 200 kHz to the proposed
model. The characteristics of input voltage vm and response current
im are depicted in Figure 1A. It shows that the loci plotted on the vm-
im plane is a pinched hysteresis loop at f = 2 kHz (dark red curve).
The lobe area decreases progressively with increasing frequency
(black curve: f = 5 kHz), collapsing to a linear blue line at f =
200 kHz, confirming memristive behavior.

2.1.2 fingerprint 2: negative differential resistance
(NDR) regions

The DC V-I curve (Figure 1B), obtained by sweeping DC
currents from −25 mA to 25 mA with the step size of 0.1 mA,
reveals two NDR regions (yellow shading) corresponding to local
activity. Signal amplification occurs at these operating points where
V ∈ [0.385 V, 1.287 V] (I ∈ [9.2 mA, 19.1 mA]) and V ∈ [−1.287 V,
−0.385 V] (I ∈ [−19.1 mA, −9.2 mA]).

However, the operating points Q (V, I) of the LAM exhibit
instability when biased at V ∈ [–1.287 V, −0.385 V] ∪ [0.385 V,
1.287 V]. As shown in Figure 2 (left inset), three intersections
(M0, M1, M2) or (M3, M4, M5) emerge at V = ±1 V: two stable
(M1, M2 or M4, M5) and one unstable (M0 or M3), which is
verified by the dynamic route with x-dx/dt. Then, stabilization
was achieved by adding an appropriate resistor R0 = 1 kΩ, and
the obtained locally active voltages are V ∈ [R0ID + VD, R0IC +
VC] ∪ [R0IB + VB, R0IA + VA], i.e., V ∈ [−19.485 V, −10.487 V]
∪ [10.487 V, 19.485 V] (Figure 2, right inset). Observe that single
stable equilibria emerge under these two operating points.

2.2 Small-signal equivalent circuit of LAM

The small-signal equivalent circuit enables nonlinear dynamics
prediction at arbitrary operating points. By applying Taylor series
expansion to Equation 2 at operating point Q (VQ, IQ) under
sufficiently small signals (ignoring higher-order terms), we obtain

{
△v = a11(Q)△ x+ a12(Q)△ i
△ẋ = b11(Q)△ x+ b12(Q)△ i

(3)

where Δv, Δi, and Δx denote small perturbations; a11 = (δf 1/δx)|Q =
2d2IQXQ, a12 = (δf 1/δi)|Q = d2XQ

2 + d0 = RM(X), b11 = (δf 2/δx)|Q
= α1, b12 = (δf 2/δi)|Q = 2β2IQ. Here, the differential resistance
RD=(Δv/Δi)|Q = a11 (Δx/Δi) + a12 = a12 – (a11b12)/b11, the equivalent
resistance RM = a12.

Taking the Laplace transform of (Equation 3) yeilds

Z(s,Q) =
̂v(s)
̂i(s)
=
a11(Q)b12(Q)
s− b11(Q)

+ a12(Q)

= 1
s

b11(RM−RD)
+ 1

RD−RM

+RM =
1

Css+
1
Rs

+RM (4)
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FIGURE 1
(A) Pinched hysteresis loops measured from Equation 2 on vm-im plane for input voltages vm with amplitude A = 5 V and frequencies f = 2 kHz, 5 kHz,
200 kHz; (B) DC V-I curve of the LAM with the shaded NDR regions.

FIGURE 2
Stabilization mechanism: (left) unstable equilibria in the memristor without resistors; (right) stabilized operation with series resistor R0.

Figure 3A illustrates the small-signal equivalent circuit of the
LAM about an operating point: a parallel Rs-Cs network in series
with RM. Figure 3B shows parameter variations under V ∈ [10 V,
20 V]. Notably, negative capacitances (Cs < 0) occur at locally
active voltages V ∈ [10.487 V, 19.485 V], which critically determine
memristive characteristics for neuronal circuit design. Similar
trends hold for V ∈ [–19.485 V, −10.487 V].

3 LAM-based second-order neuron

To construct a second-order neuronal circuit using the LAM, an
external capacitor C0 is required to compensate for the inductive
behavior of the LAM in locally active domains (LADs). The
proposed circuit includes excitation and response signals (vin and

vout = vC = vm), a biasing resistor R0, and capacitor C0, as
depicted in Figure 4.

Frequency-domain analysis determines C0. Substituting s = iω
into the impedance function Z (s, Q) in Equation 4 yields

Z (iω,Q) = ReZ (iω,Q) + iImZ (iω,Q)

= (RM +
Rs

1+Rs
2Cs

2ω2)+ i
−Rs

2Csω
1+Rs

2Cs
2ω2 (5)

The resonant frequency ω0 occurs when Re [Z (iω,
Q)] = 0. From Equation 5, the corresponding imaginary part can
be calculated. For oscillation initiation, the critical capacitance
satisfies:

C0 =
1

ω0Im(iω0,Q)
= −

RsCs

Rs +RM
(6)
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FIGURE 3
Small-signal analysis of the LAM: (A) the small-signal equivalent circuit of the LAM; (B) the values of RM, Cs, and Rs varying with operating voltages over
the range of V ∈ [10 V, 20 V].

FIGURE 4
LAM-based second-order neuronal circuit.

3.1 Composite impedance function

The oscillation condition for the composite neuronal circuit is
derived from its impedance function:

ZC(s,Q) =
1

1
Z(s,Q)
+C0s
=

RMs−RDb11
RMC0s

2 + (1−RDC0b11)s− b11
(7a)

with two poles

{{{{{{
{{{{{{
{

p1 =
RDC0b11 − 1+√(1−RDC0b11)

2 + 4RMC0b11
2RMC0

p2 =
RDC0b11 − 1−√(1−RDC0b11)

2 + 4RMC0b11
2RMC0

(7b)

Figure 5A maps three operational domains: Locally Passive
Domains (LPD, yellow), Unstable Locally Active Domains (RHP,
right-half plane, cyan), Stable Locally Active Domains (EOC, edge
of chaos, green) based on Equations 6, 7a, 7b. These domains align
with the memristor’s LAD and LPD characteristics. RHP requires

simultaneous local activity and instability, while EOCdemands local
activity with asymptotic stability.

The pole evolution analysis in Equation 7b under bias voltages
vin ∈ [–20.5 V, −9.5 V]∪[9.5 V, 20.5 V] and C = 10 μF reveals
dynamic stability transitions, as depicted in Figure 5B. Red and
blue curves represent the trajectories of p1 and p2, respectively,
with oscillation occurring when vin ∈ [–19.03 V, −11.4 V]∪[11.4 V,
19.03 V] (orange region). In this region, at least one pole is in
the right-half plane (RHP). However, stability persists when p1, 2
∈ LHP (left-half plane). Particularly, Hopf bifurcation emerges at
vin = ±11.4 V and ±19.03 V, characterized by conjugate complex
pole pairs.

3.2 Periodic spikes

The state equations of the second-order neuronal
circuit in Figure 4 are governed by

{{{{
{{{{
{

dx
dt
= δ0 + α1x+ β2(

vm
d2x

2 + d0
)
2

dvm
dt
= 1
C0
(
vin − vm

R0
−

vm
d2x

2 + d0
)

(8)

where x and vm represent memristor state and membrane potential,
respectively.

With C0 = 10 μF and initial condition [x (0), vm (0)] = (0, 0),
distinct neuromorphic behaviors emerge under varying stimuli vin
according to Equation 8. For stimuli vin = 9.5 V (LPD) and 10.8 V
(EOC), the trajectories converge from the initial point (0, 0) into
(vC, x) = (1.27, 8.19) and (1.29, 7.58), respectively, maintaining
resting states as shown in Figure 6A. Increasing vin to 18 V (see
RHP domain in Figure 5A) triggers sustained periodic spikes with
frequency f = 204 Hz, demonstrated by time-domain waveform of
vC and limit cycles in the x-vout phase portrait (Figure 6B). We
conclude that the neuron maintains quiescence when operating in
the LPD or EOC domains, while inducing spikes under locally
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FIGURE 5
(A) The parameter distributions of LAD, LPD, and EOC on Vin-C plane; (B) poles trajectories with the change of voltage Vin at C = 10 μF.

active operating points. Notably, spiking frequency modulation
under varying vin = 12 V, 14.5 V, 16.5 V, and 18.5 V replicates
biological neural encoding mechanisms (Figure 6C). Besides, the
neuron emulates excitatory and inhibitory response transitions, as
illustrated in Figure 6D.

4 LAM-based third-order neuron

Second-order neurons cannot simulate complex neurodynamics
such as chaos and bursting, then we construct a memristive neuron
with third-order complexity, as shown in Figure 7, including an
LAM, a capacitor, an inductor, a resistor, and a voltage source.

4.1 Stability condition

The impedance function ZT (s, Q) of third-order memristive
neuron circuit is written as:

ZT ⁢ (s,Q) =
1

1/(Z (s,Q) + sL) + sC

=
Ls2 + (RM − b11L) s− b11RD

LCs3 + (RM − Lb11)Cs2 + (1−CRDb11) s− b11
(9a)

whose three poles are

{{{{{{{{
{{{{{{{{
{

p1 = −
RM − b11L

3L
+ 3√−

q
2
+√Δ+ 3√−

q
2
−√Δ

p2 = −
RM − b11L

3L
+(−1+

√3i
2
) ⁢3√−

q
2
+√Δ+(−1+

√3i
2
)
2
⁢3√−

q
2
−√Δ

p3 = −
RM − b11L

3L
+(−1+

√3i
2
)
2
⁢3√−

q
2
+√Δ+ω3√−

q
2
−√Δ

(9b)

where Δ = ( (RM−b11L)·(1−CRDb11)
6L2C

− (RM−b11L)3

27L3
+ b11

2LC
)
2
+ ( 1−CRDb11

3LC
−

(RM−b11L)2

9L2
)
3
, q = − (RM−b11L)(1−CRDb11)

3L2C
+ 2(RM−b11L)3

27L3
− b11

LC
.

Based on Equation 9, the trajectory diagram of poles p1,2,3
within the range of 8.2 V ≤ V in ≤ 20 V is depicted in Figure 8A,

where blue, red, and yellow curves correspond to the trajectories of
p1, p2, and p3, respectively, with arrows denoting directionality as vin
increases. Oscillatory behavior occurs when Re p > 0, particularly
within vin ∈ [11.12 V, 19.38 V] where Hopf bifurcation emerges at
vin = 11.12 V and vin = 19.38 V, characterized by conjugate complex
poles (Im p = 0). For vin ≤ 11.12 V, all poles reside in the left-half
plane (LHP), driving the circuit to stable equilibrium. Conversely,
right-half plane (RHP) poles dominate in the oscillatory regime,
enabling sustained dynamics. Figures 8B,C confirm this operational
range through Lyapunov exponent and bifurcation diagram analysis,
demonstrating consistent periodic and chaotic domains in this range
under L = 20 mH and C = 10 μF, where the chaotic ranges are vin ∈
[–18.98 V, −18.89 V] ∪[18.89 V, 18.98 V].

4.2 Monophasic neurodynamics

The third-order LAM-based neuronal circuit in Figure 7 is
described by

{{{{{{{
{{{{{{{
{

dx
dt
= δ0 + α1x+ β2iL

2

dvC
dt
= 1
C
(
vin − vout

R0
− iL)

diL
dt
= 1
L
(vout − (d2x2 + d0)iL)

(10)

where x (memristor state), iL (inductor current), and vC (output
voltage) define the neuron dynamics.

Under L = 20 mH and C = 10 μF, six monophasic neuromorphic
behaviors emerge through parametric control of vin based on
Equation 10. At vin = 19.3 V (RHP domain), subthreshold
oscillations occur (Figure 9A). Reducing vin to 18.5 V and 18.9 V
within the RHP domain induces periodic spikes (Figure 9B)
and chaotic dynamics (Figure 9C), respectively. Time-varying
stimulation vin = 9.9 t V (t ∈[1.2 s, 2.2 s]) triggers Class II
excitability, maintaining constant spiking frequency despite voltage
modulation (Figure 9D). For periodic square-wave inputs (T
= 0.0625 s, A = 15 V), the neuron exhibits bursting patterns
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FIGURE 6
Neuromorphic behaviors under some typical voltages: (A) vin = 9.5 V, 10.8 V, resting states; (B) vin = 18 V, periodic spikes; (C) spiking frequency
modulation; (D) excitatory and protective inhibition behaviors.

FIGURE 7
The circuit schematic of the third-order memristive neuron model.

(Figure 9E). Besides, depolarizing after-potentials emerge under
the parameter set of C = 0.5 μF, L = 20 mH and vin = 15 V,
mimicking post-spike membrane potential modulation (Figure 9F).

These results demonstrate voltage-controlled emulation of biological
neuronal encoding.

4.3 Biphasic spikes

The neuronal circuit in Figure 7 generates biphasic action
potentials when driven by bipolar square-wave inputs (vin = 16 V, D
= 50%). As shown in Figures 10A aT= 10 ms periodic stimulus (blue
waveform) induces single-cycle bidirectional spiking, characterized
by counterphase positive and negative pulses in the inductor current
iL (red waveform). When we increase the period T of the input
periodic square wave to 22.22 ms, 33.33 ms, 43.48 ms, 55.56 ms and
66.67 ms, the output waveform changes into two spikes, three spikes,
four spikes, five spikes and six spikes in the upward direction and
down direction in one period, as shown in Figures 10B–F.

4.4 Symmetric behaviors

The third-order memristive neuron demonstrates voltage-
polarity-dependent symmetry in neurodynamic behaviors,
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FIGURE 8
(A) Poles diagram with respect to biasing voltages vin when L = 20 mH, C = 10 μF; (B) Lyapunov exponents under L = 20 mH, C = 10 μF; (C) bifurcation
diagram with respect to vin under L = 20 mH, C = 10 μF.

originating from the voltage symmetry in Figure 5A.This nonlinear
symmetry allows symmetrical action potential generation: positive
DCvoltages (vin > 0) induce upward-polarized spikes, while negative
inputs (vin < 0) produce downward-polarized counterparts, as
depicted in Figure 11.

Under voltage excitation vin = ±18.5 V, the inductor current
iL exhibits mirror-symmetric periodic spiking, i.e., upward
polarization for positive bias (orange curve) versus downward
polarization for negative bias (blue curve) in Figure 11A.
Voltage modulation to ±18.9 V induces symmetrical chaotic
dynamics with identical Lyapunov exponents but opposing
phase-space trajectories, as shown in Figure 11B. Transient
behavior analysis reveals bidirectional spike initiation: vin =
19.4 V triggers upward spikes while vin = −19.4 V generates
downward equivalents, both returning to symmetrical resting
potentials after undergoing 5 m (Figure 11C). The corresponding

phase portraits of these three nonlinear behaviors are depicted
in Figures 11D–F.

5 Circuit emulator

The circuit emulator of the memristive neuron with third-order
complexity is constructed, as shown in Figure 12, which consists of
two operational amplifiers (U1A and U1B), three analog multipliers
(U1, U2, and U3), two capacitors (C0 and C1), one inductor L, and
some resistors.

As shown in Figure 12, the equivalent circuit of the locally
active memristor comprises four functionally integrated modules:
(1) Current sensing module① monitors emulator input current in
real-time, generating proportional output vi; (2) analog multiplier
arrays ② and ④ implement nonlinear term computations; (3)

Frontiers in Physics 07 frontiersin.org

https://doi.org/10.3389/fphy.2025.1622487
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Wang et al. 10.3389/fphy.2025.1622487

FIGURE 9
Monophasic neurodynamics under different input voltage vin with C = 10 μF and L = 20 mH: (A) subthreshold oscillation; (B) periodic spiking; (C)
chaos; (D) Class II excitability; (E) periodic bursting. (F) depolarizing after-potential with C = 0.5 μF, L = 20 mH and vin = 15 V.

FIGURE 10
Biphasic action potentials generated by the neuron circuit, when driven by a bipolar periodic square wave with the amplitude vin = 16 V, duty cycles D =
50% and various period T. (A) T = 10.00 ms; (B) T = 22.22 ms; (C) T = 33.33 ms; (D) T = 43.48 ms; (E) T = 55.56 ms; (F) T = 66.67 ms.
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FIGURE 11
Voltage-polarity-modulated symmetric behaviors: (A) periodic spikes; (B) chaos; (C) resting states; (D) phase portraits of periodic spikes; (E) phase
portraits of chaos; (F) phase portraits of resting states.

FIGURE 12
Circuit emulator schematic of the third-order memristive neuron.
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FIGURE 13
Circuit simulated neuromorphic dynamics under various biasing voltages.

State equation solver ③ converts DC bias Vd into memristor
state variable x through differential integration, that is, vx = x;
(4) Feedback integration completes the loop via R1. Kirchhoff ’s
voltage and current laws govern this circuit architecture,
yielding three coupled differential equations that mathematically
describe electrophysiological dynamics of the memristive
neuron, as

{{{{{{{{{
{{{{{{{{{
{

C1
dx
dt
= −(

Vd

R9
+ x
Rf
+
Rw +Rz

10RwR8
(

R7R5R1

R4(R6 +R7)
iL)

2
)

C0
dvC
dt
=
vin − vC
R0
− iL

L
diL
dt
= vC −(

R1R5R11

10R4R10
x2 +R1)iL

(11)

where the circuit parameters are R1 = 20 Ω, R0 = R2 = R4 = R6 = R7
= Rw = 1 kΩ, R3 = R5 = R8 = R9 = 10 kΩ, Rz = 7 kΩ, Rf = 33.3 kΩ, C1
= 10 nF, C0 = 9.5 μF, L = 20 mH, and Vd = −3 V.

The circuit simulated results calculated via Equation 11
are shown in Figure 13, reproducing key neurodynamics including
periodic spikes, class II excitability, self-sustained oscillations,
bursting, chaos, and depolarizing after-potential. These results
demonstrate quantitative agreement with theoretical predictions.

6 Conclusion

This work constructs neuronal circuits leveraging a bi-
S-type locally active memristor that amplifies weak signals
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through intrinsic local activity. The designed second-order
circuit achieves voltage-modulated periodic spiking and
adaptive inhibition, while the third-order extension emulates
biological neural dynamics including monophasic and biphasic
action potentials, chaos, and bursting, which are driven
by memristive symmetry. The study of memristive neurons
not only offers essential building blocks for neuromorphic
computing architectures but also lays a theoretical reference
for the development of more advanced and bio-realistic neural
processing systems.
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