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The application of virtual reality (VR) in industrial training and safety emergency
needs to reflect realistic changes in physical object properties. However, existing
VR systems still lack fast and accurate simulation of complex, high-fidelity
dynamic display of physical object evolution. To enhance the application of VR,
a real-time VR visualization method is introduced, which adopts a pre-trained
deep learning model to construct high-fidelity physical dynamic changes.
This method firstly integrates data dimensionality reduction and temporal
convolutional network (TCN) to pre-capture time-series data from numerical
simulation results, and then employs Kolmogorov–Arnold Networks (KAN) to
approximate nonlinear characteristics to improved Long Short-Term Memory
(LSTM) network, thereby predict time-series simulation data accurately to
achieves realistic and responsive dynamic displays. The experimental results of
predicting time-series numerical simulation data demonstrate that the method
balances computational efficiency and achieves good prediction accuracy, with
Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) values increased
to 0.0087 and 0.0063, respectively. These studies indicate that the proposed
method significantly enhances VR’s capability for realistic physical modeling,
paving the way for its broader application in high-stakes industrial training and
emergency training environments.

KEYWORDS

virtual reality, physical state prediction, reduced order model, deep learning, numerical
simulation

1 Introduction

Virtual reality (VR), as a cutting-edge technology, utilizes computer-generated three-
dimensional environments to provide an immersive user experience, allowing users to feel
a high degree of realism within a virtual space [1]. VR technology is widely applied in
various fields such as education, healthcare, and entertainment, enhancing user interaction
and offering new possibilities for numerous applications [2–6]. Especially in industrial
training secnarios, VR technology integrates physical devices with information systems
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[7]. Traditional trainingmethods often involve high costs and safety
hazards, whereas VR creates a controllable simulation environment,
enabling users to practice without jeopardizing themselves or others
[8, 9]. Sacks et al. [10] explores the feasibility and effectiveness of
using immersiveVR technology for architectural safety training, and
the authors argue thatVR can provide a safe, realistic, and interactive
learning environment, thereby improving the learning outcomes
and recall ability of participants, ultimately enhancing training
effectiveness and worker safety. Liang et al. [11] introduces a serious
game based on virtual reality technology designed to enhance safety
training efficiency for rock-related hazards in underground mines,
and the authors believe that this approach has the potential to
improve the safety conditions in underground mines and could be
applied to other mining safety training areas, raising miners’ safety
awareness and operational skills.

Despite VR’s effectiveness in training has been proven [12],
existing VR experiences still show deficiencies in the representation
of physical fields [13]. Many VR applications fail to effectively
integrate multiple physical fields, such as fluid dynamics and
thermodynamics, leading to a reduced sense of immersion and
impacting the realistic representation of actual scenarios. This lack
of physical field integration not only limits the realism of user
experiences but also hinders the promotion of VR technology in
complex applications. To address this issue, the combination of VR
and physic simulation techniques has gained increasing attention.
This integration can dynamically generate more accurate multi-
physical fields within VR environments, significantly enhancing
the immersive experience for users. The application of these
technologies has the potential to drive the further development
of VR across various industries, providing new solutions for the
simulation of complex systems. However, the methods of physic
simulation like Finite Volume Method (FVM) [14] and Finite
Element Method (FEM) [15] require significant computational
power and time support, which hinders the improvement of
efficiency in modeling realistic dynamic scenes in VR, making
it difficult to meet the demands for realism and real-time
performance [16].

With the advancement of hardware technology, particularly
leveraging the parallel processing capabilities of GPUs, neural
networks have begun to experience rapid development and large-
scale application across various fields [17–20]. For instance, in the
realm of time-series prediction, deep learning has provided novel
perspectives and methodologies for predicting and simulating non-
periodic, complex flows, contrasting with traditional methods that
rely onCPU-based computations [21–23]. Deep learning techniques
are capable of handling large-scale data and capturing complex non-
linear features, making them particularly effective in computational
fluid dynamics (CFD) simulations [24, 25]. Guo et al. propose a
general and flexible approximation model for real-time prediction
of non-uniform steady laminar flow in a 2D or 3D domain based
on convolutional neural networks (CNNs) [26]. Kim et al. propose
a novel approach that combines CFD simulations with data-driven
deep-learning models to predict complex hydrodynamics [27].
Jolaade et al. explore the performance and powerful generative
capabilities of both generative adversarial network (GAN) and
adversarial autoencoder (AAE) to predict the evolution in time of
a highly nonlinear fluid flow [28].

Current challenges in combining deep learning with CFD to
build high-fidelity physical fields in VR are listed as follows.

(1) Data Complexity: Deep learning requires capturing both the
temporal and spatial characteristics of the data simultaneously.
Due to the sequential nature of the problem, deep learning
needs continuous input of data to achieve better inference. If
the data is too complex, the inference time required is too
long and cannot meet the real-time requirements for building
high-fidelity physical fields in VR.

(2) Prediction Data Accuracy: Since CFD data is non-linear, deep
learning models with strong fitting capabilities are prone to
overfitting when the amount of data is insufficient or themodel
complexity is too high. This can lead to a decline in prediction
performance on new data.

In this paper, to address the above-mentioned challenges, a
new method for real-time visualization high-fidelity physical fields
in VR based on feature pre-capturing method and improved pre-
train LSTM is proposed. The specific contributions are described
as follows.

(1) An efficient real-time future physical fields construction
method is designed, which uses simulation data to pre-train
a deep learning model for real-time construction of physical
fields based on the current state data in VR.

(2) A module for multi-mixed feature pre-capturing based on
data dimensionality reduction is proposed to reduce the
dimensionality of the data and capture the current data features
to accelerate the inference speed of deep learning.

(3) Utilizing a improve pre-trained model, an effective
combination of LSTM and KAN networks is proposed.
Leveraging LSTM’s temporal characteristics and KAN’s
accuracy in fitting complex functions, the pre-trained
model can accurately fit time-series simulation data, thereby
establishing a high-fidelity physical field.

This paper employsCFD simulation data of vonKarman vortices
for experimentation. The experimental results demonstrate that the
proposed method effectively balances prediction accuracy and time,
achieving optimal prediction results within an allowable time frame,
thereby meeting the requirements for the preliminary real-time
establishment of high-fidelity physical fields in VR.

The remainder of this study is organized as follows: Section 2
introduce the foundation of this research. The method designed for
real-time future physical fields construction is shown in Section 3,
which consisting of feature pre-capturingmodule and improved pre-
trained model, while the specific experimental process and results
are provided in Section 4. Finally, the conclusions and future works
are stated in Section 5.

2 Foundation of proposed methods

2.1 The profile of CFD

Fluid simulation can effectively mimic and predict the
behavior of fluids under different conditions, including flow
patterns, pressure distributions, and temperature variations [29].
In VR environments, establishing high-fidelity fluid physics fields
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enhances user immersion, making observation and interaction
within the simulation environment more natural, especially in
disaster training and high-risk operation training [30–33]. The
key formulas in the fluid simulation process are as follows [34,
35]: Continuity Equation: The Continuity Equation describes the
principle of conservation ofmass in fluids. For incompressible fluids,
its formula can be expressed as Equation 1:

∇ ⋅ u = 0 (1)

where u represents the fluid velocity field.
Momentum Equation (Navier-Stokes Equations): The Navier-

Stokes equations describe the conservation of momentum in fluid
motion, and its formula is Equation 2:

∂u
∂t
+ (u ⋅∇)u = −1

ρ
∇p+ ν∇2u+ f (2)

where ρ is the fluid density, p is the pressure,v is the kinematic
viscosity, and f is the body force (such as gravity).

Energy Equation: The Energy Equation describes the
conservation of energy in fluids, typically expressed as Equation 3:

∂E
∂t
+∇ ⋅ (Eu) = −p∇ ⋅ u+∇ ⋅ (κ∇T) +Q (3)

where E is the total energy per unit volume, k is the thermal
conductivity, T is the temperature, and Q is the source term.

The Navier-Stokes equations are fundamental in describing the
motion of viscous fluids [36, 37]. They encapsulate the principles
of momentum, mass, and energy conservation and can accurately
capture the dynamic behavior of fluid flow, such as laminar
flow, turbulent flow, and the interaction between fluid and solid
boundaries [38, 39]. Consequently, the Navier-Stokes equations
are widely applied to various fluid dynamics problems, including
gas dynamics, hydrodynamics, climate modeling, and aerospace
engineering. They are the cornerstone of fluid simulation in both
industrial applications and fundamental research [40].

However, theNavier-Stokes equations are nonlinear, particularly
in the convective term (u ⋅∇)u of the momentum equation
[41, 42]. This nonlinearity makes the solution of the equations
extremely challenging, especially in complex flow situations such
as turbulence, where fluid behavior can become exceedingly
intricate [42]. Although the development of modern CFD
technology allows engineers and scientists to effectively address
these equations using numerical methods, the time and
computational resources required are not negligible, particularly
in VR scenarios that demand real-time interaction.

2.2 Deep learning applied in physical state
prediction

Deep learning models are capable of automatically extracting
features from raw data without the need for manual feature
engineering [43, 44]. This capability enables the models to better
capture complex patterns within the data, particularly excelling in
high-dimensional data or nonlinear relationships [45, 46]. They
are particularly suitable for handling large-scale datasets, capable
of being trained through parallel computing and efficient model
structures such as convolutional neural networks and recurrent

neural networks. This allows deep learning to maintain good
performance as the volume of data continues to increase [47, 48].
For time series data, deep learning can effectively capture temporal
dependencies, providing more accurate predictive results [49].

However, there are challenges and difficulties when using deep
learning for nonlinear data prediction, especially in the context
of AI for science. Training deep learning models on nonlinear
data may require complex hyperparameter tuning and substantial
computational resources. Particularly when dealing with complex
physical phenomena, finding an appropriate network structure and
optimization algorithm may necessitate extensive experimentation
and iteration. Overfitting is also a particularly prevalent issue.
Models may perform well on training data but experience a decline
in predictive performance on unseen data. This poses a challenge to
the reliability of constructing physical fields in VR, especially when
the amount of data is limited.

3 Proposed methods

In this section a real-time physical field prediction method
applied in VR is introduced. This novel method contains multi-
mixed feature capture and dynamic physical state prediction.
The contents of the proposed method will be elaborated in
subsequent sections.

3.1 Framework of the proposed method

To present photo-realistic physical state changes, the new
method is designed to predict dynamic evolution of virtual object.
The framework of the proposed method is shown in Figure 1,
which is divided into three core components, namely,: (1) numerical
simulation, (2) deep learningmodel pre-training for data prediction,
(3) VR reconstruction. The left side of Figure 1 shows the process of
the method, while the right side displays the relevant technologies
adopted in each step.

Numerical simulations were conducted using simulation
software to obtain simulated physical field data. Simultaneously,
a pre-training model was utilized to learn the underlying patterns of
physical field variations. Building upon this pre-trainedmodel as the
predictive foundation, during VR runtime, the system receives real-
time data reflecting changes in the VR environment and predicts
future data for reconstruction. The details of the Pre-train Model
will be elaborated upon in Sections 3.2 and 3.3.

3.2 Multi-mixed feature pre-capturing
module based on data dimensionality
reduction

Multi-mixed Feature Pre-capturing module is the module (1)
in Figure 1. A set of CFD data is composed of spatial series and
time series, where the spatial sequence primarily represents the
interrelationship and the overall trend of change between every
position within the space at each future time point, while the
time series depicts the relationship between the object’s changes
at consecutive moments. As the number of parameters that need

Frontiers in Physics 03 frontiersin.org

https://doi.org/10.3389/fphy.2025.1623325
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Yu et al. 10.3389/fphy.2025.1623325

FIGURE 1
The schematic of the proposed method.

FIGURE 2
Feature pre-capture module.

to be simulated increases, and as the fidelity and duration of the
simulation become higher, the volume of data will increase sharply.
This will significantly escalate the computational power and time
required for deep learning training and inference, even though it
already consumes less computational power and time compared to
simulations that rely on CPU power [50, 51].

Therefore, this section introduces the Multi-mixed Feature Pre-
capturingmodule proposed in this paper to enhance the effectiveness
of deep learning for data prediction, which leverages the advantages
of proper orthogonal decomposition (POD) and TCN in feature
capturing at different dimensions [52]. Simultaneously, this method
perform dimensionality reduction on the data to reduce the
computational power and time consumption of deep learning.

(a) POD is applied for data dimensionality reduction due to its
effectiveness in capturing the primary flow features. It can
simplify the spatial field and generate the temporal field for
efficient fluid field reconstruction, where the simplification of
the spatial field is shown as Equation 4:

[B,S,V] = svd (U) (4)

That’s thematrixU(x, t) = BSVT, where B ∈ RM×M, S ∈ RM×N and
V ∈ RN×N.The setB consists of orthonormal eigenvectors, including
the vector UUT, and serves as the schema construction matrix for
the data. Matrix S is diagonal, with singular values from all solutions
arranged in descending order. Vector V represents the spatial mode
obtained through decomposition.
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FIGURE 3
Improved pre-train LSTM.

FIGURE 4
Cylindrical flow field with 89,351 nodes.

The time coefficient is solved with the change of time sequence
information of physical field, shown as Equations 5, 6:

a = B ⋅ S (5)

a (t) = [a1 (t) ,a2 (t) ,…,aM (t)]
T (6)

The time coefficient matrix a(t) ∈ ℝM×T generated by POD
serves as the input to TCN, whereM denotes the number of retained
modes and T represents the time steps. Reconstruct using obtained
parameters, as Equation 7:

U (x, t) = Ū (x, t) +
p

∑
j=1

aj (t)VT
j (x) (7)

The process described above, by capturing spatial features and
analyzing the time matrix, can significantly reduce the amount

of data for subsequent processing while retaining important
information.

(b) TCN is a deep learning architecture specifically designed for
sequence modeling, leveraging convolutional layers to capture
temporal dependencies, making it suitable for tasks involving
timeseriesdata[53].Inthiscontext, toextractshort-termfeatures
from sequences, TCN employs temporal matrices to capture
featuresalong the timedimension. Itsuniqueness lies in inserting
zero elements between traditional convolutionkernels to expand
the receptive field, thereby capturing broader temporal features
both forwards and backwards without increasing the number of
parameters. The TCN formula is described as Equation 8:

Ztcn = TCN (a (t)) = σtcn (Wtcn ∗ a (t) + btcn) (8)
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FIGURE 5
The main POD mode distribution in flow field.

FIGURE 6
The magnitude of modal energy at different modes.

where σtcn denotes the TCN activation function, Wtcn represents
the convolutional kernel weights, and btcn is the bias. The
original reconstruction formula aj(t) is replaced with [Ztcn]j, which
represents the time coefficients optimized by TCN, while retaining
the POD spatial basis Vj(x). The formula is Equation 9:

U (x, t) = Ū (x, t) +
p

∑
j=1
[Ztcn]jV

T
j (x) (9)

TCN and POD are combined to capture features, based on
their sensitivity in terms of space and time. The framework is
shown as in Figure 2. The TCN is used as the next step after
the decomposition of the time and space matrices in the POD
process, further capturing the temporal features of the time matrix
to serve as preprocessed data ready for the subsequent data
prediction step.
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FIGURE 7
The predicted data of LSTM compared with original data.

3.3 Prediction module based on improved
pre-train LSTM

Prediction module is the module (2) in Figure 1, and the
structure is shown in Figure 3. Directly using simulations to
establish future physical fields in real-time may place stringent
demands on computational power. Therefore, employing a pre-
trained deep learning module to construct physical fields is
considered as one of the options. LSTM networks, due to
their unique gating mechanism, exhibit significant advantages in
processing time-series data [54]. Meanwhile, pre-trained models
based on LSTM networks hold great potential in addressing the
instantaneity issues of VR presentation and the temporal problems
of physical simulation data prediction.

The LSTM unit is comprised of three parts: the forget
gate, the input gate, and the output gate. The forget gate
determines how much information from the previous time step’s
cell state is retained, the input gate controls how much input

information is added at the current time step, and the output
gate decides how much information is output from the current
cell state. The computational formulas for the LSTM unit are as
follows Equations 10–15:

ft = σ(W f ⋅ [ht−1,xt] + b f) (10)

it = σ(Wi ⋅ [ht−1,xt] + bi) (11)

C̃t = tanh(WC ⋅ [ht−1,xt] + bC) (12)

Ct = ft ∗Ct−1 + it ∗ C̃t (13)

ot = σ(Wo [ht−1,xt] + bo) (14)

ht = ot ∗ tanh(Ct) (15)
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FIGURE 8
The predicted data of Transformer compared with original data.

In this context, ft, it, ot, and C̃t stand for the forget gate,
input gate, output gate, and candidate vector, respectively. W f ,
Wi, WC, and another Wo represent weight matrices. b f , bi,
bC, and bo represent bias vectors. sigma and tanh denote the
sigmoid and hyperbolic tangent functions, respectively, c represents
the cell state.

However, despite LSTM’s excellent performance in handling
short to medium-length time-series data, its performance is often
limited when faced with long, nonlinear time-series data. This
is due to the presence of nonlinear convective terms in the
Navier-Stokes equations, whereas the traditional fully connected
layers within LSTM algorithms, equipped with fixed activation
functions, possess limited fitting capabilities for such nonlinearity.
Consequently, we adopted the KAN network. The KAN leverage
learnable activation functions, enabling them to approximate
arbitrary continuous functions, whichmakes themparticularlywell-
suited for highly nonlinear CFD data. Furthermore, KAN permit

the incorporation of domain knowledge—for example, initializing
the network with spline bases—ensuring that the outputs adhere
to the conservation laws of fluid dynamics. The Kolmogorov-
ArnoldRepresentationTheorem serves as the theoretical foundation
for KAN networks. This theorem states that any multivariate
continuous function f(x1,x2,…,xn) can be represented as a
composition of a finite number of univariate continuous functions
Φq,p and binary addition operations, where both Φq and φq,p are
univariate continuous functions. the theorem can be formulated
as Equation 16:

f (x1,x2,…,xn) =
2n+1

∑
q−1

Φq(
n

∑
p−1

φq,p (xp)) (16)

As input data passes through a KAN layer, it first undergoes
computation with these learnable activation functions to
obtain output values. These learnable activation functions
are positioned on the edges of the network, rather than on
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FIGURE 9
The predicted data of GRU compared with original data.

the neurons. Mathematically, this process can be expressed
as Equation 17:

x(l+1) = σ(l+1) (W(l+1) ⋅ σ(l) (x(l))) (17)

σ(l) and σ(l+1) denote the adjustable radial basis functions for the
lth and (l+ 1)-th layers, respectively. Various complex functions
can often be approximated by a relatively small number of radial
basis functions. Here, w represents the weight matrix, x(l) and x(l+1)

denotes the input and output. The total training loss is the sum of
the prediction loss and the L1 and entropy regularization terms for
all KAN layers, as Equation 18:

ℓtotal = ℓpred + λ(μ1

L−1

∑
l=0
|Φl|1 + μ2

L−1

∑
l=0

S(Φl)) (18)

|Φl|1 represents the sum of the L1 norms of all activation functions
for each layer, while S(Φl) represents the entropy for each layer.

Unlike previous LSTM network predictions, replacing the last
fully connected layer of the LSTM network with a KAN network
containing a conditionally parameterized function layer enables the
activation functions to become learnable without increasing the
number of parameters. If take the output at the final time step of
the LSTM network, denoted as ylstm, as the input to the KAN, then
the output of the KAN network is as follow Equation 19:

ŷKAN = σ
(L) (W(L)σ(L−1) (W(L−1)⋯σ(1) (W(1)ŷLSTM,L + b

(1))⋯+ b(L−1)) + b(L))
(19)

The activation functions for the KAN layers can be directly set
by individuals, after which affine functions can be fit. The injection
of human inductive biases or domain knowledge allows for more
accurate fitting results.

Therefore, in this subsection, a method is proposed that
leverages the strengths of LSTM and KAN to pre-train a deep
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FIGURE 10
The predicted data of TCN-LSTM compared with original data.

learning module using simulation data, thereby enabling real-time
responses to changes in physical states within VR.

4 Validation

4.1 Dataset and experimental
environments

The data on which this paper adopted can be found in [http://
dmdbook.com/]. The paper utilizes the 2D flow around a circular
cylinder with von Kármán vortices in the dataset to demonstrate
and validate the method proposed in this paper. All the experiments
are implemented on the platform Python and on a work station
with Intel i7, GPU 4060 and Windows 11. The high realistic
dynamic presentation of fluid dynamics is a common need in
virtual reality scenes. This section applies the proposed method of

a deep learning prediction based on CFD simulation to achieve fast
generation of highly realistic animations. The phenomenon of von
Kármán vortices is a typical scenario in numerical simulation of
fluid dynamics, and the CFD simulation data in this paper comes
from the above dataset, the Reynolds number is 100, with a time
interval of 0.02s and 150 data snapshots taken at various time
points. The Strouhal number is 0.16, and the simulation domain is
divided into 199 grids along the x-direction and 449 grids along the
y-direction.

4.2 Experiments and analysis

In the simulation analysis, we focused on the temporal evolution
of fluid dynamics. Figure 4 presents the evolution at two time points,
t1 = 2 s and t2 = 3.02 s. Figure 5 displays a schematic diagram that
visually represents the sixth-order mode within the flow field.
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FIGURE 11
The predicted data of proposed method compared with original data.

Among all linear combinations, the one corresponding to POD
is superior in that it captures themost kinetic energy on average.The
energy relationship between time and space fields is quantified using
Equation 20, which establishes that the cumulative energy of the first
Nk modes in the reduced space is always greater than or equal to the
cumulative energy of the correspondingmodes in the original space.
This inequality holds for every Nk ≤ N, ensuring that the dominant
modes capture the essential dynamics of the system with minimal
energy loss [55]. Based on the energy ranking shown in Figure 6, it is
evident that the energies of the first six orders suffice to approximate
the reduced flow field [56]. Therefore, the time coefficient data of
these six modes are selected as the training dataset. The comparative
analysis seeks to elucidate the influence of variousmodal data on the
model’s predictive capabilities.

Nk

∑
i=1

E{βiβi} =
Nk

∑
i=1

λi ⩾
Nk

∑
i=1

E{αiαi} , forevery Nk ⩽ N (20)

In the experiments conducted in this paper, multiple parameters
were employed to configure the neural network model. Initially,
the batch size was set to 10. To facilitate the processing of multi-
dimensional data, an extra dimension L with a value of three was
introduced. The input layer consists of 50 neurons, tasked with
receiving the raw data features. The hidden layer was expanded
to 200 neurons, enhancing the model’s nonlinear representation
capability and capacity. The output layer comprises 100 neurons.
Additionally, a task-specific parameter, gridsize, was defined with
a value of 300, which determines the size of the grid search.
The model was trained for 500 epochs, and the learning rate
of the Adam optimizer was set to 5e-4. To improve the model’s
learning efficiency and stability, normalization was applied to the
input data, unifying the data scale to the same magnitude and
accelerating the convergence process. For the output layer, the
tanh function was chosen as the activation function, capable of
producing outputs within the range of −1 to 1, thereby enhancing
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FIGURE 12
The R2 value of different methods.

TABLE 1 The time consumption of different models in the sixth-order
mode is compared with that of RMSE and MAE.

Methods Time(s) RMSE MAE

LSTM 6.17 0.0189 0.0132

Transformer 6.03 0.0245 0.0211

GRU 9.13 0.02 0.0184

TCN-LSTM 6.48 0.0132 0.0107

Proposed method 6.62 0.0087 0.0063

the model’s flexibility and effectiveness in tasks requiring bounded
output ranges.Throughout the design of the convolutional layers, the
ReLU function was uniformly adopted as the activation function.
The KAN layer is configured with: grid size = 5; spline order = 3;
noise scaling = 0.1; base scaling = 1.0; spline scaling = 1.0; grid range
[-1, 1]; grid smoothing = 0.02. Training employs a composite loss
function, as Equation 21:

ℓtotal =
1
T

T

∑
t=1
‖yt − ŷt‖

2
Γ + λ(μ1

L−1

∑
l=0
|Φl|1 + μ2

L−1

∑
l=0

S(Φl)) (21)

Additionally, Γ is the vorticity-related weight matrix the
regularization coefficient is set to λ = 0.01, μ1 = 0.1, μ2 = 0.05,
and a Dropout layer is added with a ratio of 0.2, along with
an early stopping strategy with a patience of 20. The dataset
comprises time coefficients for six initial patterns across 225
time steps, with the simulation process lasting 6.04 s. To ensure

prediction accuracy, a multi-input single-output model was
employed. For model evaluation, R2; was selected as the assessment
metric. Figures 7–10 show the predictive performance of four
commonly used networks, while Figure 11 illustrates the predictive
performance of the proposed method in this paper to evaluate its
predictive capability.

As shown in Figure 12, the method proposed in this paper
exhibits extremely high stability during the training process when
compared to the unmodified model. The R2 value rapidly increases
from the initial stage to nearly one and remains at this high
level throughout the subsequent training, with fluctuations but
overall demonstrating very stable performance. This indicates that
the model is capable of fitting the data exceptionally well, with
prediction results closely aligning with actual values, thereby
demonstrating its powerful predictive capabilities.

Table 1 compares the time consumption and Root Mean Square
Error (RMSE) of different models, all of which utilize data from the
first sixmodes as both input and output. As indicated in the table, the
Transformer model operates the slowest and exhibits significantly
poorer prediction accuracy, suggesting that further optimization
and stabilization may be necessary. The GRU model consumes even
more time, posing potential challenges when faced with real-time
requirements. In contrast, the model proposed based on feature pre-
capture compares favorably in computation time with the LSTM
and TCN-LSTM models. However, in terms of performance, the
model proposed based on feature pre-capture outperforms the
other methods.

To present the prediction resultsmore intuitively,Three different
time points were selected, and a sixth-order improved LSTM model
network based on feature pre-capture was employed to compare the
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FIGURE 13
Comparison of real and predicted effects of the six-order modal reconstructed flow field under 1, 3, and 5 s time coefficient predictions of the
improved model.

FIGURE 14
Based on the time coefficient prediction of the improved model, the
future state of the flow field at 6.44 s is obtained.

actual and predicted scenarios at these time points. The prediction
model accurately forecasted the data features or states at the 1-s,
3-s, and 5-s marks, with high confidence levels in the prediction
results, that shown in Figure 13.This demonstrates that, in situations
where future simulation data is unavailable, the prediction model
can effectively predict the physical field in a reduced-order model
state, showcasing its robust prediction capabilities and practical
application value.

Ultimately, with the reduction to the first six modes, the
original flow field is propelled forward by twenty time steps,
attaining a duration of 6.44 s (Figure 14). Regardless of whether

the transmission into virtual reality is data-driven or dynamic, the
resultant effects will invariably encapsulate physical properties.

4.3 Application and prospects of the
proposed methods

The physical state prediction method proposed in this paper
will be applied to the presentation of VR realistic dynamic scenes.
Taking the animation presentation of ice droplet melting in the
simulation training of civil aviation aircraft de icing as an example.
The application diagram is shown in Figure 15. Using the method
proposed in this paper, numerical simulation analysis is conducted
during the initial stage of the melting process of frozen droplets,
followed by data-driven prediction to obtain the physical property
changes of the melting process. This method can significantly
shorten the time required to obtain the variation pattern of the
simulated object using only multi physics field coupled numerical
simulation. In VR scenes, the changing patterns of the melting
process of frozen droplets are associated with the particle system in
the form of structured data. By simulating the generation, attribute
changes, and disappearance process of particles through the particle
system, a dynamic effect of melting is constructed. The VR visual
effects enhanced by this method integrate the real laws of physical
property changes, and can present realistic animation effects. This
study conducts training on laminar flow at Re = 100, while the strong
nonlinear dynamics of high-Reynolds-number turbulence have not
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FIGURE 15
Application of physical state prediction methods in VR aircraft ice removal.

been investigated. Future workwill explore adaptivemodal selection
mechanisms and differentiable rendering techniques to balance the
accuracy of complex flow regimes with the deployment efficiency on
edge devices.

5 Conclusion and future works

This paper proposed an effective method for real-time
construction of future physical fields within the VR environment.
This is achieved via rapid prediction of high-fidelity physical fields
integrated multi-mixed feature pre-capturing module based on data
dimensionality reduction andpredictionmodule based on improved
pre-train LSTM. Owing to these two modules, the characteristics of
the simulated data can be effectively fitted, allowing for the timely
prediction of high-fidelity future physical fields based on the current
state during VR usage, and the real-time establishment of these
physical fields within the VR environment.

The numerical results indicate that, compared to the
computation time of traditional CFD simulations, the prediction
model introduced in this paper offers at least a 160-fold reduction in
computation time. Furthermore, compared to existing deep learning
methods, the proposed method effectively balances prediction
accuracy and time consumption, thereby essentially meeting the
requirements for real-time presentation in VR environments.

However, the method proposed in this paper experiences an
exponential reduction in the number of data points for temporal
coefficients during the data reduction process. This may result
in an inability to meet the data requirements of deep learning
networks when dealing with specific issues. Additionally, this study
focuses solely on training for laminar flow at a Reynolds number
(Re) of 100. The strong nonlinear dynamics associated with high
Reynolds number turbulent flows (Re > 1,000) have not been
investigated. Future work will explore adaptive mode selection
mechanisms, differentiable rendering techniques, and reducing
algorithmic complexity, aiming to balance the accuracy required
for complex flow regimes with the efficiency of deployment on
edge devices.
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