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P3TRTA-RDQL: a crowdsensing
task allocation scheme
Integrating privacy protection
protocol and low-dimensional
reinforcement learning

Qian Li*, Manlu Chen and Zhiwei Chen

Electric Power Dispatching and Control Center of Guangdong Power Grid Co., Ltd., Guangzhou,
China

Crowdsensing, as an emerging data collection mode, demonstrates great
potential in Internet of Things (loT) applications. However, it faces a critical
trilemma: accurate task allocation depends on node proximity to the task
location, but disclosing location data risks privacy leakage, while concealing it
reduces allocation precision. Existing solutions either incur high computational
overhead (encryption), rely on unfeasible trusted third parties (anonymization),
or degrade data utility (obfuscation), failing to balance privacy, accuracy, and
efficiency. To address these issues, this paper proposes the P3TRTA-RDQL
scheme, combining a symmetric encryption-based privacy protection protocol
(P3TRTA) with a low-dimensional Q-learning algorithm (RDQL). The P3TRTA
protocol uses a location-based symmetric key generator (LSKeyGen) to protect
node/task location privacy and proxy re-encryption to secure task content,
eliminating reliance on trusted third parties. The RDQL algorithm reduces
state dimensionality by 60% compared to traditional reinforcement learning,
enhancing large-scale task allocation efficiency. Experimental results show that
P3TRTA-RDQL outperforms existing methods by 30% in privacy protection
strength, achieves 98% task allocation accuracy, and reduces allocation time
for 1000 tasks by 40%. This work provides technical support for crowdsensing'’s
widespread loT applications.

crowdsensing, task allocation, privacy protection, symmetric encryption, reinforcement
learning, low-dimensional Q-Learning algorithm

1 Introduction

With the widespread deployment of intelligent terminals and the rapid development of
cloud/edge computing, using crowd sensing to collect data has become a new trend. As an
emerging technology, crowd sensing encourages mobile nodes to participate in collaborative
and distributed data collection. The mobile nodes here refer to mobile devices or terminals
and individuals equipped with mobile devices. With the continuous development of
hardware manufacturing technology, current mobile devices are usually embedded with
rich sensors and computing/communication modules, and have the capabilities to collect
data from the surrounding environment, preprocess data, and transmit data. In addition,
with the continuous popularization and deployment of intelligent devices, mobile devices
can be seen everywhere in people’s lives. Crowd sensing is also used to assist in air
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quality measurement, noise detection, and other Internet of Things
applications. Compared with the traditional data collection mode
based on sensor networks, crowd sensing does not require the
installation and maintenance of sensors, and has great advantages in
terms of economic cost and labor consumption. Especially when it
comes to large-scale data collection, this advantage is more obvious.
Equipped with rich sensors and computing modules, these devices
enable real-time data collection, preprocessing, and transmission,
supporting applications like Internet of Vehicles, intelligent parking,
and 3D model reconstruction. Compared with traditional sensor
networks, crowd sensing avoids sensor deployment/maintenance
costs, making it more scalable for large-scale IoT scenarios.

Mobile crowdsensing (MCS), as an emerging data collection
mode, crowdsources tasks to participants carrying IoT devices to
achieve human-object collaborative data collection [1]. However,
the open network, the mobility of participants, and untrusted cloud
servers pose severe challenges to the task allocation and data security
of mobile crowdsensing [2]. Solving these problems is crucial for
promoting the practical application of mobile crowdsensing and
ensuring the secure and efficient development of the Internet of
Things. Mobile crowdsensing currently faces a specific trilemma:
accurate task allocation relies on node location proximity, but
disclosing locations risks privacy leakage, while concealing them
reduces allocation precision.

This paper conducts research on the deficiencies of mobile
crowdsensing in the Internet of Things in terms of task allocation
and data security, especially the data security issues in the scenario
of mobile crowdsensing driven by federated learning (FL). Mobile
crowdsensing was first proposed by Ganti et al. [2], and Guo et al.
[3] defined it as users using mobile devices to collect or generate
data and aggregate it on the cloud service side to provide services
for the community. Compared with traditional wireless sensor
networks, mobile crowdsensing does not require the deployment
and maintenance of sensors, and the collection devices are mobile,
which is more flexible [4].

Since the International Telecommunication Union (ITU)
officially proposed the concept of the Internet of Things
(IoT) in 2005 [5], with its advantages of integrating technologies
such as data sensing, network communication, and control
computing, it has rapidly become a key force driving the intelligent
transformation of society.

Privacy-protection limitations: Encryption-based schemes
either impose heavy computational burdens or sacrifice location
accuracy. Anonymization methods introduce noise that degrades
data utility— [6] document a 20% drop in task success rates for
location-dependent tasks due to obfuscated coordinates.

Incomplete privacy coverage: Most existing protocols protect
only partial privacy; Even protects node and task location, the model
fails to secure task content from untrusted clouds.

Task allocation inefficiency: Traditional reinforcement learning
algorithms for task allocation struggle with large-scale scenarios
due to high-dimensional state spaces. Frameworks considering
node mobility use inaccurate mobility models, resulting in higher
resource waste.

Specifically, the main work of this paper is as follows:

1. We propose a location-based symmetric key generator
(LSKeyGen), which breaks two long-standing limitations of
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traditional symmetric key negotiation: the need for a trusted
third party to distribute keys and the requirement for direct
communication between parties. Unlike existing encryption
methods that rely on external trust or complex communication
processes, LSKeyGen allows two nodes to independently
generate a shared symmetric key using only their own location
data. This not only avoids the risks associated with relying on
untrusted third parties but also eliminates the need for prior
direct interaction between nodes, making privacy protection
more adaptable to dynamic and distributed crowdsensing
environments where nodes often have no pre-established
communication relationships.

2. We design the P3TRTA protocol for task publication and
allocation, which integrates LSKeyGen to encrypt and transmit
location obfuscation strategies, while adopting proxy re-
encryption technology to ensure secure distribution of task
content. Unlike existing privacy protocols that only protect
partial information—for example, some focus solely on
node location privacy and ignore the confidentiality of task
locations, while others protect task content but fail to prevent
leakage of node positions—P3TRTA uniquely achieves triple
privacy protection: it safeguards node location information
from being exploited by malicious parties, prevents task
locations from being tracked or misused, and ensures that task
content is only accessible to authorized nodes, thus addressing
the one-sidedness of current privacy protection solutions.

3. We mathematically model the task allocation optimization
problem, with a distinct focus on assigning tasks to multiple
nodes while ensuring these nodes maintain a spatial uniform
distribution as much as possible—an aspect that is not fully
considered in existing models, which often prioritize single-
node efficiency over overall coverage quality. To solve this
NP-hard optimization problem, we propose the Reduced-
Dimensionality enabled Q-Learning (RDQL) algorithm,
which adopts a targeted dimensionality reduction strategy.
Compared to traditional reinforcement learning algorithms
that struggle with inefficiency when handling large-scale
tasks due to high-dimensional state spaces, RDQL simplifies
the problem complexity without losing key information,
enabling it to quickly adapt to changes in task scales and node
distributions, thus significantly enhancing the flexibility and
efficiency of large-scale task allocation.

4. Through simulation experiments, we systematically verify
that our proposed scheme achieves excellent performance in
three critical aspects: it provides robust privacy protection,
ensuring that sensitive information such as node locations and
task details remains secure; it maintains high task allocation
accuracy, effectively selecting nodes that are suitable for task
execution; and it demonstrates strong timeliness, completing
large-scale task allocation in a short time. Additionally,
detailed security analysis confirms that the P3ATRTA protocol
can effectively resist common attack methods, further
validating the reliability of the proposed solution.

The structure of this paper is as follows: Section II; expounds
on the background knowledge of data security. Section III presents
the model we designed. Section IV shows the experimental results.
Section V summarizes the work and looks forward to the future.
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2 Related work

The task allocation of mobile crowdsensing aims to reasonably
distribute sensing tasks to mobile nodes to achieve efficient data
collection. Encryption, anonymization, and obfuscation are three
commonly used technical means in privacy protection.

2.1 Encryption

Encryption mainly relies on various cryptographic algorithms,
such as Homomorphic Encryption (HE) and Group Signature,
etc. Relevant studies have advanced MCS but leave key gaps:
Works employing geo-obfuscation for location privacy [7] suffer
from reduced allocation accuracy due to excessive noise; studies
optimizing task allocation through mobility patterns [8] overlook
privacy protection; surveys on MCS [9] highlight its role in
the IoT but acknowledge unresolved privacy-efficiency trade-offs.
Additionally, recent blockchain-based approaches [10] enhance
decentralized privacy via immutable ledgers but introduce high
communication overhead, limiting scalability for large-scale tasks.
Bagdasaryan et al. [11] pointed out that any participating client can
introduce a stealthy backdoor into the global model, thus presenting
a hidden backdoor function in the global model. Shen etal. [12]
proposed a security framework based on additive homomorphic
encryption that can protect location privacy from being leaked
to untrusted third parties. The application of homomorphic
encryption enables third parties to still have the ability to compute
on the ciphertext information. Lu etal. [11] proposed a novel
adversarial example defense algorithm that combines a micro-
network architecture with generative adversarial networks (GANs),
aiming to enhance classification accuracy while minimizing training
costs. Sucasas etal. [13] applied group signature technology to
achieve privacy protection. Specifically, nodes belonging to the
same group share a private key and signin the name of the
group, and this signature can be authenticated by the group public
key. Ni et al. [14] proposed a location privacy protection mechanism
based on random matrix multiplication. In this mechanism, the
location of each node and the task location can both be represented
by random matrices. By performing a multiplication operation on
the two matrices, it can be determined whether the node is within
the task location without having to disclose the specific location of
the node. In the above works, although the latter two reduce the
computational overhead, the accuracy of the location data decreases,
thereby reducing the accuracy of task allocation.

2.2 Anonymization

Anonymization refers to hiding the real identity or ID of
the node. As long as the attacker cannot accurately associate the
location of the node with the real ID, then the location privacy
can be considered to be protected. For vehicular crowdsensing, Ni
[14] proposed that a trusted third party distributes anonymous
credentials to nodes. Based on this credential, nodes can
generate pseudonyms and use them to replace the real ID for
communication. Li etal. [15] proposed a privacy protection

algorithm based on K-anonymity technology. This algorithm
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divides nodes into different groups and uses one or more location
information to replace the location information of the nodes
themselves, so that the attacker cannot distinguish the location of a
certain node from other nodes in the group, achieving the purpose of
protecting location informatio. However, the above methods usually
need to assume that there is a trusted third party in the system. In
addition, anonymization may affect the contribution authentication
of nodes during the data collection process, and thus affect the
distribution of incentives.

In conclusion, although current research on task allocation
and data security in mobile crowdsensing and federated learning
has achieved certain results, there are still many problems that
need to be solved urgently, such as the balance between task
allocation accuracy, privacy protection, and system efficiency,
and the efficiency and universality of data security protection
technologies. Based on the existing research, this paper will propose
innovative solutions to improve the performance of the Internet of
Things mobile crowdsensing system in terms of task allocation and
data security.

2.3 Obfuscation

This technology modifies or processes the data within a certain
range so that the attacker cannot accurately derive the original data.
For example, when transmitting real location information, a set of
pseudo-location data can be transmitted simultaneously to “hide”
the real data [16]. Zhu etal. [17] proposed dividing nodes into
different groups. Each group has a trusted group leader. The group
leader knows the location information of all nodes in the group and
can directly communicate with the server. The server distributes the
total tasks to the group leader, and the group leader decides which
nodes to distribute the tasks to by himself. In this mechanism, since
nodes do not upload information to the server, location privacy is
protected within the group. The disadvantage of this mechanism
is also obvious. If the group leader colludes with the server, then
privacy protection no longer exists. To address this shortcoming,
applying DP (Differential Privacy) to add noise to the data as a new
method has received widespread attention [18]. However, with the
introduction of noise, the usability of the data decreases. Especially
when excessive noise is added, the data may even be unusable due to
poor accuracy.

In conclusion, although current research on task allocation
and data security in mobile crowdsensing and federated learning
has achieved certain results, there are still many problems that
need to be solved urgently, such as the balance between task
allocation accuracy, privacy protection, and system efficiency,
and the efficiency and universality of data security protection
technologies. Based on the existing research, this paper will propose
innovative solutions to improve the performance of the Internet of
Things mobile crowdsensing system in terms of task allocation and
data security.

As previously stated, nodes within the task location need
to upload their obfuscated location coordinates to the service
provider to participate in the task competition. Since all candidate
nodes apply the same Location Obfuscation Parameter (LOP), the
location information that the service provider can read includes the
obfuscated task location and the obfuscated locations of all candidate
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nodes. For example, assume there are M candidate nodes randomly
distributed in the task location competing for the task, and the
service provider needs to select N winners based on the obfuscated
locations of these candidate nodes to execute the task. As mentioned
before, the selected N winners are preferably distributed uniformly
in space, because a more uniform spatial distribution means a larger
data sensing range and a lower data redundancy [19]. Specifically,
assume there is a task area of 200 m x 200 m, and its obfuscated
longitude range is [-96.00200, - 96.00000], and the latitude range is
[0.00000, 0.00100]. If M = 50 and N = 8, then the service provider
needs to select 8 winners with a uniform spatial distribution from 50
candidates. To achieve this, the service provider first evenly divides
the entire task area into 8 sub - regions.

This section proposes a location privacy protection mechanism
in mobile crowdsensing. First, a location - based symmetric key
generator is designed, and the generation of this key does not rely
on any trusted third party. By combining with this key generator,
a privacy protection protocol for task announcement and task
allocation is further proposed. This privacy protection mechanism
reserves relevant data for task allocation, and its combined use
with the mechanism can achieve high - precision and efficient task
allocation while protecting privacy.

3 Our model

Based on an in-depth analysis of the challenges faced by mobile
crowdsensing in the Internet of Things in terms of task allocation
and data security, as well as the deficiencies of existing research, this
section will elaborate in detail on the innovative model constructed
to address these issues. This model integrates a variety of advanced
technologies, aiming to achieve efficient task allocation and reliable
data security protection.

3.1 Mobile crowdsensing system model

Task allocation in mobile crowdsensing is usually related to
the location of participating nodes. Take smart parking in smart
transportation applications as an example. Suppose a user A is
currently at location B, and A sends a parking request to the server.
The server generates a sensing task based on this request: to find
available parking spaces near location B. When the server selects
nodes to execute this task, it tends to choose nodes near location
B. This not only makes the sensed parking space information more
accurate but also avoids nodes having to move over long distances to
execute the task, saving the energy consumption of the nodes. In this
task allocation process, the server needs to know the currentlocation
information of the nodes. However, if the server is untrusted, it
may leak the location information of the nodes, which will lead to
a serious risk of location privacy leakage. How to enable the server
to still allocate sensing tasks to nodes near B while protecting the
location privacy of the nodes (that is, not leaking the real location of
the nodes to the server) is the problem that this section aims to solve.

Specifically, the main work of this paper is as follows:

1. A location-based symmetric key generator, LSKeyGen, is
proposed. This generator breaks two preconditions of the
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traditional symmetric key negotiation: Firstly, there exists a
trusted third party for key distribution. Secondly, the two
communicating parties can directly communicate to negotiate
the key. By applying LSKeyGen, two nodes can generate a
symmetric key according to their own location information
without relying on either of the above preconditions.

2. A privacy protection protocol, P3TRTA, for task publication
and task allocation is proposed. In this protocol, LSKeyGen is
used to generate a symmetric key and encrypt and transmit
the location obfuscation strategy. At the same time, the Proxy
Re-Encryption (PRE) technology is applied to ensure that
the original data will not be leaked to the untrusted cloud.
In addition to the node location privacy, this protocol also
protects the task location privacy and the task content.

3. The optimization problem in task allocation is mathematically
modeled. Different from other current work, this modeling
considers assigning tasks to multiple nodes, and these nodes
should maintain a spatial uniform distribution as much as
possible. In the model, two distance parameters (the distance
from the winner to the center of the sub-region and the
distance from the winner to the winner) are defined to
quantify the accuracy of the task allocation. Due to the NP-
hard property of this optimization problem, a Reinforcement
Learning algorithm with reduced dimensionality (Reduced-
Dimensionality enabled Q-Learning, RDQL) is proposed to
solve the optimization problem in task allocation. Compared
with the traditional reinforcement learning algorithm, this
algorithm is more flexible and efficient when dealing with
large-scale task allocation.

4. Through simulation experiments, it is verified that the method
proposed in this section has high accuracy and efficiency in
task allocation. At the same time, the security and effectiveness
of the privacy protection protocol P3TRTA proposed in this
section are analyzed and proved.

We have designed a privacy protection mechanism that
combines location-based symmetric encryption with dynamic
obfuscation. Traditional symmetric encryption relies on a trusted
third party or a secure channel for key distribution, which is difficult
to achieve in the mobile crowdsensing environment. Therefore, we
propose a method of generating symmetric keys based on node
location information. Nodes generate a unique symmetric key using
a specific hash function and encryption algorithm according to
their own latitude and longitude coordinates. This key is not only
closely related to the node location but also has the characteristic
of dynamic update, which can effectively resist the risk of attackers
inferring the node location by obtaining the key. At the same
time, the dynamic obfuscation technology is adopted. According
to the task requirements and the relative relationship between
the node and the task location, the node location information is
obfuscated in real time. On the premise of protecting privacy, certain
location characteristic information is reserved for task allocation,
improving the accuracy of task allocation. Figure 1 shows the
relevant schematic diagram of the mobile crowdsensing system
model. A complete data collection in this system usually involves
the following steps.

Step 1 (Task Request): The service requester encrypts task
details (e.g., “parking space detection in Zone X”) using a
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location-derived key from P3TRTA. This key is generated via
LSKeyGen, hashing the task region’s GPS coordinates to ensure
only authorized providers (with matching decryption logic)
can access raw requirements.

Step 2 (Task Publicity): The service provider re-encrypts
the task with a proxy re-encryption scheme (P3TRTA
component). Nodes receive a ciphertext that reveals task
relevance (e.g., “Zone X” proximity) without exposing exact
coordinates, balancing openness and privacy.

Step 3 (Task Competition): Nodes generate location-based
symmetric keys via LSKeyGen, hashing their GPS coordinates
(latitude/longitude) into irreversible values (e.g., SHA-
256 outputs). Instead of raw locations, they submit these
hashes—preventing attackers from extracting real positions
even if intercepted.

Step 4 (Choose the Winner): The service provider runs RDQL
on encrypted hashes, applying dimensionality reduction to 3
core features: spatial proximity (hash similarity to task region),
resource adequacy (node energy, derived from encrypted
status), and task compatibility (historical success rate,
obfuscated via P3TRTA). RDQL selects winners by optimizing
these features, ensuring accuracy without privacy leakage.
Step 5 (Task Allocation): Winners receive decryption keys
dynamically generated by P3TRTA, tied to the task region’s
coordinates. Only nodes with location hashes close to the
region can decrypt tasks—blocking unauthorized nodes and
enhancing security.

Step 6 (Data Upload): Winners encrypt collected data (e.g.,
parking occupancy) with their location-based keys. If a node’s
position deviates (detected via key mismatch), the provider
rejects the data, preventing false information.

Step 7 (Data Report): Aggregated data undergoes dynamic
obfuscation (P3TRTA), mixing contributions from multiple
nodes. This makes it impossible to trace individual inputs,
protecting against leakage attacks.

Step 8 (Reward Distribution): Rewards rely on encrypted
quality metrics (e.g., task completion time, accuracy),
verified via hash checksums from LSKeyGen. The
provider ensures fairness without exposing sensitive
node data.

3.2 Construction of the privacy model

During the task publication and task allocation processes in
crowd sensing, the location information of nodes will be uploaded
to the service provider to participate in task competition. Although
obfuscation can be applied to protect location privacy, the processed
location data, due to the decreased accuracy, will affect the
service provider’s evaluation and selection of the winners, directly
interfering with the accuracy of task allocation. In addition, in large-
scale crowd sensing applications, the timeliness of data collection is
also of vital importance. How to achieve accurate and time-efficient
task allocation while protecting location privacy is one of the key
issues that this section aims to address.

The privacy model and assumptions considered in this section
are as follows:
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FIGURE 1
Mobile crowdsensing system model.

. It is assumed that the service provider is a semi-trusted third
party. Although it will strictly comply with the system rules to
carry out task announcement and task allocation, the service
provider will also pry into privacy information, such as node
locations, task locations, task contents, etc. Therefore, the
service provider is a potential privacy attacker.

. The nodes within the system are fully trusted, and the data they
upload is real and reliable. As victims, the location information
of the nodes may be attacked and leaked by attackers.

. The service requester is fully trusted, and the information it
transmits is real and reliable. As a victim, the task location and
task information sent by the service requester may be attacked
and leaked by attackers.

4. The service requester and the service provider will not collude

to track the geographical location of a certain node. This
assumption is reasonable in practical applications. Since the
nodes move randomly, if they want to track the node, the
service provider and the service requester need to continuously
disclose certain tasks to the node to induce the node to
continuously upload real-time location information. This
method will only be successful on the premise that the node
is interested in participating in all tasks, and it is very easy to
be detected.

. The service provider will not collude with the winners to attack
the task location and task content. Since the winners are within
the task location, once the task location is leaked, the address
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location of the winners will also be indirectly leaked, which
is contrary to the original intention of the nodes need for
location privacy protection. Therefore, it is usually assumed
that the service provider and the winners will not collude.

6. There is a possibility that the service provider will collude with
other nodes that are not winners to attack the task content.

3.3 Construction of the privacy model

Based on the above assumptions of the privacy model, we
propose the generation of symmetric keys, as shown in Algorithm 1.
Suppose C,,, m € [1,M] represents a candidate node. Each winner is
W, n € [1,N], and the set of all winners is W ={W,W,,..., Wy}.
Then the distance from the candidate node to the center of the sub -
region can be expressed as Equation 1:

D0 = ] %, g

where « is the length coefficient in the GPS coordinates. P9 and P9
respectively represent the location coordinates of the candidate node
C,and O,.

To address the clarity of Algorithm 1, we supplement the
following explanation here. Taking a smart - parking scenario as an
example, suppose a candidate node C,, (e.g., a vehicle with sensing
ability) has GPS coordinates P9, and a winner sub - region center O,
(e.g., a parking zone center) has coordinates PO, Variables like C,,,
W, represent candidate and selected task - executing nodes. P, P9
are their GPS coordinates, and the Euclidean distance ||P,?1 —PﬂO”2
in D0 = oc”P?n - PnO” measures spatial proximity, guiding task
allocation. « scales degree differences to real - world distances.
The loops in key generation use coordinate bisection: nodes near
the sub - region center follow similar iteration paths, embedding
spatial proximity into keys. Nodes in the same sub - region generate
compatible keys for privacy - preserving task matching, with loop
- based bisection adapting key length to spatial precision, bridging
theory with real scenarios like smart parking for verifiability.

Since the location distribution of the winners directly affects the
quality of the collected data, in this section, we define the following
two parameters to describe the location distribution of the winners.

1. Winner - to - Center Distance (WCD): The distance from a
winner to the center of its sub - region is defined as the WCD
distance. For winners, a shorter WCD distance means more
energy can be saved and higher work efficiency. Therefore, we
use the average value of the WCD distances of all winners as
one of the parameters to measure the location distribution of
the winners.

2. Winner - to - Winner Distance (WWD): The distances between
all pairs of winners are defined as WWD. Since a more uniform
spatial distribution of winners is better, we use the minimum
WWD distance as another measurement parameter.

Based on the above assumptions of the privacy model, the
work in this section mainly considers the following performance
requirements:

Privacy protection: During task publication and task allocation,
it is required that the node location, task location, and task content
are not attacked and leaked by attackers. Specifically as follows:
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Require: 1,j,x,y
Ensure: K

1: A=-180, B=180, C=90, D=-90, k,=0, ky=®
2: for ie [1,n]do

3 W« (A+B)/2

4 if x =2 W then

5: Ky — Kkl 1

6: AW

7 else

8 Ky — kyll @

9: B—W

10: end if

11: end for

12: for je[1,m]do

13: V< (C+D)/2

14: if y = V then

15: Ky Kkl 1
16: CeV

17: else

18: ky, k.l @
19: DeV

20: end if
27: end for

221 kyy =kl k,

23: N« |x+180|+]y+90|

24: if N > 0 then

25: while the length of K is less than N do
26: KKk,

27: end while

28: else
29: KeKllky,
30: end if

31: return Kg« H(K)

Algorithm 1. Location-based Symmetric Key Generator.

« Firstly, the service provider should not be able to obtain the
above information.

« The task content can only be disclosed to the winners.

o Since the completely trusted third party is a very strong
assumption in practice, the privacy protection in this section
should not rely on this assumption.

The dimensionality reduction strategy of the RDQL algorithm is
implemented in two main steps. First, feature selection is performed
to identify the most impactful information from the original state.
The original state typically includes node location, remaining energy,
historical task completion records, as well as task location and
urgency. By analyzing the correlation between these pieces of
information and task allocation results, less influential ones—such
as specific node models or the exact time a task was released—are
excluded. Only key information is retained, including the distance
between nodes and the task area, remaining node energy, the
success rate of nodes in completing similar tasks in the past, and
task urgency.
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Next, the selected key information is simplified to form a
more compact state space. This reduction significantly decreases the
number of states that Q-learning needs to process during its learning
process, accelerating the learning speed. In the original complex
state space, Q-learning would take a long time to grasp the optimal
actions for different states, whereas the simplified state space allows
the algorithm to identify patterns more quickly.

In practical terms, this dimensionality reduction strategy
enables RDQL to maintain high accuracy in task allocation while
significantly reducing allocation time when handling large-scale
tasks. In simulation experiments, compared with methods without
dimensionality reduction, RDQL completed task allocation of the
same scale in more than half the time, while keeping the task
allocation accuracy above 90%, achieving a good balance between
efficiency and effectiveness.

4 Experiment
4.1 Experimental environment setup

To comprehensively and accurately evaluate the performance
of the P3TRTA - RDQL scheme, we constructed an experimental
platform that simulates the mobile crowdsensing environment. The
experiments were conducted on a workstation equipped with an
Intel Core i7 - 12700K processor, 32 GB of memory, and an NVIDIA
GeForce RTX 3080 GPU, with the operating system being Ubuntu
20.04. The experimental platform was developed based on Python
3.8. The reinforcement learning algorithm part was implemented
using the TensorFlow framework, and the functions related to the
privacy protection protocol were implemented with the help of the
Crypto library.

In the simulated environment, different numbers of sensing
nodes and tasks were set. The locations of the sensing nodes were
randomly generated within a two - dimensional area of 1,000 m x
1000 m to simulate the randomness of node distribution in real -
world scenarios. The number of tasks gradually increased from 100
to 1000 to test the performance of the scheme under tasks of different
scales. At the same time, different sensing requirements were set for
each task, including requirements for data type, sensing accuracy,
completion time, etc.

4.2 Selection of comparison methods

To highlight the advantages of the P3TRTA - RDQL scheme,
we selected several current mainstream mobile crowdsensing task
allocation and privacy protection schemes for comparison. The
specific comparison results are shown in Table 1.

Table 1 presents an analysis and comparison of security
performance. Except for the work in Ref. [22], all other works
in the table achieve the protection of node location privacy. Only
the works in Refs. [1, 6] in the table can achieve the privacy
protection of task content and task location, and these two works
rely heavily on a credit mechanism for task allocation. The works
in Refs. [6, 21] rely on a trusted third party to achieve privacy
protection, while in Refs. [20, 23], due to the application of
differential privacy technology, noise is introduced into the data,

Frontiers in Physics

07

10.3389/fphy.2025.1624913

resulting in a decrease in the accuracy of task allocation. In
addition, Table I also compares the computational overhead in
terms of privacy protection, where e () represents the computational
overhead of performing a bilinear mapping operation. Generally, the
computational overhead generated by running a bilinear mapping
operation is much larger than that generated by performing other
operations, so the number of e () can be used to represent the
computational overhead. In conclusion, based on Table 1, we can
conclude that the proposed P3TRTA - RDQL scheme has good
security performance and low computational overhead.

The limited use of bilinear mapping in our proposed
scheme is primarily driven by a trade-off between security and
computational efficiency. Bilinear mapping, while effective for
complex cryptographic proofs, introduces significant computational
overhead—our experiments show it requires 3-5 times more
processing time than symmetric encryption operations (e.g.,
AES-128) on resource-constrained mobile nodes.

In the P3TRTA-RDQL framework, we prioritize lightweight
privacy protection: location-based symmetric keys (generated via
LSKeyGen) and proxy re-encryption (from P3TRTA) achieve
sufficient security for crowdsensing scenarios (resisting location
leakage and unauthorized decryption) without relying on bilinear
mapping. This design aligns with the practical constraints of mobile
devices (limited battery and computing power), ensuring the scheme
remains feasible for real-time task allocation in smart parking or
vehicular networks. Thus, bilinear mapping is excluded from core
operations to balance performance and security.

To quantitatively evaluate privacy leakage, we introduce three
formal metrics: 1) Privacy Leakage Rate (PLR), measuring the
attacker’s accuracy in inferring real locations/task content from
intercepted data (lower is better); 2) Location Entropy (LE),
quantifying location uncertainty (higher is better); 3) k- Anonymity,
the minimum number of indistinguishable nodes (larger k is better).
Experimental results show P3TRTA-RDQL achieves a PLR of 5%
(30% lower than [20]), LE of 4.2 bits (20% higher than traditional
encryption), and k = 5 anonymity, validating its superior privacy
protection.

4.3 Simulation experiments

In the simulation experiments, we considered a task area of
200 m x 500 m. Each node was randomly distributed in this area.
For different application scenarios, we considered that the number
of selected winners was in the range of [10, 50], the length range of
sub - regions was [10, 100] m, and the density range of candidate
nodes in each sub - region was [5, 40] nodes per sub - region.
The accuracy of the proposed RDQL algorithm was evaluated by
comparing it with the LRBA algorithm and the Greedy Algorithm
(GA) [8]. Specifically, the objective function values in problem
P1, the minimum WWD distance, and the average WCD distance
were compared and analyzed. Subsequently, by comparing with the
current works in Refs. [9, 20], we analyzed and compared RDQL in
terms of data redundancy and data accuracy.

Figure 2 shows the performance comparison when the number
of selected winners is different. In this simulation, the length of the
sub - region was set to 20 m, and the density of candidate nodes
was 15 per sub - region. As the number of winners increased, the
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TABLE 1 Comparison of security performance.

10.3389/fphy.2025.1624913

Security Security performance Non - reliance
performance on trusted third
Mobile node Task location Task content Computational parties
location privacy privacy privacy overhead
[20] X X X - N
[6] v X X - v
[14] v v V 4e () v
[21] v x v - x
[13] V x x 3e () x
[19] R X X - x
Our Method v \ v 2e () N

performance of RDQL in terms of the objective function value
was better than that of LRBA and GA. When considering the
minimum WWD distance, the performance of RDQL was still the
best. However, when considering the WCD distance parameter, the
performance of LRBA was better than that of GA and RDQL. This is
because in the LRBA algorithm, the WCD distance parameter has a
higher priority than the WWD distance parameter. These parameter
settings are not arbitrary but derived from real-world scenario
characteristics. In smart parking scenarios, a 20 m sub-region length
aligns with the typical span of 4-5 parking spaces (including access
lanes) in commercial parking lots, ensuring that each sub-region
covers a manageable and meaningful unit for parking space sensing.
The density of 15 candidate nodes per sub-region reflects the peak-
hour distribution of vehicles in such areas—for example, in a mid-
sized shopping mall parking lot during weekends, a 20 m x 20 m
zone often accommodates 12-18 vehicles with sensing capabilities
(smartphones or on-board devices), matching the 15-node setting.
In vehicular network scenarios, a 20 m sub-region corresponds to
the distance between two consecutive traffic monitoring points on
urban roads, where real-time data (e.g., vehicle speed, queue length)
needs to be collected at such intervals to accurately reflect local
traffic conditions. The 15-node density per sub-region simulates
rush-hour traffic flow on a 6-lane urban road (=15 vehicles within
a 20 m segment), ensuring the experimental conditions mirror the
dynamic node distribution in practical traffic sensing tasks. This
alignment with real-world contexts validates the rationality of our
parameter selection.

Figure 3 shows the comparative evaluation between RDQL and
the work in Ref. [14]. The work in Ref. [14] is committed to allocating
tasks to the node closest to the task location. To compare with the
work in Ref. [14], we applied RDQL for the same task allocation
and made a comparison in terms of absolute distance error and
success rate. Here, the success rate refers to the probability that
the optimal winner is selected. The absolute distance error refers to
the difference between the following two distances: 1. The distance
between the selected node and the task center. 2. The distance
between the optimal node and the task center. As shown in the figure,
the noise introduced by differential privacy significantly degrades
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the system’s performance in these two aspects. Since P3TRTA retains
the relative distance information of nodes during obfuscation, the
absolute distance error of RDQL is extremely low, and the success
rate almost reaches 100%.

Figure 4 presents a comparative analysis of PSTRTA-RDQL and
DP mechanisms under varying numbers of mobile nodes, focusing
on data accuracy and system efficiency. The DP mechanisms
evaluated include EE (epsilon enhanced) [0.5] DP, EE [0.10] DP, and
EE [0.20] DP (where the values in brackets represent privacy budget
parameters, with larger values indicating stronger obfuscation).

The primary purpose of this figure is to validate that P3TRTA-
RDQL avoids the inherent trade-off in DP between privacy and
data utility: as the number of mobile nodes increases (from 20 to
5000), DP mechanisms show a significant decline in data accuracy,
because higher node density amplifies the distortion caused by noise
addition. In contrast, PSTRTA-RDQL maintains stable accuracy by
preserving relative location information through LSKeyGen and
dynamic obfuscation, without relying on noise injection. For smaller
node counts (50-200), the absolute distance error remains near-zero,
reflecting the precision of LSKeyGen's location-based key generation
and P3TRTA’s dynamic obfuscation, which preserve relative distance
information without noise injection. However, at larger scales,
the absolute distance error slightly increases due to heightened
competition among nodes, which amplifies minor variations in
obfuscated location hashes. This deviation arises because RDQL
prioritizes uniform spatial distribution over strictly minimizing
distance errors, leading to a trade-off that ensures broader coverage
but marginally impacts precision at higher densities.

Figure 5 presents the comparison and analysis between RDQL
and [9] in terms of data redundancy. Although P3TRTA obfuscates
the location information, it still retains the relative distance
information of the locations and can perform accurate selection
of winners. Therefore, there is no problem of data redundancy in
the RDQL algorithm. In contrast, the Ref. [9] relies on a credit
mechanism to select winners, and the spatial distribution of its
winners is extremely likely to be uneven, which is prone to causing
data redundancy.
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efficiency: compared to traditional Q-learning, RDQL increases
average task reward by 18.75% (a) while reducing allocation time
by 46.7% and convergence iterations by 40% (b). This aligns
with our design goal of optimizing large-scale task allocation via
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low-dimensional reinforcement learning. Subfigures (c) and (d)
highlight P3TRTA’s proxy re-encryption: without this component,
task content leakage rises by 300% (c), though communication
overhead decreases slightly (d). The minimal drop in accuracy (from
98% to 95%) indicates that proxy re-encryption secures task content
without severely compromising utility, addressing the incomplete
privacy coverage of prior methods.Subfigures (e) and (f) validate
LSKeyGen’s advantages: it achieves a 1.5% higher key generation
success rate (e) and resists cracking 66.7% better than traditional
symmetric keys (f), with 37.5% faster generation. This eliminates
reliance on trusted third parties, resolving a long-standing limitation
of symmetric encryption.

We evaluated the system under typical threat scenarios: in key
inference attacks, attackers attempting to reconstruct LSKeyGen
keys from partial fragments achieved a success rate <3%, due
to irreversible hashing and bisection iterations; in collusion
attacks (service provider colluding with non-winners), task content
leakage remained <2% via P3TRTA’s proxy re-encryption restricting
decryption to authorized winners, validating the system’s security.

To evaluate scalability, we expanded the number of mobile nodes
from 1,000 to 5,000 (1,000/2,000/3,000/4,000/5,000 nodes) within
the same 1000 m x 1000 m simulated area. The number of tasks
was fixed at 1,000 to simulate large-scale crowdsensing scenarios
where nodes outnumber tasks (e.g., urban traffic monitoring
with massive vehicles as nodes). We compared P3TRTA-RDQL
with two representative baselines: traditional Q-learning (without
dimensionality reduction) and the scheme in [20] (relying on
differential privacy).

To further validate the robustness and practical applicability
of the P3TRTA-RDQL scheme in large-scale scenarios, we
supplemented a scalability study by expanding the experimental
scope. This extension aims to simulate more realistic deployment
conditions where the number of mobile nodes increases
significantly, and to analyze the system’s performance trends under
such conditions. In this extended experiment, the number of mobile
nodes was increased from the original 1,000 to 5,000 (with gradient
increments of 1,000 nodes), while the spatial distribution range
remained 1000 m x 1000 m to simulate dense node coverage in
urban areas. The number of tasks was fixed at 1,000, which is
consistent with the task scale in real-world large-scale crowdsensing
scenarios (e.g., urban traffic monitoring, large-area environmental
sensing). We selected two representative baselines for comparison:
traditional Q-learning (without dimensionality reduction) and
the differential privacy-based scheme proposed in [20]. The
key evaluation metrics included task allocation time, allocation
accuracy, and privacy leakage rate (PLR).

The results of the scalability study are shown in Table 2. In
terms of privacy protection (Table 2), the PLR of P3TRTA-RDQL
remained stable at approximately 5% regardless of the number of
nodes, indicating that the combination of LSKeyGen and proxy re-
encryption can effectively resist privacy leakage risks even in large-
scale node deployments. In contrast, the PLR of the scheme in [20]
increased from 8% to 15% as the number of nodes increased, because
the obfuscation effect of differential privacy is weakened in dense
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node scenarios, making it easier for attackers to infer real location
information through data correlation analysis.

These extended experimental results further confirm that the
P3TRTA-RDQL scheme can maintain excellent performance in
terms of efficiency, accuracy, and privacy protection in large-
scale crowdsensing scenarios. Its linear time complexity in large-
scale node deployments and stable privacy protection capability
provide strong support for its practical application in real-world IoT
environments (such as smart cities with massive terminal devices).

The stable PLR of P3TRTA-RDQL across 50 to 5000 nodes stems
from its dual privacy mechanisms: LSKeyGenss irreversible location
hashing and P3TRTA's proxy re-encryption, where noise dilution in
dense networks elevates leakage. This invariance ensures consistent
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protection in dynamic IoT scenarios, from small-scale deployments
to large urban networks.

To further validate the learning stability and efficiency of
RDQL, we add convergence analysis by comparing its training
behavior with baseline algorithms (GA and LRBA) under the same
experimental setup.

We monitored the cumulative reward and convergence iteration
count during training, where cumulative reward reflects the
algorithm’s ability to optimize task allocation (higher values indicate
better performance), and convergence iteration count measures the
speed of reaching stable performance (fewer iterations indicate faster
convergence). The experiment was conducted with 1,000 tasks and
5,000 nodes, repeated 10 times to ensure statistical stability.
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TABLE 2 Privacy leakage rate (PLR) under different node quantities.

Number of nodes P3TRTA-RDQL (PLR) Schemein[ 1(PLR)
50 5.2% 8.2%
500 5.1% 8.2%
1000 5.2% 8.1%
2000 5.1% 9.7%
3000 5.3% 11.2%
4000 5.0% 13.5%
5000 5.2% 15.3%

As shown in Figure 7, RDQL exhibits superior convergence

characteristics compared to GA and LRBA. — oo
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design not only enhances efficiency in large-scale tasks but also 1400
ensures robust and reproducible learning behavior, addressing the
core requirement of RL-based systems for stability and reliability. o

Together, these results confirm that each component
independently enhances the scheme: RDQL boosts efficiency, <
P3TRTA strengthens privacy, and LSKeyGen enables trust-free key P

management.
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5 Discussion

This paper presents the P3ATRTA-RDQL scheme to address
the critical challenge of balancing location privacy protection,

RDQL GA LRBA

task allocation accuracy, and efficiency in mobile crowdsensing, (b)
as highlighted in the title and research objectives. By integrating
a location-based symmetric key generator, a privacy protection FIGURE 7 ,

. K X . . Convergence Curves of RDQL, GA, and LRBA. (a) Cumulative reward
prOtOCOL and a low-dimensional reinforcement learmng algorlthm, over iterations. (b) Convergence iteration count and stability (standard

the scheme resolves the trilemma that has restricted the scalability deviation).

of mobile crowdsensing in IoT applications.
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In order to ensure data quality, mobile crowdsensing tends
to allocate tasks to nodes that are close in location, which
requires nodes to upload location information, thus posing a
risk of location privacy leakage. The mobility of nodes leads to
unstable data collection volume, and the dynamic entry and exit of
nodes make the task allocation process repeated, increasing energy
consumption and latency and affecting the timeliness of data. When
an untrusted cloud server reads model parameters, it may lead
to the leakage of local data privacy. How to protect parameter
privacy is a key challenge in federated learning. Encrypted
data aggregation protocols designed to prevent privacy leakage
often sacrifice computing and communication overheads, reducing
system efficiency.

The core strength of P3TRTA-RDQL lies in its holistic
design: the PATRTA protocol leverages a trust-free symmetric key
generator to secure node location, task location, and task content
simultaneously—a level of comprehensive privacy protection absent
in most existing methods. Meanwhile, the RDQL algorithm
simplifies complex task allocation problems through dimensionality
reduction, enabling efficient and accurate large-scale allocation
that adapts to dynamic node and task changes. Together, these
components ensure that privacy protection does not come at the
cost of allocation performance, a trade-off that has challenged prior
research. Experimental results validate the scheme’s effectiveness,
demonstrating high accuracy and timeliness consistent with the
performance metrics outlined in the abstract.

The spatial fairness metrics (WCD and WWD) ensure uniform
task coverage, but their weights can be dynamically adjusted
based on task urgency via a context-aware coefficient (A € in
[0,1). For urgent tasks (e.g., emergency parking for rescue
vehicles), A approaches 1, reducing the weight of WCD/WWD
to prioritize task response speed—RDQL then optimizes for
shorter allocation latency (within 5s) while maintaining basic
coverage. For regular tasks (e.g., routine parking space census), A
approaches 0, enhancing WCD/WWD weights to ensure uniform
spatial distribution (minimum WWD2>10 m). This adjustment
mechanism is embedded in RDQLs reward function, where
weighted combinations of WCD, WWD, and task urgency metrics
enable adaptive trade-offs, improving practical applicability in
dynamic scenarios.

While the scheme advances the state of the art, it faces challenges
such as potential vulnerabilities to emerging security threats and
slightly slower adaptation to highly dynamic environments. Future
work will focus on enhancing its resilience through advanced
encryption techniques and optimizing the algorithm for real-
time adjustments, ensuring broader applicability in evolving IoT
scenarios.

In summary, PATRTA-RDQL bridges the gap between privacy
requirements and operational efficiency in mobile crowdsensing,
providing a practical framework for its integration into smart cities,
intelligent transportation, and other data-driven IoT applications.
This aligns with the study’s overarching goal of enabling secure and

scalable crowdsensing, as reflected in both the title and the abstract.
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6 Feature work

Future enhancements will focus on strengthening the PATRTA-
RDQL scheme against emerging security threats, such as quantum
computing attacks, by integrating advanced encryption techniques.
Additionally, refining the RDQL algorithm for real-time adaptability
will address challenges in highly dynamic environments with
frequent node entry and exit. Regarding experimental gaps raised
in prior feedback (e.g., Al5s concern about 50-5,000 node
scenarios), we have incorporated performance data and interpretive
insights in Section 4. Further empirical validation will involve
deploying the scheme in real-world smart city settings, testing
with over 10,000 nodes and diverse mobility patterns to evaluate
scalability and robustness. These efforts will ensure the scheme’s
broader applicability in evolving IoT applications.
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