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P3TRTA-RDQL: a crowdsensing 
task allocation scheme 
integrating privacy protection 
protocol and low-dimensional 
reinforcement learning

Qian Li*, Manlu Chen and Zhiwei Chen

Electric Power Dispatching and Control Center of Guangdong Power Grid Co., Ltd., Guangzhou, 
China

Crowdsensing, as an emerging data collection mode, demonstrates great 
potential in Internet of Things (IoT) applications. However, it faces a critical 
trilemma: accurate task allocation depends on node proximity to the task 
location, but disclosing location data risks privacy leakage, while concealing it 
reduces allocation precision. Existing solutions either incur high computational 
overhead (encryption), rely on unfeasible trusted third parties (anonymization), 
or degrade data utility (obfuscation), failing to balance privacy, accuracy, and 
efficiency. To address these issues, this paper proposes the P3TRTA-RDQL 
scheme, combining a symmetric encryption-based privacy protection protocol 
(P3TRTA) with a low-dimensional Q-learning algorithm (RDQL). The P3TRTA 
protocol uses a location-based symmetric key generator (LSKeyGen) to protect 
node/task location privacy and proxy re-encryption to secure task content, 
eliminating reliance on trusted third parties. The RDQL algorithm reduces 
state dimensionality by 60% compared to traditional reinforcement learning, 
enhancing large-scale task allocation efficiency. Experimental results show that 
P3TRTA-RDQL outperforms existing methods by 30% in privacy protection 
strength, achieves 98% task allocation accuracy, and reduces allocation time 
for 1000 tasks by 40%. This work provides technical support for crowdsensing’s 
widespread IoT applications.
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 1 Introduction

With the widespread deployment of intelligent terminals and the rapid development of 
cloud/edge computing, using crowd sensing to collect data has become a new trend. As an 
emerging technology, crowd sensing encourages mobile nodes to participate in collaborative 
and distributed data collection. The mobile nodes here refer to mobile devices or terminals 
and individuals equipped with mobile devices. With the continuous development of 
hardware manufacturing technology, current mobile devices are usually embedded with 
rich sensors and computing/communication modules, and have the capabilities to collect 
data from the surrounding environment, preprocess data, and transmit data. In addition, 
with the continuous popularization and deployment of intelligent devices, mobile devices 
can be seen everywhere in people’s lives. Crowd sensing is also used to assist in air
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quality measurement, noise detection, and other Internet of Things 
applications. Compared with the traditional data collection mode 
based on sensor networks, crowd sensing does not require the 
installation and maintenance of sensors, and has great advantages in 
terms of economic cost and labor consumption. Especially when it 
comes to large-scale data collection, this advantage is more obvious. 
Equipped with rich sensors and computing modules, these devices 
enable real-time data collection, preprocessing, and transmission, 
supporting applications like Internet of Vehicles, intelligent parking, 
and 3D model reconstruction. Compared with traditional sensor 
networks, crowd sensing avoids sensor deployment/maintenance 
costs, making it more scalable for large-scale IoT scenarios.

Mobile crowdsensing (MCS), as an emerging data collection 
mode, crowdsources tasks to participants carrying IoT devices to 
achieve human-object collaborative data collection [1]. However, 
the open network, the mobility of participants, and untrusted cloud 
servers pose severe challenges to the task allocation and data security 
of mobile crowdsensing [2]. Solving these problems is crucial for 
promoting the practical application of mobile crowdsensing and 
ensuring the secure and efficient development of the Internet of 
Things. Mobile crowdsensing currently faces a specific trilemma: 
accurate task allocation relies on node location proximity, but 
disclosing locations risks privacy leakage, while concealing them 
reduces allocation precision.

This paper conducts research on the deficiencies of mobile 
crowdsensing in the Internet of Things in terms of task allocation 
and data security, especially the data security issues in the scenario 
of mobile crowdsensing driven by federated learning (FL). Mobile 
crowdsensing was first proposed by Ganti et al. [2], and Guo et al. 
[3] defined it as users using mobile devices to collect or generate 
data and aggregate it on the cloud service side to provide services 
for the community. Compared with traditional wireless sensor 
networks, mobile crowdsensing does not require the deployment 
and maintenance of sensors, and the collection devices are mobile, 
which is more flexible [4].

Since the International Telecommunication Union (ITU) 
officially proposed the concept of the Internet of Things 
(IoT) in 2005 [5], with its advantages of integrating technologies 
such as data sensing, network communication, and control 
computing, it has rapidly become a key force driving the intelligent 
transformation of society.

Privacy-protection limitations: Encryption-based schemes 
either impose heavy computational burdens or sacrifice location 
accuracy. Anonymization methods introduce noise that degrades 
data utility— [6] document a 20% drop in task success rates for 
location-dependent tasks due to obfuscated coordinates.

Incomplete privacy coverage: Most existing protocols protect 
only partial privacy; Even protects node and task location, the model 
fails to secure task content from untrusted clouds.

Task allocation inefficiency: Traditional reinforcement learning 
algorithms for task allocation struggle with large-scale scenarios 
due to high-dimensional state spaces. Frameworks considering 
node mobility use inaccurate mobility models, resulting in higher 
resource waste.

Specifically, the main work of this paper is as follows: 

1. We propose a location-based symmetric key generator 
(LSKeyGen), which breaks two long-standing limitations of 

traditional symmetric key negotiation: the need for a trusted 
third party to distribute keys and the requirement for direct 
communication between parties. Unlike existing encryption 
methods that rely on external trust or complex communication 
processes, LSKeyGen allows two nodes to independently 
generate a shared symmetric key using only their own location 
data. This not only avoids the risks associated with relying on 
untrusted third parties but also eliminates the need for prior 
direct interaction between nodes, making privacy protection 
more adaptable to dynamic and distributed crowdsensing 
environments where nodes often have no pre-established 
communication relationships.

2. We design the P3TRTA protocol for task publication and 
allocation, which integrates LSKeyGen to encrypt and transmit 
location obfuscation strategies, while adopting proxy re-
encryption technology to ensure secure distribution of task 
content. Unlike existing privacy protocols that only protect 
partial information—for example, some focus solely on 
node location privacy and ignore the confidentiality of task 
locations, while others protect task content but fail to prevent 
leakage of node positions—P3TRTA uniquely achieves triple 
privacy protection: it safeguards node location information 
from being exploited by malicious parties, prevents task 
locations from being tracked or misused, and ensures that task 
content is only accessible to authorized nodes, thus addressing 
the one-sidedness of current privacy protection solutions.

3. We mathematically model the task allocation optimization 
problem, with a distinct focus on assigning tasks to multiple 
nodes while ensuring these nodes maintain a spatial uniform 
distribution as much as possible—an aspect that is not fully 
considered in existing models, which often prioritize single-
node efficiency over overall coverage quality. To solve this 
NP-hard optimization problem, we propose the Reduced-
Dimensionality enabled Q-Learning (RDQL) algorithm, 
which adopts a targeted dimensionality reduction strategy. 
Compared to traditional reinforcement learning algorithms 
that struggle with inefficiency when handling large-scale 
tasks due to high-dimensional state spaces, RDQL simplifies 
the problem complexity without losing key information, 
enabling it to quickly adapt to changes in task scales and node 
distributions, thus significantly enhancing the flexibility and 
efficiency of large-scale task allocation.

4. Through simulation experiments, we systematically verify 
that our proposed scheme achieves excellent performance in 
three critical aspects: it provides robust privacy protection, 
ensuring that sensitive information such as node locations and 
task details remains secure; it maintains high task allocation 
accuracy, effectively selecting nodes that are suitable for task 
execution; and it demonstrates strong timeliness, completing 
large-scale task allocation in a short time. Additionally, 
detailed security analysis confirms that the P3TRTA protocol 
can effectively resist common attack methods, further 
validating the reliability of the proposed solution.

The structure of this paper is as follows: Section II; expounds 
on the background knowledge of data security. Section Ⅲ presents 
the model we designed. Section Ⅳ shows the experimental results. 
Section Ⅴ summarizes the work and looks forward to the future. 
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2 Related work

The task allocation of mobile crowdsensing aims to reasonably 
distribute sensing tasks to mobile nodes to achieve efficient data 
collection. Encryption, anonymization, and obfuscation are three 
commonly used technical means in privacy protection. 

2.1 Encryption

Encryption mainly relies on various cryptographic algorithms, 
such as Homomorphic Encryption (HE) and Group Signature, 
etc. Relevant studies have advanced MCS but leave key gaps: 
Works employing geo-obfuscation for location privacy [7] suffer 
from reduced allocation accuracy due to excessive noise; studies 
optimizing task allocation through mobility patterns [8] overlook 
privacy protection; surveys on MCS [9] highlight its role in 
the IoT but acknowledge unresolved privacy-efficiency trade-offs. 
Additionally, recent blockchain-based approaches [10] enhance 
decentralized privacy via immutable ledgers but introduce high 
communication overhead, limiting scalability for large-scale tasks. 
Bagdasaryan et al. [11] pointed out that any participating client can 
introduce a stealthy backdoor into the global model, thus presenting 
a hidden backdoor function in the global model. Shen et al. [12] 
proposed a security framework based on additive homomorphic 
encryption that can protect location privacy from being leaked 
to untrusted third parties. The application of homomorphic 
encryption enables third parties to still have the ability to compute 
on the ciphertext information. Lu et al. [11] proposed a novel 
adversarial example defense algorithm that combines a micro-
network architecture with generative adversarial networks (GANs), 
aiming to enhance classification accuracy while minimizing training 
costs. Sucasas et al. [13] applied group signature technology to 
achieve privacy protection. Specifically, nodes belonging to the 
same group share a private key and sign in the name of the 
group, and this signature can be authenticated by the group public 
key. Ni et al. [14] proposed a location privacy protection mechanism 
based on random matrix multiplication. In this mechanism, the 
location of each node and the task location can both be represented 
by random matrices. By performing a multiplication operation on 
the two matrices, it can be determined whether the node is within 
the task location without having to disclose the specific location of 
the node. In the above works, although the latter two reduce the 
computational overhead, the accuracy of the location data decreases, 
thereby reducing the accuracy of task allocation. 

2.2 Anonymization

Anonymization refers to hiding the real identity or ID of 
the node. As long as the attacker cannot accurately associate the 
location of the node with the real ID, then the location privacy 
can be considered to be protected. For vehicular crowdsensing, Ni 
[14] proposed that a trusted third party distributes anonymous 
credentials to nodes. Based on this credential, nodes can 
generate pseudonyms and use them to replace the real ID for 
communication. Li et al. [15] proposed a privacy protection 
algorithm based on K-anonymity technology. This algorithm 

divides nodes into different groups and uses one or more location 
information to replace the location information of the nodes 
themselves, so that the attacker cannot distinguish the location of a 
certain node from other nodes in the group, achieving the purpose of 
protecting location informatio. However, the above methods usually 
need to assume that there is a trusted third party in the system. In 
addition, anonymization may affect the contribution authentication 
of nodes during the data collection process, and thus affect the 
distribution of incentives.

In conclusion, although current research on task allocation 
and data security in mobile crowdsensing and federated learning 
has achieved certain results, there are still many problems that 
need to be solved urgently, such as the balance between task 
allocation accuracy, privacy protection, and system efficiency, 
and the efficiency and universality of data security protection 
technologies. Based on the existing research, this paper will propose 
innovative solutions to improve the performance of the Internet of 
Things mobile crowdsensing system in terms of task allocation and 
data security. 

2.3 Obfuscation

This technology modifies or processes the data within a certain 
range so that the attacker cannot accurately derive the original data. 
For example, when transmitting real location information, a set of 
pseudo-location data can be transmitted simultaneously to “hide” 
the real data [16]. Zhu et al. [17] proposed dividing nodes into 
different groups. Each group has a trusted group leader. The group 
leader knows the location information of all nodes in the group and 
can directly communicate with the server. The server distributes the 
total tasks to the group leader, and the group leader decides which 
nodes to distribute the tasks to by himself. In this mechanism, since 
nodes do not upload information to the server, location privacy is 
protected within the group. The disadvantage of this mechanism 
is also obvious. If the group leader colludes with the server, then 
privacy protection no longer exists. To address this shortcoming, 
applying DP (Differential Privacy) to add noise to the data as a new 
method has received widespread attention [18]. However, with the 
introduction of noise, the usability of the data decreases. Especially 
when excessive noise is added, the data may even be unusable due to 
poor accuracy.

In conclusion, although current research on task allocation 
and data security in mobile crowdsensing and federated learning 
has achieved certain results, there are still many problems that 
need to be solved urgently, such as the balance between task 
allocation accuracy, privacy protection, and system efficiency, 
and the efficiency and universality of data security protection 
technologies. Based on the existing research, this paper will propose 
innovative solutions to improve the performance of the Internet of 
Things mobile crowdsensing system in terms of task allocation and 
data security.

As previously stated, nodes within the task location need 
to upload their obfuscated location coordinates to the service 
provider to participate in the task competition. Since all candidate 
nodes apply the same Location Obfuscation Parameter (LOP), the 
location information that the service provider can read includes the 
obfuscated task location and the obfuscated locations of all candidate 
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nodes. For example, assume there are M candidate nodes randomly 
distributed in the task location competing for the task, and the 
service provider needs to select N winners based on the obfuscated 
locations of these candidate nodes to execute the task. As mentioned 
before, the selected N winners are preferably distributed uniformly 
in space, because a more uniform spatial distribution means a larger 
data sensing range and a lower data redundancy [19]. Specifically, 
assume there is a task area of 200 m × 200 m, and its obfuscated 
longitude range is [-96.00200, - 96.00000], and the latitude range is 
[0.00000, 0.00100]. If M = 50 and N = 8, then the service provider 
needs to select 8 winners with a uniform spatial distribution from 50 
candidates. To achieve this, the service provider first evenly divides 
the entire task area into 8 sub - regions.

This section proposes a location privacy protection mechanism 
in mobile crowdsensing. First, a location - based symmetric key 
generator is designed, and the generation of this key does not rely 
on any trusted third party. By combining with this key generator, 
a privacy protection protocol for task announcement and task 
allocation is further proposed. This privacy protection mechanism 
reserves relevant data for task allocation, and its combined use 
with the mechanism can achieve high - precision and efficient task 
allocation while protecting privacy. 

3 Our model

Based on an in-depth analysis of the challenges faced by mobile 
crowdsensing in the Internet of Things in terms of task allocation 
and data security, as well as the deficiencies of existing research, this 
section will elaborate in detail on the innovative model constructed 
to address these issues. This model integrates a variety of advanced 
technologies, aiming to achieve efficient task allocation and reliable 
data security protection. 

3.1 Mobile crowdsensing system model

Task allocation in mobile crowdsensing is usually related to 
the location of participating nodes. Take smart parking in smart 
transportation applications as an example. Suppose a user A is 
currently at location B, and A sends a parking request to the server. 
The server generates a sensing task based on this request: to find 
available parking spaces near location B. When the server selects 
nodes to execute this task, it tends to choose nodes near location 
B. This not only makes the sensed parking space information more 
accurate but also avoids nodes having to move over long distances to 
execute the task, saving the energy consumption of the nodes. In this 
task allocation process, the server needs to know the current location 
information of the nodes. However, if the server is untrusted, it 
may leak the location information of the nodes, which will lead to 
a serious risk of location privacy leakage. How to enable the server 
to still allocate sensing tasks to nodes near B while protecting the 
location privacy of the nodes (that is, not leaking the real location of 
the nodes to the server) is the problem that this section aims to solve.

Specifically, the main work of this paper is as follows: 

1. A location-based symmetric key generator, LSKeyGen, is 
proposed. This generator breaks two preconditions of the 

traditional symmetric key negotiation: Firstly, there exists a 
trusted third party for key distribution. Secondly, the two 
communicating parties can directly communicate to negotiate 
the key. By applying LSKeyGen, two nodes can generate a 
symmetric key according to their own location information 
without relying on either of the above preconditions.

2. A privacy protection protocol, P3TRTA, for task publication 
and task allocation is proposed. In this protocol, LSKeyGen is 
used to generate a symmetric key and encrypt and transmit 
the location obfuscation strategy. At the same time, the Proxy 
Re-Encryption (PRE) technology is applied to ensure that 
the original data will not be leaked to the untrusted cloud. 
In addition to the node location privacy, this protocol also 
protects the task location privacy and the task content.

3. The optimization problem in task allocation is mathematically 
modeled. Different from other current work, this modeling 
considers assigning tasks to multiple nodes, and these nodes 
should maintain a spatial uniform distribution as much as 
possible. In the model, two distance parameters (the distance 
from the winner to the center of the sub-region and the 
distance from the winner to the winner) are defined to 
quantify the accuracy of the task allocation. Due to the NP-
hard property of this optimization problem, a Reinforcement 
Learning algorithm with reduced dimensionality (Reduced-
Dimensionality enabled Q-Learning, RDQL) is proposed to 
solve the optimization problem in task allocation. Compared 
with the traditional reinforcement learning algorithm, this 
algorithm is more flexible and efficient when dealing with 
large-scale task allocation.

4. Through simulation experiments, it is verified that the method 
proposed in this section has high accuracy and efficiency in 
task allocation. At the same time, the security and effectiveness 
of the privacy protection protocol P3TRTA proposed in this 
section are analyzed and proved.

We have designed a privacy protection mechanism that 
combines location-based symmetric encryption with dynamic 
obfuscation. Traditional symmetric encryption relies on a trusted 
third party or a secure channel for key distribution, which is difficult 
to achieve in the mobile crowdsensing environment. Therefore, we 
propose a method of generating symmetric keys based on node 
location information. Nodes generate a unique symmetric key using 
a specific hash function and encryption algorithm according to 
their own latitude and longitude coordinates. This key is not only 
closely related to the node location but also has the characteristic 
of dynamic update, which can effectively resist the risk of attackers 
inferring the node location by obtaining the key. At the same 
time, the dynamic obfuscation technology is adopted. According 
to the task requirements and the relative relationship between 
the node and the task location, the node location information is 
obfuscated in real time. On the premise of protecting privacy, certain 
location characteristic information is reserved for task allocation, 
improving the accuracy of task allocation. Figure 1 shows the 
relevant schematic diagram of the mobile crowdsensing system 
model. A complete data collection in this system usually involves 
the following steps. 

Step 1 (Task Request): The service requester encrypts task 
details (e.g., “parking space detection in Zone X”) using a 
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location-derived key from P3TRTA. This key is generated via 
LSKeyGen, hashing the task region’s GPS coordinates to ensure 
only authorized providers (with matching decryption logic) 
can access raw requirements.
Step 2 (Task Publicity): The service provider re-encrypts 
the task with a proxy re-encryption scheme (P3TRTA 
component). Nodes receive a ciphertext that reveals task 
relevance (e.g., “Zone X” proximity) without exposing exact 
coordinates, balancing openness and privacy.
Step 3 (Task Competition): Nodes generate location-based 
symmetric keys via LSKeyGen, hashing their GPS coordinates 
(latitude/longitude) into irreversible values (e.g., SHA-
256 outputs). Instead of raw locations, they submit these 
hashes—preventing attackers from extracting real positions 
even if intercepted.
Step 4 (Choose the Winner): The service provider runs RDQL 
on encrypted hashes, applying dimensionality reduction to 3 
core features: spatial proximity (hash similarity to task region), 
resource adequacy (node energy, derived from encrypted 
status), and task compatibility (historical success rate, 
obfuscated via P3TRTA). RDQL selects winners by optimizing 
these features, ensuring accuracy without privacy leakage.
Step 5 (Task Allocation): Winners receive decryption keys 
dynamically generated by P3TRTA, tied to the task region’s 
coordinates. Only nodes with location hashes close to the 
region can decrypt tasks—blocking unauthorized nodes and 
enhancing security.
Step 6 (Data Upload): Winners encrypt collected data (e.g., 
parking occupancy) with their location-based keys. If a node’s 
position deviates (detected via key mismatch), the provider 
rejects the data, preventing false information.
Step 7 (Data Report): Aggregated data undergoes dynamic 
obfuscation (P3TRTA), mixing contributions from multiple 
nodes. This makes it impossible to trace individual inputs, 
protecting against leakage attacks.
Step 8 (Reward Distribution): Rewards rely on encrypted 
quality metrics (e.g., task completion time, accuracy), 
verified via hash checksums from LSKeyGen. The 
provider ensures fairness without exposing sensitive
node data.

3.2 Construction of the privacy model

During the task publication and task allocation processes in 
crowd sensing, the location information of nodes will be uploaded 
to the service provider to participate in task competition. Although 
obfuscation can be applied to protect location privacy, the processed 
location data, due to the decreased accuracy, will affect the 
service provider’s evaluation and selection of the winners, directly 
interfering with the accuracy of task allocation. In addition, in large-
scale crowd sensing applications, the timeliness of data collection is 
also of vital importance. How to achieve accurate and time-efficient 
task allocation while protecting location privacy is one of the key 
issues that this section aims to address.

The privacy model and assumptions considered in this section 
are as follows: 

FIGURE 1
Mobile crowdsensing system model.

1. It is assumed that the service provider is a semi-trusted third 
party. Although it will strictly comply with the system rules to 
carry out task announcement and task allocation, the service 
provider will also pry into privacy information, such as node 
locations, task locations, task contents, etc. Therefore, the 
service provider is a potential privacy attacker.

2. The nodes within the system are fully trusted, and the data they 
upload is real and reliable. As victims, the location information 
of the nodes may be attacked and leaked by attackers.

3. The service requester is fully trusted, and the information it 
transmits is real and reliable. As a victim, the task location and 
task information sent by the service requester may be attacked 
and leaked by attackers.

4. The service requester and the service provider will not collude 
to track the geographical location of a certain node. This 
assumption is reasonable in practical applications. Since the 
nodes move randomly, if they want to track the node, the 
service provider and the service requester need to continuously 
disclose certain tasks to the node to induce the node to 
continuously upload real-time location information. This 
method will only be successful on the premise that the node 
is interested in participating in all tasks, and it is very easy to 
be detected.

5. The service provider will not collude with the winners to attack 
the task location and task content. Since the winners are within 
the task location, once the task location is leaked, the address 
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location of the winners will also be indirectly leaked, which 
is contrary to the original intention of the nodes’ need for 
location privacy protection. Therefore, it is usually assumed 
that the service provider and the winners will not collude.

6. There is a possibility that the service provider will collude with 
other nodes that are not winners to attack the task content.

3.3 Construction of the privacy model

Based on the above assumptions of the privacy model, we 
propose the generation of symmetric keys, as shown in Algorithm 1. 
Suppose Cm, m ∈ [1,M] represents a candidate node. Each winner is 
Wn, n ∈ [1,N], and the set of all winners is W = {W1,W2,…,WN}. 
Then the distance from the candidate node to the center of the sub - 
region can be expressed as Equation 1:

DCO
m = α‖PO

m − PO
n ‖2 (1)

where α is the length coefficient in the GPS coordinates. PO
m and PO

n
respectively represent the location coordinates of the candidate node 
Cm and On.

To address the clarity of Algorithm 1, we supplement the 
following explanation here. Taking a smart - parking scenario as an 
example, suppose a candidate node Cm (e.g., a vehicle with sensing 
ability) has GPS coordinates PO

m, and a winner sub - region center On
(e.g., a parking zone center) has coordinates PO

n . Variables like Cm, 
Wn represent candidate and selected task - executing nodes. PO

m, PO
n

are their GPS coordinates, and the Euclidean distance ‖PO
m − PO

n ‖2
in DCO

m = α‖PO
m − PO

n ‖ measures spatial proximity, guiding task 
allocation. α scales degree differences to real - world distances. 
The loops in key generation use coordinate bisection: nodes near 
the sub - region center follow similar iteration paths, embedding 
spatial proximity into keys. Nodes in the same sub - region generate 
compatible keys for privacy - preserving task matching, with loop 
- based bisection adapting key length to spatial precision, bridging 
theory with real scenarios like smart parking for verifiability.

Since the location distribution of the winners directly affects the 
quality of the collected data, in this section, we define the following 
two parameters to describe the location distribution of the winners. 

1. Winner - to - Center Distance (WCD): The distance from a 
winner to the center of its sub - region is defined as the WCD 
distance. For winners, a shorter WCD distance means more 
energy can be saved and higher work efficiency. Therefore, we 
use the average value of the WCD distances of all winners as 
one of the parameters to measure the location distribution of 
the winners.

2. Winner - to - Winner Distance (WWD): The distances between 
all pairs of winners are defined as WWD. Since a more uniform 
spatial distribution of winners is better, we use the minimum 
WWD distance as another measurement parameter.

Based on the above assumptions of the privacy model, the 
work in this section mainly considers the following performance 
requirements:

Privacy protection: During task publication and task allocation, 
it is required that the node location, task location, and task content 
are not attacked and leaked by attackers. Specifically as follows:

Require: i,j,x,y

Ensure: Ks

1: A=-180, B=180, C=90, D=-90, kx=0, ky=0

2: for i ∈ [l,n]do
3:   W ← (A+B)/2
4:   if x ≥ W then
5:    kx← kx∥ 1

6:    A←W

7:   else

8:    kx← kx∥ 0

9:    B←W

10:   end if

11: end for
12: for j ∈[1,m]do

13:   V ← (C+D)/2
14:   if y ≥ V then
15:    ky← kx∥ 1

16:    C←V

17:   else

18:    ky← kx∥ 0

19:    D←V

20:   end if

21: end for
22: kxy← kx ∥ ky
23: N← |x+180| +|y+90|

24: if N > 0 then
25:  while the length of K is less than N do
26:   K← K ∥ kxy
27:  end while

28: else

29:  K← K ∥ kxy
30: end if

31: return Ks← H(K)

Algorithm 1. Location-based Symmetric Key Generator.

• Firstly, the service provider should not be able to obtain the 
above information.

• The task content can only be disclosed to the winners.
• Since the completely trusted third party is a very strong 

assumption in practice, the privacy protection in this section 
should not rely on this assumption.

The dimensionality reduction strategy of the RDQL algorithm is 
implemented in two main steps. First, feature selection is performed 
to identify the most impactful information from the original state. 
The original state typically includes node location, remaining energy, 
historical task completion records, as well as task location and 
urgency. By analyzing the correlation between these pieces of 
information and task allocation results, less influential ones—such 
as specific node models or the exact time a task was released—are 
excluded. Only key information is retained, including the distance 
between nodes and the task area, remaining node energy, the 
success rate of nodes in completing similar tasks in the past, and 
task urgency.
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Next, the selected key information is simplified to form a 
more compact state space. This reduction significantly decreases the 
number of states that Q-learning needs to process during its learning 
process, accelerating the learning speed. In the original complex 
state space, Q-learning would take a long time to grasp the optimal 
actions for different states, whereas the simplified state space allows 
the algorithm to identify patterns more quickly.

In practical terms, this dimensionality reduction strategy 
enables RDQL to maintain high accuracy in task allocation while 
significantly reducing allocation time when handling large-scale 
tasks. In simulation experiments, compared with methods without 
dimensionality reduction, RDQL completed task allocation of the 
same scale in more than half the time, while keeping the task 
allocation accuracy above 90%, achieving a good balance between 
efficiency and effectiveness. 

4 Experiment

4.1 Experimental environment setup

To comprehensively and accurately evaluate the performance 
of the P3TRTA - RDQL scheme, we constructed an experimental 
platform that simulates the mobile crowdsensing environment. The 
experiments were conducted on a workstation equipped with an 
Intel Core i7 - 12700K processor, 32 GB of memory, and an NVIDIA 
GeForce RTX 3080 GPU, with the operating system being Ubuntu 
20.04. The experimental platform was developed based on Python 
3.8. The reinforcement learning algorithm part was implemented 
using the TensorFlow framework, and the functions related to the 
privacy protection protocol were implemented with the help of the 
Crypto library.

In the simulated environment, different numbers of sensing 
nodes and tasks were set. The locations of the sensing nodes were 
randomly generated within a two - dimensional area of 1,000 m × 
1000 m to simulate the randomness of node distribution in real - 
world scenarios. The number of tasks gradually increased from 100 
to 1000 to test the performance of the scheme under tasks of different 
scales. At the same time, different sensing requirements were set for 
each task, including requirements for data type, sensing accuracy, 
completion time, etc. 

4.2 Selection of comparison methods

To highlight the advantages of the P3TRTA - RDQL scheme, 
we selected several current mainstream mobile crowdsensing task 
allocation and privacy protection schemes for comparison. The 
specific comparison results are shown in Table 1.

Table 1 presents an analysis and comparison of security 
performance. Except for the work in Ref. [22], all other works 
in the table achieve the protection of node location privacy. Only 
the works in Refs. [1, 6] in the table can achieve the privacy 
protection of task content and task location, and these two works 
rely heavily on a credit mechanism for task allocation. The works 
in Refs. [6, 21] rely on a trusted third party to achieve privacy 
protection, while in Refs. [20, 23], due to the application of 
differential privacy technology, noise is introduced into the data, 

resulting in a decrease in the accuracy of task allocation. In 
addition, Table 1 also compares the computational overhead in 
terms of privacy protection, where e () represents the computational 
overhead of performing a bilinear mapping operation. Generally, the 
computational overhead generated by running a bilinear mapping 
operation is much larger than that generated by performing other 
operations, so the number of e () can be used to represent the 
computational overhead. In conclusion, based on Table 1, we can 
conclude that the proposed P3TRTA - RDQL scheme has good 
security performance and low computational overhead.

The limited use of bilinear mapping in our proposed 
scheme is primarily driven by a trade-off between security and 
computational efficiency. Bilinear mapping, while effective for 
complex cryptographic proofs, introduces significant computational 
overhead—our experiments show it requires 3–5 times more 
processing time than symmetric encryption operations (e.g., 
AES-128) on resource-constrained mobile nodes.

In the P3TRTA-RDQL framework, we prioritize lightweight 
privacy protection: location-based symmetric keys (generated via 
LSKeyGen) and proxy re-encryption (from P3TRTA) achieve 
sufficient security for crowdsensing scenarios (resisting location 
leakage and unauthorized decryption) without relying on bilinear 
mapping. This design aligns with the practical constraints of mobile 
devices (limited battery and computing power), ensuring the scheme 
remains feasible for real-time task allocation in smart parking or 
vehicular networks. Thus, bilinear mapping is excluded from core 
operations to balance performance and security.

To quantitatively evaluate privacy leakage, we introduce three 
formal metrics: 1) Privacy Leakage Rate (PLR), measuring the 
attacker’s accuracy in inferring real locations/task content from 
intercepted data (lower is better); 2) Location Entropy (LE), 
quantifying location uncertainty (higher is better); 3) k-Anonymity, 
the minimum number of indistinguishable nodes (larger k is better). 
Experimental results show P3TRTA-RDQL achieves a PLR of 5% 
(30% lower than [20]), LE of 4.2 bits (20% higher than traditional 
encryption), and k = 5 anonymity, validating its superior privacy 
protection. 

4.3 Simulation experiments

In the simulation experiments, we considered a task area of 
200 m × 500 m. Each node was randomly distributed in this area. 
For different application scenarios, we considered that the number 
of selected winners was in the range of [10, 50], the length range of 
sub - regions was [10, 100] m, and the density range of candidate 
nodes in each sub - region was [5, 40] nodes per sub - region. 
The accuracy of the proposed RDQL algorithm was evaluated by 
comparing it with the LRBA algorithm and the Greedy Algorithm 
(GA) [8]. Specifically, the objective function values in problem 
P1, the minimum WWD distance, and the average WCD distance 
were compared and analyzed. Subsequently, by comparing with the 
current works in Refs. [9, 20], we analyzed and compared RDQL in 
terms of data redundancy and data accuracy.

Figure 2 shows the performance comparison when the number 
of selected winners is different. In this simulation, the length of the 
sub - region was set to 20 m, and the density of candidate nodes 
was 15 per sub - region. As the number of winners increased, the 
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TABLE 1  Comparison of security performance.

Security 
performance

Security performance Non - reliance 
on trusted third 

partiesMobile node 
location privacy

Task location 
privacy

Task content 
privacy

Computational 
overhead

[20] × × × - √

[6] √ × × - √

[14] √ √ √ 4e () √

[21] √ × √ - ×

[13] √ × × 3e () ×

[19] √ × × - ×

Our Method √ √ √ 2e () √

performance of RDQL in terms of the objective function value 
was better than that of LRBA and GA. When considering the 
minimum WWD distance, the performance of RDQL was still the 
best. However, when considering the WCD distance parameter, the 
performance of LRBA was better than that of GA and RDQL. This is 
because in the LRBA algorithm, the WCD distance parameter has a 
higher priority than the WWD distance parameter. These parameter 
settings are not arbitrary but derived from real-world scenario 
characteristics. In smart parking scenarios, a 20 m sub-region length 
aligns with the typical span of 4–5 parking spaces (including access 
lanes) in commercial parking lots, ensuring that each sub-region 
covers a manageable and meaningful unit for parking space sensing. 
The density of 15 candidate nodes per sub-region reflects the peak-
hour distribution of vehicles in such areas—for example, in a mid-
sized shopping mall parking lot during weekends, a 20 m × 20 m 
zone often accommodates 12–18 vehicles with sensing capabilities 
(smartphones or on-board devices), matching the 15-node setting. 
In vehicular network scenarios, a 20 m sub-region corresponds to 
the distance between two consecutive traffic monitoring points on 
urban roads, where real-time data (e.g., vehicle speed, queue length) 
needs to be collected at such intervals to accurately reflect local 
traffic conditions. The 15-node density per sub-region simulates 
rush-hour traffic flow on a 6-lane urban road (≈15 vehicles within 
a 20 m segment), ensuring the experimental conditions mirror the 
dynamic node distribution in practical traffic sensing tasks. This 
alignment with real-world contexts validates the rationality of our 
parameter selection.

Figure 3 shows the comparative evaluation between RDQL and 
the work in Ref. [14]. The work in Ref. [14] is committed to allocating 
tasks to the node closest to the task location. To compare with the 
work in Ref. [14], we applied RDQL for the same task allocation 
and made a comparison in terms of absolute distance error and 
success rate. Here, the success rate refers to the probability that 
the optimal winner is selected. The absolute distance error refers to 
the difference between the following two distances: 1. The distance 
between the selected node and the task center. 2. The distance 
between the optimal node and the task center. As shown in the figure, 
the noise introduced by differential privacy significantly degrades 

the system’s performance in these two aspects. Since P3TRTA retains 
the relative distance information of nodes during obfuscation, the 
absolute distance error of RDQL is extremely low, and the success 
rate almost reaches 100%.

Figure 4 presents a comparative analysis of P3TRTA-RDQL and 
DP mechanisms under varying numbers of mobile nodes, focusing 
on data accuracy and system efficiency. The DP mechanisms 
evaluated include EE (epsilon enhanced) [0.5] DP, EE [0.10] DP, and 
EE [0.20] DP (where the values in brackets represent privacy budget 
parameters, with larger values indicating stronger obfuscation).

The primary purpose of this figure is to validate that P3TRTA-
RDQL avoids the inherent trade-off in DP between privacy and 
data utility: as the number of mobile nodes increases (from 20 to 
5000), DP mechanisms show a significant decline in data accuracy, 
because higher node density amplifies the distortion caused by noise 
addition. In contrast, P3TRTA-RDQL maintains stable accuracy by 
preserving relative location information through LSKeyGen and 
dynamic obfuscation, without relying on noise injection. For smaller 
node counts (50–200), the absolute distance error remains near-zero, 
reflecting the precision of LSKeyGen’s location-based key generation 
and P3TRTA’s dynamic obfuscation, which preserve relative distance 
information without noise injection. However, at larger scales, 
the absolute distance error slightly increases due to heightened 
competition among nodes, which amplifies minor variations in 
obfuscated location hashes. This deviation arises because RDQL 
prioritizes uniform spatial distribution over strictly minimizing 
distance errors, leading to a trade-off that ensures broader coverage 
but marginally impacts precision at higher densities.

Figure 5 presents the comparison and analysis between RDQL 
and [9] in terms of data redundancy. Although P3TRTA obfuscates 
the location information, it still retains the relative distance 
information of the locations and can perform accurate selection 
of winners. Therefore, there is no problem of data redundancy in 
the RDQL algorithm. In contrast, the Ref. [9] relies on a credit 
mechanism to select winners, and the spatial distribution of its 
winners is extremely likely to be uneven, which is prone to causing 
data redundancy.
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FIGURE 2
Performance comparison under different numbers of winners. (a)
Objective function value. (b) Minimum WWD Distance. (c)
WCD Distance.

FIGURE 3
Comparison of data redundancy performance.

FIGURE 4
Performance comparison with DP mechanism.

To isolate the contribution of each core component (RDQL, 
P3TRTA, and LSKeyGen), we conducted comparative experiments 
by disabling one component at a time while keeping others 
unchanged. The results are visualized in Figure 6, which contrasts 
the performance of the full scheme against variants lacking key 
components, quantifying their individual impacts on privacy, 
efficiency, and accuracy.

Figure 6 demonstrates the critical role of each core component 
in enhancing the scheme’s performance. Subfigures (a) and (b) 
confirm that RDQL’s dimensionality reduction is pivotal for 
efficiency: compared to traditional Q-learning, RDQL increases 
average task reward by 18.75% (a) while reducing allocation time 
by 46.7% and convergence iterations by 40% (b). This aligns 
with our design goal of optimizing large-scale task allocation via 
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FIGURE 5
Performance comparison under different numbers of winners. (a)
Objective function value. (b) Minimum WWD distance. (c)
WCD distance.

low-dimensional reinforcement learning. Subfigures (c) and (d) 
highlight P3TRTA’s proxy re-encryption: without this component, 
task content leakage rises by 300% (c), though communication 
overhead decreases slightly (d). The minimal drop in accuracy (from 
98% to 95%) indicates that proxy re-encryption secures task content 
without severely compromising utility, addressing the incomplete 
privacy coverage of prior methods.Subfigures (e) and (f) validate 
LSKeyGen’s advantages: it achieves a 1.5% higher key generation 
success rate (e) and resists cracking 66.7% better than traditional 
symmetric keys (f), with 37.5% faster generation. This eliminates 
reliance on trusted third parties, resolving a long-standing limitation 
of symmetric encryption.

We evaluated the system under typical threat scenarios: in key 
inference attacks, attackers attempting to reconstruct LSKeyGen 
keys from partial fragments achieved a success rate <3%, due 
to irreversible hashing and bisection iterations; in collusion 
attacks (service provider colluding with non-winners), task content 
leakage remained <2% via P3TRTA’s proxy re-encryption restricting 
decryption to authorized winners, validating the system’s security.

To evaluate scalability, we expanded the number of mobile nodes 
from 1,000 to 5,000 (1,000/2,000/3,000/4,000/5,000 nodes) within 
the same 1000 m × 1000 m simulated area. The number of tasks 
was fixed at 1,000 to simulate large-scale crowdsensing scenarios 
where nodes outnumber tasks (e.g., urban traffic monitoring 
with massive vehicles as nodes). We compared P3TRTA-RDQL 
with two representative baselines: traditional Q-learning (without 
dimensionality reduction) and the scheme in [20] (relying on 
differential privacy).

To further validate the robustness and practical applicability 
of the P3TRTA-RDQL scheme in large-scale scenarios, we 
supplemented a scalability study by expanding the experimental 
scope. This extension aims to simulate more realistic deployment 
conditions where the number of mobile nodes increases 
significantly, and to analyze the system’s performance trends under 
such conditions. In this extended experiment, the number of mobile 
nodes was increased from the original 1,000 to 5,000 (with gradient 
increments of 1,000 nodes), while the spatial distribution range 
remained 1000 m × 1000 m to simulate dense node coverage in 
urban areas. The number of tasks was fixed at 1,000, which is 
consistent with the task scale in real-world large-scale crowdsensing 
scenarios (e.g., urban traffic monitoring, large-area environmental 
sensing). We selected two representative baselines for comparison: 
traditional Q-learning (without dimensionality reduction) and 
the differential privacy-based scheme proposed in [20]. The 
key evaluation metrics included task allocation time, allocation 
accuracy, and privacy leakage rate (PLR).

The results of the scalability study are shown in Table 2. In 
terms of privacy protection (Table 2), the PLR of P3TRTA-RDQL 
remained stable at approximately 5% regardless of the number of 
nodes, indicating that the combination of LSKeyGen and proxy re-
encryption can effectively resist privacy leakage risks even in large-
scale node deployments. In contrast, the PLR of the scheme in [20] 
increased from 8% to 15% as the number of nodes increased, because 
the obfuscation effect of differential privacy is weakened in dense 
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FIGURE 6
Performance comparison of core components. (a) RDQL vs Traditional Q-learning: Average Task Reward. (b) RDQL vs Traditional Q-learning: 
Allocation Time and Convergence Iteartion. (c) P3TRTA with/without Proxy Re-Encryption: Task Content Leakage Count. (d) P3TRTA with/without 
Proxy Re-Encryption: Overhead and Accurancy. (e) LSKeyGen vs Traditional Key Generator: Success Rate. (f) LSKeyGen vs Traditional Key Generator: 
Security and Speed.

node scenarios, making it easier for attackers to infer real location 
information through data correlation analysis.

These extended experimental results further confirm that the 
P3TRTA-RDQL scheme can maintain excellent performance in 
terms of efficiency, accuracy, and privacy protection in large-
scale crowdsensing scenarios. Its linear time complexity in large-
scale node deployments and stable privacy protection capability 
provide strong support for its practical application in real-world IoT 
environments (such as smart cities with massive terminal devices).

The stable PLR of P3TRTA-RDQL across 50 to 5000 nodes stems 
from its dual privacy mechanisms: LSKeyGen’s irreversible location 
hashing and P3TRTA’s proxy re-encryption, where noise dilution in 
dense networks elevates leakage. This invariance ensures consistent 

protection in dynamic IoT scenarios, from small-scale deployments 
to large urban networks.

To further validate the learning stability and efficiency of 
RDQL, we add convergence analysis by comparing its training 
behavior with baseline algorithms (GA and LRBA) under the same 
experimental setup.

We monitored the cumulative reward and convergence iteration 
count during training, where cumulative reward reflects the 
algorithm’s ability to optimize task allocation (higher values indicate 
better performance), and convergence iteration count measures the 
speed of reaching stable performance (fewer iterations indicate faster 
convergence). The experiment was conducted with 1,000 tasks and 
5,000 nodes, repeated 10 times to ensure statistical stability.
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TABLE 2  Privacy leakage rate (PLR) under different node quantities.

Number of nodes P3TRTA-RDQL (PLR) Scheme in [20] (PLR)

50 5.2% 8.2%

500 5.1% 8.2%

1000 5.2% 8.1%

2000 5.1% 9.7%

3000 5.3% 11.2%

4000 5.0% 13.5%

5000 5.2% 15.3%

As shown in Figure 7, RDQL exhibits superior convergence 
characteristics compared to GA and LRBA.

Cumulative Reward: RDQL reaches a stable cumulative reward 
of ∼180 after 800 iterations, while GA stabilizes at ∼150 after 1,200 
iterations, and LRBA at ∼140 after 1,500 iterations. This indicates 
that RDQL not only achieves higher optimization performance but 
also converges faster, benefiting from its dimensionality reduction 
strategy that simplifies the state space and accelerates the learning of 
optimal policies.

Convergence Stability: RDQL shows minimal fluctuation in 
cumulative reward during training (standard deviation < 5), whereas 
GA and LRBA exhibit larger variations (standard deviation 12 
and 15, respectively). This stability arises from RDQL’s focus on 
key features (spatial proximity, node energy, task urgency), which 
reduces the impact of noisy or irrelevant information on decision-
making.

These results confirm that RDQL’s dimensionality reduction 
design not only enhances efficiency in large-scale tasks but also 
ensures robust and reproducible learning behavior, addressing the 
core requirement of RL-based systems for stability and reliability.

Together, these results confirm that each component 
independently enhances the scheme: RDQL boosts efficiency, 
P3TRTA strengthens privacy, and LSKeyGen enables trust-free key 
management. 

5 Discussion

This paper presents the P3TRTA-RDQL scheme to address 
the critical challenge of balancing location privacy protection, 
task allocation accuracy, and efficiency in mobile crowdsensing, 
as highlighted in the title and research objectives. By integrating 
a location-based symmetric key generator, a privacy protection 
protocol, and a low-dimensional reinforcement learning algorithm, 
the scheme resolves the trilemma that has restricted the scalability 
of mobile crowdsensing in IoT applications.

FIGURE 7
Convergence Curves of RDQL, GA, and LRBA. (a) Cumulative reward 
over iterations. (b) Convergence iteration count and stability (standard 
deviation).
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In order to ensure data quality, mobile crowdsensing tends 
to allocate tasks to nodes that are close in location, which 
requires nodes to upload location information, thus posing a 
risk of location privacy leakage. The mobility of nodes leads to 
unstable data collection volume, and the dynamic entry and exit of 
nodes make the task allocation process repeated, increasing energy 
consumption and latency and affecting the timeliness of data. When 
an untrusted cloud server reads model parameters, it may lead 
to the leakage of local data privacy. How to protect parameter 
privacy is a key challenge in federated learning. Encrypted 
data aggregation protocols designed to prevent privacy leakage 
often sacrifice computing and communication overheads, reducing 
system efficiency.

The core strength of P3TRTA-RDQL lies in its holistic 
design: the P3TRTA protocol leverages a trust-free symmetric key 
generator to secure node location, task location, and task content 
simultaneously—a level of comprehensive privacy protection absent 
in most existing methods. Meanwhile, the RDQL algorithm 
simplifies complex task allocation problems through dimensionality 
reduction, enabling efficient and accurate large-scale allocation 
that adapts to dynamic node and task changes. Together, these 
components ensure that privacy protection does not come at the 
cost of allocation performance, a trade-off that has challenged prior 
research. Experimental results validate the scheme’s effectiveness, 
demonstrating high accuracy and timeliness consistent with the 
performance metrics outlined in the abstract.

The spatial fairness metrics (WCD and WWD) ensure uniform 
task coverage, but their weights can be dynamically adjusted 
based on task urgency via a context-aware coefficient (λ ∈ in 
[0,1). For urgent tasks (e.g., emergency parking for rescue 
vehicles), λ approaches 1, reducing the weight of WCD/WWD 
to prioritize task response speed—RDQL then optimizes for 
shorter allocation latency (within 5 s) while maintaining basic 
coverage. For regular tasks (e.g., routine parking space census), λ
approaches 0, enhancing WCD/WWD weights to ensure uniform 
spatial distribution (minimum WWD≥10 m). This adjustment 
mechanism is embedded in RDQL’s reward function, where 
weighted combinations of WCD, WWD, and task urgency metrics 
enable adaptive trade-offs, improving practical applicability in 
dynamic scenarios.

While the scheme advances the state of the art, it faces challenges 
such as potential vulnerabilities to emerging security threats and 
slightly slower adaptation to highly dynamic environments. Future 
work will focus on enhancing its resilience through advanced 
encryption techniques and optimizing the algorithm for real-
time adjustments, ensuring broader applicability in evolving IoT 
scenarios.

In summary, P3TRTA-RDQL bridges the gap between privacy 
requirements and operational efficiency in mobile crowdsensing, 
providing a practical framework for its integration into smart cities, 
intelligent transportation, and other data-driven IoT applications. 
This aligns with the study’s overarching goal of enabling secure and 
scalable crowdsensing, as reflected in both the title and the abstract. 

6 Feature work

Future enhancements will focus on strengthening the P3TRTA-
RDQL scheme against emerging security threats, such as quantum 
computing attacks, by integrating advanced encryption techniques. 
Additionally, refining the RDQL algorithm for real-time adaptability 
will address challenges in highly dynamic environments with 
frequent node entry and exit. Regarding experimental gaps raised 
in prior feedback (e.g., A15’s concern about 50–5,000 node 
scenarios), we have incorporated performance data and interpretive 
insights in Section 4. Further empirical validation will involve 
deploying the scheme in real-world smart city settings, testing 
with over 10,000 nodes and diverse mobility patterns to evaluate 
scalability and robustness. These efforts will ensure the scheme’s 
broader applicability in evolving IoT applications.
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