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Network security is the core guarantee for the stable operation of Cyber-
Physical-Social Systems (CPSS), and intrusion detection technology, as a key
link in network security, is crucial to ensuring the security and reliability of
CPSS. The application of traditional clustering algorithms in intrusion detection
usually relies on a preset number of clusters. However, network intrusion data
is highly random and dynamic, and the number and distribution structure of
clusters are often difficult to determine in advance, resulting in limited detection
accuracy and adaptability. To tackle this issue, this paper introduces a density
peak clustering algorithm, RMKNN-FDPC, which integrates relative mutual K-
nearest neighbor local density with a fuzzy allocation strategy for network
intrusion detection, aiming to enhance the capability of identifying unknown
attack patterns. Firstly, in the stage of local density calculation, the relative
mutual K-nearest neighbor method is used instead of the traditional truncation
distance method to more accurately characterize the local density distribution
by considering the mutual neighborhood relationship between data points.
Secondly, in the remaining point allocation stage, the fuzzy allocation strategy
of the mutual K-nearest neighbor effectively avoids the error propagation
problem caused by chain allocation in traditional density peaks clustering
algorithm (DPC). Finally, a large number of experiments were conducted,
including KDD-CUP-1999 experiments, synthetic dataset experiments, real
dataset experiments, face dataset experiments, parameter analysis experiments,
and run time analysis experiments. The experimental results show that the
proposed method performs exceptionally well in the clustering task and can
effectively mine network intrusion information.

KEYWORDS

CPSS, network intrusion detection, relative mutual k-nearest neighbor, fuzzy allocation
strategy, density peak clustering

1 Introduction

CPSS integrate computing, physical devices, and human interactions, presenting
unique challenges for network intrusion detection due to their complex
interdependencies and dynamic nature [1]. Traditional intrusion detection methods
often struggle to interpret the high-dimensional and sequential data of CPSS,
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urgently requiring advanced artificial intelligence-driven
approaches to detect network anomalies [2].

Clustering algorithms play a pivotal role in network intrusion
detection by autonomously identifying hidden attack patterns from
unlabeled traffic data, enabling efficient anomaly detection without
prior knowledge of attack signatures [3]. Clustering algorithms aim
to divide a dataset into clusterswith similar features [4], and iswidely
applied in fields such as data mining [5], fraud detection [6], and
image processing [7]. Traditional clustering algorithms (such as K-
means and hierarchical clustering) perform well on simple datasets
but often struggle to achieve satisfactory results when dealing
with complex structures, such as non-spherical clusters, multi-
density clusters, or noisy data. While traditional clustering methods
face challenges in handling high-dimensional and imbalanced
intrusion data, recent advances in density-based and deep clustering
techniques offer promising solutions to improve detection accuracy
and adaptability in dynamic network environments [8].

In recent years, the density peaks clustering algorithm (DPC)
has attracted significant attention due to its ability to automatically
identify cluster centers and handle clusters of arbitrary shapes [9].
DPC achieves efficient clustering by calculating the local density
and relative distance of data points and selecting points with high
density and long distance as cluster centers [10].TheDPC algorithm
requires only one parameter and can obtain clusters of any shape.
It can also handle noisy data and has great application prospects
in network intrusion detection. However, DPC still has some
limitations when dealing with high-dimensional data or manifold
data. For instance, the calculation of local density relies on the
truncation distance parameter, which is sensitive to the parameter
selection. Meanwhile, the traditional DPC algorithm may cause a
“domino effect” when allocating non-central points, leading to the
error propagation.

To address these issues, researchers have proposed various
improvement methods, such as optimizing the calculation of local
density and enhancing the allocation method for the non-central
points [11,12].

In terms of local density calculation, the density peaks clustering
based on K-nearest neighbor (DPC-KNN) is an important early
achievement [13]. This algorithm redefines a new local density
through the K-nearest neighbor method, fully considering the
distribution differences among data points, thereby effectively
avoiding the difficulty in choosing the truncation distance parameter
in the traditional DPC algorithm. Compared with DPC, DPC-
KNN has improved clustering performance, but it still struggles to
accurately obtain the true cluster centers when dealing with datasets
with uneven density distributions. In 2016, Xie proposed the
classic fuzzy weighted K-nearest neighbor density peak clustering
algorithm (FKNN-DPC) [14], which combines the K-nearest
neighbor method with fuzzy set theory to design a new way
of calculating local density. In the same year, Liu proposed the
shared-nearest-neighbor-based clustering by fast search and find
of density peaks (SNN-DPC) [15], which redefines local density
based on the concepts of nearest neighbor and shared nearest
neighbor and can better adapt to the local environment of sample
points. However, both of these algorithms require the use of a
fixed K-nearest neighbor parameter during the clustering process,
which to some extent limits their adaptability to complex datasets.
Additionally, numerous derivative algorithms have also focused on

optimizing local density. For instance, the comparative density peaks
clustering algorithm (CDP) improves using a comparative density
method [16]. Subsequent enhancements to the DPC algorithm
framework have incorporated various technical approaches. These
include the residual error-based density peak clustering algorithm
(REDPC) [17], the density peaks clustering algorithmbased on fuzzy
and weighted shared neighbor (DPC-FWSN) [18], the standard
deviation weighted distance based density peak clustering algorithm
(SFKNN-DPC) [19], and the adaptive nearest neighbor density
clustering algorithm (ANN-DPC) [20]. These algorithms improve
local density through different methods, but all are calculated using
absolute density.

In handling the distribution of remaining points, the FKNN-
DPC algorithm adopts a two-stage strategy to improve accuracy
[14]. However, this strategy adopts a fixed k-value in each
distribution, failing to fully consider the local distribution
characteristics of sample points. To address the issue of density
imbalance in the datasets, the relative density-based clustering
algorithm for identifying diverse density clusters (IDDC) was
proposed [21].This algorithm looks for unallocated points from the
perspective of clustering and designs a new distribution strategy, but
it requiresmanual specification of two parameters. Based on FKNN-
DPC, Xie further proposed the SFKNN-DPC algorithm [19]. This
algorithm takes into account the contribution of each feature to
the distance between data points and designs a divide-and-conquer
distribution strategy, thereby achieving better robustness. To address
the problem that DPC cannot find the clustering centers of sparse
clusters, ANN-DPC was proposed [20]. This algorithm adopts an
adaptive nearest neighbor algorithm and combines breadth-first
search and fuzzy weighted adaptive nearest neighbor algorithm to
design a new distribution strategy. Although ANN-DPC performs
well in terms of performance, it still requires the pre-specification
of the number of clusters. In addition, Zhu proposed a density peak
clustering algorithm based on shared proximity and probability
allocation (SP-DPC) [22], which utilizes the transfer probability
allocation strategy and evidence probability allocation strategy to
jointly optimize the distribution of remaining data points. However,
the parameter k of this algorithm still needs to be specifiedmanually.

To further improve the limitations of the DPC algorithm
and enhance the accuracy of intrusion detection. This paper
proposes a density peak clustering algorithm integrating relative
mutual K-nearest neighbor local density and fuzzy allocation
strategy (RMKNN-FDPC).Themain contributions of this algorithm
are as follows:

• First, the RMKNN-FDPC algorithmmitigates the dependence
on parameter selection inherent in traditional DPC methods
by incorporating relative mutual K-nearest neighbor for
local density estimation, thereby enabling more accurate
identification of cluster centers.
• Second, RMKNN-FDPC employs a fuzzy allocation strategy
for data point allocation, which effectively reduces the
likelihood of error propagation through its two-stage
allocation mechanism.
• Third, empirical validation was carried out across multiple
dimensions: (1)The KDD-CUP-1999 test for intrusion
detection, (2) synthetic dataset testing, (3) real-world
dataset verification, and (4) facial image dataset evaluation,
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accompanied by systematic parameter sensitivity assessment
and run time analysis. The results show that RMKNN-FDPC
achieves excellent clustering performance and enhanced
robustness when dealing with intrusion detection, and
performs particularly well in various data scenarios.

This paper presents an original framework aimed at
advancing density peak clustering methodologies and lays a
theoretical foundation for their promotion in intrusion detection
applications. This study is organized as follows: Section 2 provides a
comprehensive analysis of the traditional DPC algorithm. Section 3
presents in detail the proposed algorithm. Experimental results
and corresponding analyses are discussed in Section 4. The paper
concludes with a discussion of its contributions in Section 5,
followed by recommendations for further exploration in this
research domain.

2 Traditional DPC algorithm and
analysis

DPC is an unsupervised clustering algorithm based on local
density and relative distance, which was proposed by Rodriguez
and Laio in 2014. The core idea of this algorithm is that the
cluster centers usually have high local density and are far away
from other high-density points. DPC can automatically identify the
cluster centers and handle clusters of any shape, while having certain
robustness to noise data.This section introduces the DPC algorithm
from three aspects: algorithm principle, formula definition, and
algorithm analysis.

2.1 The principle of DPC algorithm

Theprinciple of theDPCalgorithm is based on two assumptions:
(1)The local density of the cluster center (density peak point) should
be much higher than that of its neighboring points, this indicates
that the cluster center is usually located in the area where the data
points are relatively dense, while the density of the surrounding
points is relatively low. (2) The relative distance between different
cluster centers is large, the distance from one cluster center to other
higher-density points is relatively far, which indicates that there is
sufficient separation between different cluster centers.

Based on two assumptions, the core process of DPC for
clustering are as follows: (1) Measure local density: measure the
density around each data point. (2) Calculate relative distance:
calculate the minimum distance from each data point to the nearest
high-density point. (3) Select cluster centers: choose the cluster
centers based on local density and relative distance. (4) Allocate
remaining points: allocate the non-center points to the cluster to
which the nearest higher-density point belongs.

2.2 The calculation formula of DPC
algorithm

2.2.1 Local density measure
The local density ρi represents the density around data point i.

DPC offers two commonly used calculation methods.

One method is the truncation distance method:

ρi =∑
j≠i

χ(dij − dc) (1)

Where, dij represents the distance between data points i and j, dc
is the truncation distance, which is also the sole user-defined input
parameter, χ(.) is a function that takes the value of 1 when dij < dc,
and 0 otherwise.

The second method is the Gaussian kernel function method:

ρi =∑
j≠i

exp (−
d2ij
d2c
) (2)

The Gaussian kernel function method calculates the local
density more smoothly and is suitable for dealing with noisy data.

2.2.2 Relative distance calculation
Relative distance δi represents the minimum distance from data

point i to other high-density points.

δi =
{
{
{

minj:ρj>ρi (dij),

maxj (dij).
(3)

For the point with the highest density, its relative distance is
defined as the maximum distance to all other points.

2.2.3 Cluster center selection
By drawing a decision graph, that is, a two-dimensional graph

of ρ and δ, the points with larger local density and relative distance
are selected as the cluster centers. The calculation method of the
reference value of the cluster center γi is as follows.

γi = ρi ∗ δi (4)

2.2.4 Remaining points allocation
For non-central points, allocate them to the cluster to which the

nearest higher-density point belongs.

Label(i) = Label(j),where j = arg min
j:ρj>ρi
(dij) (5)

Label(i) represents the cluster label of data point i.

2.3 Analysis of DPC algorithm

The DPC algorithm has three major advantages. Firstly, it does
not require presetting the number of clusters: the cluster centers
can be selected intuitively through the decision graph, avoiding
the problem that traditional algorithms (such as K-means) need to
preset the number of clusters in advance. Secondly, it can handle
clusters of any shape: based on the density characteristic, it can
identify non-spherical clusters. Thirdly, it has strong robustness: it
has a certain tolerance to noisy data. However, DPC has two fatal
flaws.At first, it is highly sensitive to the parameter dc: the calculation
of the key parameter local density in the algorithm relies on the
truncation distance. Next, there is a chain allocation problem: when
distributing the remaining points, incorrect allocation may spread
and affect the final clustering result.
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TABLE 1 Strategy 1.

Strategy 1. Priority allocation based on mutual K-nearest neighbor

Step 1: Select an unvisited cluster center ci from the cluster center set C, and mark ci as visited

Step 2: Using Equations 6–8, calculate the mutual K-nearest neighbor setMKNN(ci) of ci, and sequentially enter the data points of this set into the queue Q. Meanwhile, set
the labels of the data points in the set as the category of ci

Step 3: Remove the head element q ∈ Q; process any data point p ∈MKNN(q) in a loop. If p has not been allocated a category, set its category to be the same as that of q and
add p to the queue Q; remove the head element

Step 4: If the queue Q is not empty, proceed to step 3

Step 5: If there are still unvisited cluster centers, return to step 1; otherwise, terminate Strategy 1

TABLE 2 Strategy 2.

Strategy 2. Quadratic allocation based on mutual K-nearest neighbor and fuzzy membership

Step 1: For any unallocated data point i, calculate its mutual K-nearest neighborMKNN(i)

Step 2: Calculate the fuzzy membership degree pitof each data point iusing Equation 11

Step 3: Obtain the cluster label Label(i)of data point iby using Equation 12

Step 4: If there are still data points to be allocated, return to Step 1

Step 5: If there are isolated data points (meaning data points without K-nearest neighbor), then use Equation 5 to allocate the remaining points; otherwise, terminate Strategy 2

FIGURE 1
Flowchart of algorithm 1.
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TABLE 3 KDD-CUP-1999 dataset.

Attack types Size Dimension Clusters

Normal 97,278 41 1

Probe 4,107 41 4

Dos 391,458 41 6

R2L 1,126 41 8

U2R 52 41 4

TABLE 4 Artificially synthesized datasets.

Dataset Size Dimension Clusters

Jain 373 2 2

Spiral 312 2 3

Pathbased 300 2 3

Compound 399 2 6

Twomoons 1,502 2 2

Ring 1,000 2 2

TABLE 5 Real datasets.

Dataset Size Dimension Clusters

Libras 360 91 15

SCADI 70 206 7

Ecoli 336 8 8

Banknote 1,372 4 2

WDBC 569 30 2

Dermatology 366 33 6

TABLE 6 Cluster results on U1 and U2 from KDD-CUP-1999 dataset.

Algorithm ACC FMI Arg- ACC FMI Arg-

U1 U2

DPC 0.8343 0.8429 2% 0.8613 0.8725 8%

DPC-KNN 0.8186 0.8227 2% 0.7875 0.8579 1%

FKNN-DPC 0.8143 0.8182 4 0.8613 0.8725 8

DPCSA 0.8043 0.7708 - 0.8613 0.8725 -

LF-DPC 0.8214 0.8249 4 0.6825 0.5882 8

RMKNN-
FDPC

0.8586 0.8692 4 0.8950 0.9147 8

Bold values indicate that the corresponding algorithm achieved optimal performance on
specific evaluation metrics (ACC, FMI) on U1 and U2 from KDD-CUP-1999 dataset.

3 The proposed RMKNN-FDPC
algorithm

This section elaborates in detail on the RMKNN-FDPC that
integrates relative mutual K-nearest neighbor local density and
fuzzy allocation. The core contributions of this algorithm mainly
lie in the following two aspects: Firstly, we have designed a local
density calculation method based on relative mutual K-nearest
neighbor, which not only can effectively distinguish data points of
different density levels but also provides a reliable basis for the
accurate selection of cluster centers. Secondly, in response to the
error propagation problem caused by the chain-like allocation in
the traditional DPC algorithm, we have proposed a fuzzy allocation
strategy for remaining points based on mutual K-nearest neighbor,
thereby significantly improving the accuracy of clustering results.
The following subsections will conduct in-depth discussions around
these technical details.

3.1 Relative mutual K-nearest neighbor
local density

In DPC, the calculation of local density usually relies on the
key parameter dc, the truncation distance. However, determining
the optimal value of dc is often challenging. To address this
issue, methods such as DPC-KNN and FKNN-DPC adopt K-
nearest neighbor to calculate local density, thereby avoiding
the selection of dc. Nevertheless, the local density calculated by
these methods and most derived DPC algorithms still belong to
absolute density and are difficult to effectively distinguish datasets
with different density levels. Therefore, in this section, a new
relative density calculation method, called relative mutual K-
nearest neighbor local density, is proposed, aiming to enhance
the ability to distinguish multi-density-level data, such as
nested clusters.

Firstly, the set of K-nearest neighbor for data point i, denoted as
KNN(i), is mathematically established in Equation 6.

KNN(i) = {j ∈ n|dij − dik ≤ 0} (6)

Where, n represents the size of the dataset; dij indicates
the Euclidean distance between data points i and j; dik
represents the distance between data point i and the k-th nearest
neighbor.

Subsequently, the inverse K-nearest neighbor set RKNN(i)
of data point i was defined, and the calculation method is
as shown in Equation 7.

RKNN(i) = {j ∈ n|i ∈ KNN(j)} (7)

The inverse K-nearest neighbor method can provide a
deep understanding of the relationships and structures among
data points.

Secondly, the mutual K-nearest neighbor set MKNN(i) of
data point i is defined, and the specific computation process is
explicitly given by Equation 8.

MKNN(i) =
{
{
{

RKNN(i) ∩KNN(i), i f (RKNN(i) ∩KNN(i)) ≠ ∅

KNN(i), else
(8)
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FIGURE 2
Visualization of clustering results of different algorithms on the Jain dataset. (a) DPC, (b) DPC-KNN, (c) FKNN-DPC, (d) DPCSA, (e) LF-DPC, (f)
RMKNN-FDPC.

MKNN(i) represents the intersection of KNN(i) and
RKNN(i), provided that the intersection is not empty; otherwise,
MKNN(i) is approximately equivalent to KNN(i). The mutual
K-nearest neighbor approach provides enhanced local structure
characterization by incorporating both direct neighborhood
relationships and their reciprocal connections between
data points.

Next, the absolute density ρabsi of data point i is
defined as in Equation 9.

ρabsi = 1/|MKNN(i)| ×∑
j∈MKNN(i)

dij
2 (9)

Finally, based on Equations 1, 2, the relative mutual
K-nearest neighbor local density ρi of data point i is
defined, and the calculation method is as shown in
Equation 10.

ρi =
ρabsi

1
|MKNN(i)|

∑
j∈MKNN(i)

ρabsj

(10)

The relative mutual K-nearest neighbor local density ρi
represents the ratio of the density of data point i to the average
density of surrounding points in the mutual K-nearest neighbor
set. The advantage of using mutual K-nearest neighbor local
density is that it can distinguish complex manifold datasets
with uneven density distribution, and is also conducive to the
extraction of cluster centers.

3.2 The fuzzy allocation strategy for the
remaining points of mutual K-nearest
neighbor

The DPC algorithm has an error propagation problem during
the process of the remaining point allocation, that is, the incorrect
allocation of a certain data point may trigger a chain reaction, thereby
significantly reducing the clustering performance. To address this
limitation, this paper proposes a fuzzy remaining point allocation
strategy based on mutual K-nearest neighbor. This strategy consists
of two stages: Firstly, Strategy 1 (Table 1) adopts a mutual K-
nearest neighbor-based approach to determine preferential data
point allocation; Secondly, in Strategy 2 (Table 2), the secondary
allocation is carried out by calculating the fuzzy membership degree
of data points. For the remaining points that have not been allocated
after the above two stages, the allocation method of the DPC
algorithm is finally adopted for processing. This allocation strategy
effectively reduces the risk of error propagation and can improve the
accuracy of clustering results.

Strategy 1 mainly utilizes mutual K-nearest neighbor and
queues. The detailed procedure is outlined below.

Assuming that the allocation Strategy 1 is completed, after
that, for the data points that have been allocated, m clusters
CL1,…,CLt,…,CLm are formed. For any unallocated data point i,
its fuzzy membership degree pit is defined as follows in Equation 11.

pit =
|MKNN(i) ∩CLt|
|MKNN(i)|

(11)
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FIGURE 3
Visualization of clustering results of different algorithms on the Spiral dataset. (a) DPC, (b) DPC-KNN, (c) FKNN-DPC, (d) DPCSA, (e) LF-DPC, (f)
RMKNN-FDPC.

FIGURE 4
Visualization of clustering results of different algorithms on the Pathbased dataset. (a) DPC, (b) DPC-KNN, (c) FKNN-DPC, (d) DPCSA, (f) RMKNN-FDPC.
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FIGURE 5
Visualization of clustering results of different algorithms on the Compound dataset. (a) DPC. (b) DPC-KNN. (c) FKNN-DPC. (d) DPCSA. (e) LF-DPC, (f)
RMKNN-FDPC.

The cluster label Label(i) of data point i can be obtained
based on the fuzzy membership degree. The calculation method
is shown as Equation 12.

Label(i) = argmax
t

pit (12)

Therefore, the specific steps of the secondary allocation based
on mutual K-nearest neighbor and fuzzy membership degrees are
as follows.

3.3 RMKNN-FDPC algorithm and analysis

Combining the relative mutual K-nearest neighbor local density
and the remaining point fuzzy allocation strategies, this section
introduces the execution process of the RMKNN-FDPC algorithm,
as shown in Figure 1. Meanwhile, Algorithm 1 provides detailed
steps for the algorithm.

Subsequently, a comprehensive analysis will be performed
to examine the computational complexity of individual steps
as well as the overall time complexity of the RMKNN-FDPC
algorithm. Suppose the size of the dataset is n and the K-nearest
neighbor parameter is k: (1) Step 1 is to calculate the Euclidean
distance between all data points, which requires calculating the
distance matrix of n× n, and the time complexity is O(n2). (2)
Step 2 separately calculates K-nearest neighbor, inverse K-nearest
neighbor, and mutual K-nearest neighbor. K-nearest neighbor is to

find theK-nearest neighbor for each data point. In theworst case, the
time complexity is O(n2); inverse K-nearest neighbor is the same as
K-nearest neighbor, and the time complexity is also O(n2); mutual
K-nearest neighbor mainly checks whether the K-nearest neighbor
of each data point are also its inverse K-nearest neighbor, and the
time complexity is O(kn). (3) Step 3 calculates the relative mutual
K-nearest neighbor local density, and the time complexity is O(kn).
Step 4 calculates the relative distance, and the time complexity is
O(n2). Step 5 builds the two-dimensional decision graph, and the
time complexity isO(n), and the time complexity of selecting cluster
centers is also O(n). Step 6 prioritizes the allocation of data points,
and in the worst case, the time complexity isO(kn). Step 7 performs
secondary allocation of data points, and in the worst case, it isO(n2).

Ultimately, our analysis reveals that RMKNN-FDPC preserves
the O(n2) time complexity characteristic of the original DPC
methodology.

4 Experiment and analysis

4.1 Experimental preparation

To evaluate the network intrusion detection effect and clustering
ability of the proposed RMKNN-FDPC method, this paper selects
the KDD-CUP-1999 dataset for network intrusion detection,
six artificially synthesized two-dimensional datasets with varying
shapes and uneven densities, and six real datasets from the UCI
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FIGURE 6
Visualization of clustering results of different algorithms on the Twomoons dataset. (a) DPC, (b) DPC-KNN, (c) FKNN-DPC, (d) DPCSA, (e) LF-DPC, (f)
RMKNN-FDPC.

database for experiments. [23]. The specific information of the
datasets is shown in Tables 3–5. Four classic clustering evaluation
indicators are selected, namely, Accuracy (ACC) [11], the Adjusted
Rand Index (ARI) [24], the Adjusted Mutual Information (AMI)
[25], and the Fowlkes Mallows Index (FMI) [26,27]. The maximum
value of each evaluation indicator is 1, and the closer the indicator
value is to 1, the better the clustering effect. Five algorithms are
chosen for comparison, including the original DPC [9], DPC-
KNN [13], FKNN-DPC [14], the density peaks clustering based on
weighted local density sequence and nearest neighbor assignment
(DPCSA) [28], and the density peaks clustering based on local
fair density and fuzzy K-nearest neighbor membership allocation
strategy (LF-DPC) [29].

4.2 Experimental and analytical study on
KDD-CUP-1999 dataset

For this experiment, the KDD-CUP-1999 dataset was selected.
This dataset is mainly used for network intrusion detection and
includes four types of attacks: U2R, DOS, R2L and Probe.TheKDD-
CUP-1999 dataset presents a highly imbalanced density distribution,
with normal traffic accounting for only 19.69%, while attack
traffic accounts for 80.31%, mainly DoS attacks (79.24%), and the
remaining attacks (Probe, R2L, U2R) have a very low proportion.
Numerical features mostly exhibit a long tail distribution and are
close to zero, while categorical features such as TCP and HTTP

dominate. Different attack types show significant differences in
protocol and traffic patterns.

Due to the large scale of the dataset, two test sets (U1 and U2)
were randomly selected from the dataset, each containing 1,000
and 800 data records respectively. In each group, both normal and
abnormal data records are included.

The evaluation indicators for the experiment are ACC and FMI.
The experimental results are presented in Table 6 and the optimal
clustering value is highlighted in bold. Through the experiment,
it can be found that for both U1 and U2, the detection accuracy
of the RMKNN-FDPC algorithm is higher than that of other
comparison algorithms, and it can effectively deal with network
intrusion detection. This is because the advantages brought by the
improvement of local density and the optimization of remaining
point allocation.

4.3 Experimental and analytical study on
synthetic datasets

This section presents the visualized clustering effect of the
RMKNN-FDPC algorithm and five comparison algorithms on
the synthetic datasets, as shown in Figures 2–7 respectively.
The cluster centers in each sub-figure are represented by red
squares. The specific evaluation values of clustering indicators
are shown in Table 7. The bold font indicates the best clustering
result for each dataset.
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FIGURE 7
Visualization of clustering results of different algorithms on the Ring dataset. (a) DPC, (b) DPC-KNN, (c) FKNN-DPC, (d) DPCSA, (e) LF-DPC, (f)
RMKNN-FDPC.

The Jain dataset is a typical manifold dataset with uneven
density distribution, consisting of two semi-circular arcs with
different densities. Figure 2 shows the clustering results of each
algorithm on this dataset. In DPC and its derivative algorithms,
DPC, DPC-KNN, and DPCSA failed to correctly identify the
cluster centers of the sparse clusters. The main reason is that
the local density calculation did not fully consider the local
distribution characteristics of the sample points. Although FKNN-
DPC and LF-DPC can correctly find the cluster centers of the
sparse clusters, in the upper semi-circle, some sample points
of the sparse clusters are wrongly allocated to the clusters in
the lower semi-circle. This phenomenon is mainly due to the
limitations of the allcoation strategy. Comparatively, our proposed
method demonstrates enhanced capability in precisely detecting the
centroids of both clusters, but also can completely and correctly
complete the allcoation of the remaining points. This advantage
mainly benefits from the novel local density calculation method
proposed in this paper and the fuzzy allcoation strategy of remaining
points based on mutual K-nearest neighbor, thereby effectively
solving the key problems in the identification and allcoation of
sparse clusters.

The Spiral dataset consists of three spiral-shaped clusters
and is a typical dataset with non-spherical cluster distribution.
As can be seen from Figure 3, all six algorithms can achieve
perfect clustering results, with only minor differences in the
selection of cluster centers. This result fully demonstrates the
advantages of density-based clustering algorithms in dealing

with complex manifold structures. At the same time, the
experimental results also further verify that the RMKNN-FDPC
algorithm proposed in this paper has significant superiority in
detecting non-spherical clusters of any shape, and can accurately
identify complex cluster structures while maintaining high
clustering accuracy.

The Pathbased dataset is a typical manifold dataset, whose
structure is composed of a circular cluster enclosing two spherical
clusters. Due to the fact that the sample points on the left and
right sides of the spherical clusters are closely proximate to the
circular cluster, it is prone to cause misallocation, which poses
a significant challenge for most clustering algorithms. As can be
seen from the experimental results in Figure 4, both DPC and its
derivative algorithms can successfully identify three cluster centers.
However, in DPC and DPC-KNN, the sample points on both sides
of the circular cluster are wrongly allocated to the spherical cluster.
This phenomenon mainly stems from the allocation strategy that
solely relies on the distance principle. Although FKNN-DPC and
DPCSA have improved the allocation strategy for the remaining
points and successfully avoided the misallocation of sample points
on the left side of the circular cluster, there are still misallocations
for the sample points on the right side. In contrast, LF-DPC and
RMKNN-FDPC can more accurately allocate the sample points on
both sides of the circular cluster to the correct clusters, although
there are still a few boundary points that are misallocated due to
the adhesion problem.The RMKNN-FDPC algorithm ranks second
in performance among all the compared algorithms, second only
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TABLE 7 Cluster results on Synthetic datasets.

Algorithm ARI AMI FMI Arg- ARI AMI FMI Arg-

Jain Spiral

DPC 0.6183 0.5396 0.8386 1% 1 1 1 2%

DPC-KNN 0.7146 0.6183 0.8819 2% 1 1 1 2%

FKNN-DPC 0.8224 0.7092 0.9359 43 1 1 1 6

DPCSA 0.0442 0.2167 0.5924 - 1 1 1 -

LF-DPC 0.4059 0.2936 0.8270 40 1 1 1 5

RMKNN-FDPC 1 1 1 8 1 1 1 9

Pathbased Compound

DPC 0.4530 0.4997 0.6585 2% 0.5989 0.7798 0.6963 2%

DPC-KNN 0.4602 0.5080 0.6617 2% 0.8087 0.7913 0.8661 0.50%

FKNN-DPC 0.7323 0.7744 0.8226 8 0.8479 0.8341 0.8941 8

DPCSA 0.6133 0.7073 0.7511 - 0.8284 0.8392 0.8707 -

LF-DPC 0.9699 0.9525 0.9799 8 0.8409 0.8231 0.8891 10

RMKNN-FDPC 0.9109 0.8769 0.9406 11 0.9871 0.9700 0.9903 7

Twomoons Ring

DPC 0.5896 0.5524 0.8075 2% 0.1248 0.2041 0.6473 2%

DPC-KNN 0.4921 0.4881 0.7604 2% 0.3130 0.3602 0.6892 3%

FKNN-DPC 0.3862 0.4254 0.7103 6 1 1 1 8

DPCSA 0.2746 0.3647 0.6607 - 1 1 1 -

LF-DPC 0.2746 0.3647 0.6607 8 1 1 1 10

RMKNN-FDPC 1 1 1 6 1 1 1 8

Bold values indicate that the corresponding algorithm achieved optimal performance on specific evaluation metric (ARI, AMI, FMI) of the synthetic dataset.

to LF-DPC, and demonstrates its superiority in handling complex
manifold structures.

Figure 5 shows the clustering performance of RMKNN-
FDPC compared with other benchmark algorithms on the
Compound dataset. Featuring an asymmetric density distribution,
the Compound dataset consists of six clusters with varying
morphological characteristics. For most clustering algorithms,
accurately detecting the clustering structure of this dataset is
quite challenging. The DPC algorithm mistakenly identified two
cluster centers in the cluster in the lower left corner. The main
reason for this is that the local density calculation method failed to
effectively handle the uneven density distribution situation. DPC-
KNN only identified one cluster center in the two clusters in the
lower left corner, but mistakenly found two cluster centers in the
sparse clusters on the right side. This highlights the limitations
of the local density calculation method in distinguishing datasets

with uneven density distribution. FKNN-DPC, DPCSA, and LF-
DPC have improved performance, but they still have a common
problem: they cannot correctly identify the cluster centers of sparse
clusters andmistakenly found two cluster centers in the large goose-
shaped cluster in the upper right corner. This may be due to the
use of a fixed k-value that cannot adapt to the local distribution of
data points. Unlike conventional approaches, the RMKNN-FDPC
algorithm performs exceptionally well in handling this dataset. It
not only accurately identifies the cluster centers of sparse clusters
but also correctly allocates the data points in sparse clusters. From
the evaluation indicators, the performance of the RMKNN-FDPC
algorithm is significantly superior to that of other benchmark
algorithms, further verifying its superiority.

Twomoons is a manifold dataset composed of two semi-circles
above and below.The sparsity of the two clusters is the same, but for
most density-based clustering algorithms, the multi-peak problem

Frontiers in Physics 11 frontiersin.org

https://doi.org/10.3389/fphy.2025.1623161
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Ren et al. 10.3389/fphy.2025.1623161

TABLE 8 Cluster results on Real datasets.

Algorithm ARI AMI FMI Arg- ARI AMI FMI Arg-

Libras SCADI

DPC 0.2984 0.5138 0.3682 0.40% 0.5618 0.4966 0.6684 2%

DPC-KNN 0.3051 0.5471 0.3666 1% 0.5627 0.4759 0.6690 2%

FKNN-DPC 0.3211 0.5367 0.3943 10 0.6191 0.5319 0.7122 6

DPCSA 0.2683 0.4939 0.3572 - 0.5939 0.4988 0.6932 -

LF-DPC 0.3437 0.5406 0.3996 5 0.6953 0.5872 0.7736 6

RMKNN-FDPC 0.3960 0.6189 0.4377 8 0.7418 0.6276 0.8054 6

Ecoli Banknote

DPC 0.7054 0.5816 0.7983 1% 0.8008 0.7751 0.8968 1%

DPC-KNN 0.6913 0.5817 0.7939 5% 0.3955 0.3575 0.6524 0.8%

FKNN-DPC 0.5914 0.5596 0.7071 7 0.7702 0.7576 0.8793 20

DPCSA 0.4883 0.4229 0.6787 - 0.9653 0.9359 0.9828 -

LF-DPC 0.7060 0.5877 0.8014 6 0.7702 0.7576 0.8793 10

RMKNN-FDPC 0.7159 0.6029 0.8046 8 0.9368 0.8806 0.9688 18

WDBC Dermatology

DPC 0.4705 0.4146 0.7860 0.40% 0.6622 0.7167 0.7487 0.40%

DPC-KNN 0.4552 0.4017 0.7813 1% 0.6349 0.7731 0.7089 1%

FKNN-DPC 0.4452 0.3932 0.7783 6 0.8654 0.8741 0.8994 6

DPCSA 0.3771 0.3361 0.7595 - 0.6062 0.7451 0.6896 -

LF-DPC 0.4756 0.4189 0.7875 4 0.8288 0.8345 0.8704 8

RMKNN-FDPC 0.7489 0.6281 0.8839 5 0.8452 0.8412 0.8813 8

Bold values indicate that the corresponding algorithm achieved optimal performance on specific evaluation metric (ARI, AMI, FMI) of the real dataset.

is prone to occur. As can be seen from Figure 6, the clustering effects
of different algorithms on the Twomoons dataset are presented.
Both DPC and its derived algorithms (except for the algorithm
proposed in this paper) have encountered the multi-peak problem.
Specifically, in the upper semi-circle cluster, two cluster centers are
incorrectly identified, while no cluster center is identified in the
lower semi-circle cluster. Through analysis, it can be found that
this phenomenon is mainly caused by the local density calculation
method failing to fully consider the local distribution characteristics
of sample points. In contrast, the RMKNN-FDPC algorithm not
only can accurately identify the cluster centers of the dataset, but
also can correctly complete the allocation of the remaining points,
thereby achieving perfect clustering of this dataset. This result fully
demonstrates the superiority and robustness of the RMKNN-FDPC
algorithm in processing manifold datasets.

The Ring dataset consists of two circular clusters.
As shown in Figure 7, FKNN-DPC, DPCSA, LF-DPC, and the
proposed algorithm, by improving the local density calculation
method and optimizing the strategy for distributing the remaining
points, can all perform clustering perfectly. However, the original
DPC algorithm has multiple peaks problem on the central circular
cluster, which is mainly attributed to the limitations of its local
density calculation method. Although DPC-KNN improves the
local density calculation method, due to the fact that its strategy
for distributing the remaining points still follows the original
method of DPC, some sample points in the outer circular
cluster have incorrect category allcoation. This comparative result
further highlights the importance of optimizing the local density
calculation and the strategy for distributing the remaining points in
improving the clustering performance.
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FIGURE 8
Experiment on selection of clustering centers. (a) DPC, (b) DPCSA, (c) FKNN-DPC, (d) RMKNN-FDPC.

FIGURE 9
The clustering results of the Olivetti Faces Dataset. (a) DPC, (b) DPCSA, (c) FKNN-DPC, (d) RMKNN-FDPC.

TABLE 9 Cluster results on Olivetti Faces dataset.

Algorithm ARI AMI FMI Arg-

DPC 0.6329 0.7445 0.6741 4%

FKNN-DPC 0.5967 0.7477 0.6512 3

DPCSA 0.5610 0.6845 0.6002 -

RMKNN-FDPC 0.7972 0.8691 0.8198 4

Bold values indicate that the corresponding algorithm achieved optimal performance on
specific evaluation metric (ARI, AMI, FMI) of the Olivetti Faces dataset.

4.4 Experimental and analytical studies on
real datasets

To test the clustering performance of RMKNN-FDPC, in this
section, real datasets with different scales and dimensions were
selected for experiments. Compared with artificially synthesized
datasets, the real datasets from UCI are more complex and
typically exhibits diverse feature patterns in density distribution.The
experimental results can be used to evaluate the effectiveness of the
algorithm proposed in this paper.

Table 8 presents the clustering results of six algorithms on
six real datasets. The best clustering indicators have been marked

in bold. As evidenced by the experimental data, the developed
algorithm obtains the best clustering results on the four datasets
(Libras, SCADI, Ecoli, WDBC), demonstrating its robustness and
superiority under different data distributions. In the experiment on
the Banknote dataset, the performance of RMKNN-FDPC is second
only to DPCSA, but its ARI value still reaches 0.9368, significantly
superior to the other four comparison algorithms, reflecting its
stability in handling complex datasets. In the experiments conducted
on the Dermatology dataset, the clustering indicators ARI, AMI
and FMI of RMKNN-FDPC were second only to those of FKNN-
DPC. Overall, RMKNN-FDPC performs well on most datasets,
demonstrating its strong competitiveness as a clustering algorithm,
mainly due to the relative mutual K-nearest neighbor local density
and the fuzzy allocation strategy based on the mutual K-nearest
neighbor of the remaining points.

4.5 Experimental and analytical studies on
Olivetti Faces Dataset

To further verify the clustering performance of RMKNN-FDPC,
two types of comparative experiments were conducted on the
Olivetti Faces dataset between RMKNN-FDPC and the original
DPC algorithm, as well as DPC-derived algorithms (DPCSA and
FKNN-DPC). The reason for choosing the Olivetti Faces dataset is
that it is a classic face dataset used for clustering tests and can provide
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FIGURE 10
Parameter analysis on Synthetic datasets. (a) Spiral dateset, (b) Compound dateset, (c) Ring dateset.

FIGURE 11
Parameter analysis on Real datasets. (a) SCADI dateset, (b) Ecoli dateset, (c) Dermatology dateset.

intuitive clustering results. This dataset contains 400 face images,
with 10 images in each group, and each group of data records the
facial features of the same tester under different lighting, expressions,
and facial details. To reduce the test cost, we selected 10 groups of
face data for the experiment.

The first type of comparative experiment is the selection of
cluster centers. In this group of experiments, there are 10 real cluster
centers. The experimental results are shown in Figure 8. We can
observe that in the decision graph of the DPC algorithm, the γ-
values of the 10th and 11th cluster centers are relatively close, thus
it tends to select 11 cluster centers, resulting in an extra cluster
center. In the decision graph of the DPCSA algorithm, the γ-values
of the 10th, 11th, 12th, and 13th cluster centers are approximately
the same, making it difficult to effectively distinguish the first 10
cluster centers, and subsequent clustering may lead to a multi-peak
problem. Both the FKNN-DPC and RMKNN-FDPC can efficiently
extract the first 10 real cluster centers, which is mainly attributed
to the improvement of the local density calculation method in both
algorithms.

The second type of experiment is the clustering of Olivetti Faces
dataset. The experimental results are shown in Figure 9. In this
figure, the cluster centers are marked with small red squares at the
upper right corner of the image. We can observe that: DPC has
two sets of face data that have encountered the problem of multiple
peaks, and three sets of faces have not been identifiedwith the cluster
centers; DPCSA has five sets of face data that have multiple peaks,
and three sets have not identified the real cluster centers; FKNN-
DPC has three sets of face data that have encountered the problem of
multiple peaks, and three sets have not identified the cluster centers;
our algorithm has only one instance of multiple peaks, and only one
set of data has not found the cluster center.

By examining the specific clustering indicator values
presented in Table 9, it is evident that RMKNN-FDPC outperforms
the other three comparison algorithms in terms of indicator values.
This further validates the efficiency of the proposed algorithm.
This is because our algorithm not only improves the calculation of
local density but also optimizes the method of the remaining point
allocation.
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TABLE 10 Comparison results of running time.

Dataset FKNN-
DPC

DPCSA LF-DPC RMKNN-
FDPC

U1 1.4089 0.3096 1.5135 1.0380

U2 0.7829 0.2044 0.9597 0.9487

Jain 0.1954 0.1287 0.2077 0.2511

Spiral 0.2169 0.1297 0.2243 0.2896

Pathbased 0.2094 0.1235 0.2202 0.2562

Compound 0.2016 0.1438 0.2077 0.2072

Twomoons 3.5474 0.2630 2.5862 2.8402

Ring 1.4004 0.1613 0.7398 1.9819

Libras 0.2108 0.1445 0.3529 0.3567

SCADI 0.1408 0.1252 0.1511 0.2072

Ecoli 0.2078 0.1388 0.2747 0.2454

Banknote 4.1260 0.3005 4.6558 4.7752

WDBC 0.4724 0.1510 0.8468 1.0646

Dermatology 0.2349 0.1320 0.2465 0.3177

Olivetti Faces 0.2244 0.1754 0.2287 0.2980

4.6 Parameter analysis

This part focuses on examining how the single parameter k-
value in the RMKNN-FDPC algorithm influences the clustering
outcomes. Therefore, we selected three datasets each from synthetic
and real datasets for parameter analysis. The datasets include Spiral,
Compound, Ring, SCADI, Ecoli, andDermatology. Each dataset was
tested ten times with different k-values.

The parameter analysis experiment results of the synthetic
datasets are shown in Figure 10. We can observe that for the Spiral
and Ring datasets, in experiments with different k-values, all three
clustering evaluation indicators are 1, indicating that the RMKNN-
FDPC algorithm is completely unaffected by the k-value and the
clustering results are very stable. In the Compound dataset, the
proposed algorithm is also relatively stable, except when the k-value
is 8, 9, or 10. Therefore, in the parameter analysis of the synthetic
datasets, RMKNN-FDPC is basically not affected by the k-value,
further demonstrating the stability of the proposed algorithm.

The parameter analysis experiment results of the real datasets
are presented in Figure 11. We can observe that for the SCADI
dataset, RMKNN-FDPC is relatively stable when k is between four
and 9, but its performance drops when k is greater than 9. In the
parameter analysis of the Ecoli dataset, the clustering effect of the
algorithm also significantly declines when k is greater than 9. For
the Dermatology dataset, RMKNN-FDPC performs steadily except
when k equals 9. Therefore, in the parameter analysis of the real
datasets, the clustering performance of RMKNN-FDPC is affected
by some k-values.

Require: Dateset D, parameter k.

Ensure: Label of data points.

 1: Normalize the dataset D and calculate the

Euclidean distance between data points.

 2: Utilize Equations 6–8 to calculate the

K-nearest neighbor, inverse K-nearest neighbor and

mutual K-nearest neighbor of each data point i ∈ D

in sequence.

 3: Utilize Equations 9, 10 to calculate the

relative mutual K-nearest neighbor local density

ρi of data point i.

 4: Utilize Equation 3 to calculate the relative

distance δi of data point i.

 5: Utilize Equation 4 to construct the decision

graph and select the appropriate cluster centers.

 6: Prioritize the allocation of data points by

applying Strategy 1.

 7: Conduct a secondary allocation of data points

by using Strategy 2.

Algorithm 1. Density Peak Clustering Algorithm Integrating Relative
Mutual K-Nearest Neighbor Local Density and Fuzzy Allocation Strategy.

4.7 Run time analysis

The main purpose of this section is to compare the running
time of the proposed RMKNN-FDPC algorithm with FKNN-DPC,
DPCSA, and LF-DPC. The reason for choosing these algorithms is
that all three compared algorithms have improved local density and
optimized remaining point allocation strategies.

Table 10 presents the comparison results of the running time
of four algorithms on different datasets. The running time is the
average of each algorithm running four times and rounded to
four decimal places, measured in seconds. We can see that the
running time ofDPCSA is relatively low compared to the other three
algorithms, mainly because this algorithm uses a fixed k-value to
calculate local density and allocate remaining points. The running
time of FKNN-DPC and LF-DPC is generally the same, because the
execution principles of the two algorithms are very similar. Although
our algorithm has slightly higher running time on most datasets
compared to other algorithms, the running time on some datasets
is slightly lower than FKNN-DPC and LF-DPC. This is because
RMKNN-FDPC needs to calculate mutual K-nearest neighbors,
which increases some additional overhead when calculating local
density and allocating data points. But overall, the running time of
this algorithm is at the same level as FKNN-DPC and LF-DPC.

5 Conclusion

This paper presents an improved density peak clustering
algorithm named RMKNN-FDPC, which can be applied to network
intrusion detection. The aim of this algorithm is to address the
limitations of traditional density peak clustering algorithms when
dealing with complex datasets. By introducing the concept of
relative mutual K-nearest neighbor, RMKNN-FDPC can more
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accurately depict the local density distribution of data points,
thereby effectively identifying data structures with randomness and
complexity. Moreover, the algorithm combines mutual K-nearest
neighbor to optimize the remaining point allocation strategy, further
enhancing the accuracy and robustness of the clustering results.
Experimental results show that RMKNN-FDPC performs well on
the KDD-CUP-1999 dataset, the synthetic datasets, the real datasets
and the Olivetti Faces dataset, especially in handling uneven density
distribution, non-spherical clusters, and manifold structures. Its
performance is significantly superior to traditional DPC and its
derivative algorithms when dealing with these issues. Overall,
RMKNN-FDPC not only inherits the simplicity and efficiency
of DPC algorithm but also significantly improves the clustering
effect through the improvement of local density calculation and
allocation strategies, providing an effective solution for clustering
problems of complex datasets. In the future, we will optimize
the RMKNN-FDPC algorithm. Currently, its performance depends
on the unique K-nearest neighbor parameter, so we will explore
density peak clustering methods without parameters to reduce the
sensitivity of the algorithm to parameter selection. At the same
time, we will conduct in-depth research on the potential application
of this algorithm in the real-time network intrusion detection
scenario of CPSS.
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