
TYPE Original Research
PUBLISHED 02 September 2025
DOI 10.3389/fphy.2025.1626026

OPEN ACCESS

EDITED BY

Valerio Restocchi,
University of Edinburgh, United Kingdom

REVIEWED BY

Maria Letizia Bertotti,
Free University of Bozen-Bolzano, Italy
Sayan Gupta,
Indian Institute of Technology Madras, India
Guillermo Romero Moreno,
Centrum Wiskunde & Informatica,
Netherlands

*CORRESPONDENCE

Ayse Peker-Dobie,
pdobie@itu.edu.tr

RECEIVED 09 May 2025
ACCEPTED 13 August 2025
PUBLISHED 02 September 2025

CITATION

Demirci A, Peker-Dobie A and Harman S
(2025) Modeling opinion polarization: can we
control public discourse?
Front. Phys. 13:1626026.
doi: 10.3389/fphy.2025.1626026

COPYRIGHT

© 2025 Demirci, Peker-Dobie and Harman.
This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that
the original publication in this journal is cited,
in accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Modeling opinion polarization:
can we control public discourse?

Ali Demirci, Ayse Peker-Dobie* and Sevgi Harman

Department of Mathematics Engineering, Faculty of Science and Letters, Istanbul Technical University,
Istanbul, Türkiye

Introduction: Public opinion dynamics shape societal discourse, with
engagement levels influencing the balance between polarization and
depolarization.
Methods: We present a compartmental model inspired by epidemiology
to analyze opinion dissemination under external interventions. The model
categorizes individuals into susceptible, exposed, positive, negative, and mixed-
emotion communicators, with a time-dependent step function u(t) modeling
controlled engagement surges during a finite intervention period.

Results: Our analysis focuses specifically on the effects of temporary
interventions rather than long-term system evolution. The results highlight
engagement as a key control mechanism in shaping ideological stability.
Discussion: Real-world interventions, such as government-imposed access
restrictions, demonstrate how targeted engagement shifts influence public
discourse. This study provides a mathematical framework for understanding
how external interventions drive opinion evolution and offers insights into
managing polarization in digital and social environments.
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1 Introduction

Opinion dynamics models provide a mathematical framework for understanding how
individuals in a population form, spread, andmodify their opinions over time. Traditionally
studied in social sciences, the formation and evolution of opinions have increasingly
attracted interest from researchers in physics, mathematics, and computer science [3]. A
variety of works focuses on constructing mathematical models of opinion dynamics, using
tools from statistical physics, network theory as well as computational modeling [1, 2, 14,
15, 17, 20, 26, 34].

Several well-known opinion models have been proposed to describe different
mechanisms of opinion evolution. One of the foundational models in this field is the
Deffuant-Weisbuch model, which describes how individuals adjust their opinions through
pairwise interactions, with convergence occurring only if their initial opinions are close
enough [6]. Similarly, the Hegselmann-Krause model assumes that individuals update
their opinions based on a weighted average of those within a specified confidence
threshold [13], capturing how opinion fragmentation and clustering arise from selective
interactions. Expanding on these ideas, bounded confidence models [21] further explore
the role of echo chambers in social networks, where individuals tend to reinforce their
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pre-existing beliefs by selectively interacting with like-minded
peers.Other important frameworks include the voter model, which
captures opinion shifts through random imitation of neighbors [29],
and Ising-type models that represent opinion dynamics as binary-
state systems influenced by local alignment and noise, drawing
inspiration from statistical physics [29].

Beyond these foundational models, numerous alternative
approaches have been developed, utilizing a wide range of
modeling techniques. One widely used strategy is agent-based
modeling (ABM), which allows for rich micro-level realism by
simulating individuals as autonomous entities interacting based on
heterogeneous rules [3, 19, 23, 28]. However, complex ABMs can
be difficult to initialize and parameterize [30], are often criticized
for lack of transparency and difficulty in evaluation [24], and may
generate high-dimensional output that is hard to interpret [16].

Alongside these approaches, epidemic-inspired frameworks
have also been widely used to study opinion spread, leveraging
their ability to describe diffusion processes in a manner analogous
to disease transmission [5, 12]. Studies proposed adaptations of
Susceptible-Infected-Recovered (SIR) models to opinion spread,
emphasizing similarities between rumor transmission and epidemic
propagation [5, 32, 33, 35, 36]. Additionally, Susceptible-Exposed-
Infected-Recovered (SEIR) models have also been used to capture
the dynamics of opinion evolution, incorporating factors such
as sentiment-driven interactions, decision-making processes, and
multilingual opinion transfer [4, 8, 9, 22, 28, 37].

Building on this analytical advantage, we adopt and extend the
recent compartmental framework introduced by Geng et al. [11],
which is itself inspired by epidemic modeling structures. A key
innovation in our study is the inclusion of a Mixed-Emotion
Compartment (Im), designed to represent individuals who
simultaneously engage with and disseminate both polarized
viewpoints—an aspect not addressed in prior models. In
many discussions, individuals express support and opposition
simultaneously. The Im compartment captures this behavior by
modeling agents who propagate both sides, offering a more realistic
structure for multi-directional discourse. Its inclusion also enables
more flexible equilibrium structures by mediating the dynamics
between polarized groups.

In many socio-political and ideological debates, individuals
rarely adhere strictly to a single stance; rather, they endorse some
aspects of a discussion while opposing others. Classical models
categorize individuals into predefined states—such as neutral,
positive, or negative—but fail to capture thosewho actively engage in
discourse while disseminating mixed sentiments. These individuals
shape discussions in multiple directions rather than reinforcing
a single stance, as seen in political debates, where people may
support aspects of a reform while rejecting others. To address
this, we introduce the Mixed-Emotion Compartment (Im), which
allows individuals to simultaneously propagate multiple, sometimes
contradictory, viewpoints. This feature enhances our model’s ability
to reflect the complexity of public discourse, where individuals
actively shape opinion evolution by amplifying, countering, or
reshaping narratives.

The remainder of this paper is structured as follows: In Section 2,
we introduce the mathematical model for online public opinion
dynamics, establish the positivity and boundedness of solutions, and
determine the equilibrium points. Section 3 presents the stability

analysis, where we derive the basic reproduction number, analyze
the local and global asymptotic properties of the equilibrium points,
and illustrate the results. Finally, in Section 4, we discuss our findings
in the context of real-world social media discourse and suggest
possible extensions to the model.

2 Modeling online public opinion
dynamics: positive, negative, and
mixed emotions under media
interventions

2.1 Mathematical model

To analyze the dynamics of opinion dissemination under media
interventions, we propose a compartmental model inspired by
epidemiological frameworks. The model classifies the population
into five compartments, where S (Susceptible Individuals), E
(Exposed Individuals), Ip (Positive Communicators), In (Negative
Communicators), and Im (Mixed-Emotion Communicators)
represent the number of netizens in each state. The terms “positive”,
“negative”, and “mixed-emotion” communicators are used to
represent individuals who actively express views in support of,
against, or engaging with both sides of a topic. These labels do
not imply internal affective states but rather the public orientation
of the opinions being communicated.

The governing equations of our model, presented below,
describe the dynamical transitions between opinion states, while
the corresponding flow diagram (Figure 1) visually represents these
transitions

S′ = u (t) − λS(Ip + In + Im) − μ1S,

E′ = λS(Ip + In + Im) − (α1 + α2 + α3)E− μ2E,

I′p = α1E+ωInIp + δ1Im − μ3Ip,

I′n = α2E−ωInIp + δ2Im − μ3In,

I′m = α3E− (δ1 + δ2) Im − μ3Im.

(1)

We assume that the disengagement rates for positive
communicators (Ip), negative communicators (In), and mixed-
emotion individuals (Im) are identical, denoted by μ3. This
assumption is based on the idea that disengagement is primarily
influenced by psychological fatigue, cognitive overload, and external
platformmechanics rather than ideological stance. Empirical studies
suggest that user disengagement from online discourse is often
driven by information saturation rather than ideological conviction
[18, 25, 27]. Furthermore, in many controlled environments—such
as state-regulated media platforms or algorithmically moderated
online spaces—users are subject to similar disengagement pressures,
reinforcing our choice of a uniform μ3. While this study assumes
a homogeneous disengagement rate, future work could explore
the effects of asymmetrical disengagement rates, particularly in
environments where ideological entrenchment plays a stronger role
in sustained engagement.

In contrast, susceptible (S) and exposed (E) individuals have
distinct disengagement rates (μ1,μ2), as their exit behaviors are
fundamentally different. Political science research suggests that
those who never engage in discourse disengage due to low
motivation or cognitive effort [10]. Meanwhile, cognitive overload
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FIGURE 1
Flow diagram representing the opinion dynamics model in (Equation 1).

studies indicate that exposed individuals (E), faced with conflicting
opinions, are more prone to decision fatigue rather than ideological
frustration [31]. By incorporating these distinctions, our model
more accurately represents how individuals disengage at different
stages of opinion formation.

In system (1), each derivative denotes the rate of change
with respect to time (t), which is modeled as a continuous and
dimensionless variable. While the model does not assume a specific
unit of time, it is designed to reflect the fast-paced nature of
discourse evolution in digital environments. Depending on the
application context, one unit of time can be interpreted as a few
hours, a day, or a full cycle of social media engagement or news
coverage. This flexible treatment allows the model to capture short-
term fluctuations and longer-term opinion shifts within a unified
analytical framework.

Here, λ represents the probability of susceptible individuals
transitioning into the exposed state after encountering active
communicators, effectively becoming passive observers or ‘lurkers’.
α1, α2 and α3 denote the probabilities of lurkers transitioning
into different communicator states, specifically becoming positive,
negative and mixed-emotion communicators, respectively. The
transition rates α1, α2 and α3 are assumed to be constant, reflecting
an internal predisposition of exposed individuals toward specific
opinion states. These rates are not influenced by the current
distribution of opinionated communicators in the system. ω refers
to the probability of negative communicators shifting under positive
influence, reflecting the interaction between opposing perspectives.
Since Ip and In play structurally similar roles, the definition of ω
as influencing either group remains a modeling choice, ensuring

flexibility without affecting the fundamental structure or solution of
the system.

The disengagement probabilities are given by μ1, μ2 and μ3,
corresponding to different stages of engagement in the system. μ1
represents the probability of uninformed individuals disengaging
from discourse entirely, while μ2 accounts for the probability
of exposed individuals exiting the discussion before forming an
opinion. Finally, μ3 denotes the probability of active communicators
(Ip, In, Im) disengaging, ceasing to contribute to opinion formation.
Here, δ1 and δ2 represent the rate at which mixed-emotion
individuals transition into positive and negative communicators,
respectively.The inclusion of Im introduces a dynamic mediator that
indirectly affects the balance between Ip and In, allowing for more
complex trajectories and equilibrium behavior than in traditional
SEIR-type opinion models.

In our model, the influx of new individuals into the susceptible
population is represented by the function u(t), defined as

u (t) =
{{
{{
{

0, if t < tint
A, if tint ≤ t ≤ tint +Tint

0, if t > tint +Tint

.

Here, tint denotes the initiation time of the intervention, Tint
represents its duration, and A refers to the total number of new
individuals entering the susceptible class during the intervention
period.This piecewise definition allows us tomodel scenarios where
external agents, such as governments or organizations, introduce
surges of new participants into the discourse at strategically
chosen times. By incorporating this time-dependent function, our
model captures the transient and often abrupt changes observed
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in public opinion dynamics, providing a nuanced understanding
of how targeted interventions influence the spread and evolution
of opinions over time. In this study, we focus specifically on
the time interval where A is active, analyzing the effects of the
intervention period. In our simulations, we focus on the case
where u(t) = A is constant, corresponding to a regime of sustained
baseline engagement, in order to analyze the steady-state behavior
of the system.

Engagement surges often arise from external factors such as
major news events, viral media cycles, or coordinated platform-
wide promotions. These triggers can cause abrupt increases in user
participation, temporarily altering the trajectory of public discourse.
Our model captures such surges through a time-dependent influx
function, allowing for the analysis of how transient or sustained
engagement influences long-term opinion dynamics.

2.2 Positivity and boundedness

A fundamental requirement in modeling such systems is
ensuring that all state variables remain non-negative and bounded
over time. This guarantees that the solutions remain physically
meaningful, as negative values would not correspond to realistic
interpretations of population sizes. The following theorem
demonstrates that the total population remains constrained within
a positively invariant region.

Theorem 1: Let μ denote the minimum of the coefficients μ1, μ2 and
μ3. Then, the closed region

Ω = {(S,E, Ip, In, Im) ∈R5
+|S+E+ Ip + In + Im ≤ A/μ}

is positively invariant set for the model given in (1).
Proof. To analyze the behavior of the system in (Equation 1), we

sum the equations and define the total population as N(t) = S(t) +
E(t) + Ip(t) + In(t) + Im(t), resulting in

N′ (t) = S′ (t) +E′ (t) + I′p (t) + I′n (t) + I′m (t) .

By introducing μ =min{μ1,μ2,μ3}, we derive the inequality

N′ (t) ≤ A− μN (t) ,

which clearly indicates thatN′(t) becomes negative wheneverN(t) >
A/μ.

Solving this inequality leads to the conclusion that

N (t) ≤ A
μ
+ e−μt(N (0) − A

μ
),

providing an upper bound for the total population as

lim
t→∞

N (t) = A
μ
.

Furthermore, for (S,E, Ip, In, Im) ∈R5
+, the following holds

S′|S=0 = A > 0, E′|E=0 = λS(Ip + In + Im) ≥ 0, I′p|Ip=0 = α1E+ δ1Im ≥ 0,

I′n|In=0 = α2E+ δ2Im ≥ 0, I′m|Im=0 = α3E ≥ 0.

Therefore, Ω constitutes a positively invariant set for the model
(1), guaranteeing that no solution trajectory can leave through the
boundary of Ω.

2.3 Equlibrium points

Analyzing the equilibrium points of the system provides insight
into its long-term behavior. Equilibrium states correspond to
points where the system remains unchanged over time, meaning
all derivatives are set to zero. By solving the resulting algebraic
equations, we can determine steady-state solutions that describe
possible stable configurations of the system.

Solving for Im in terms of E yields the following relation

Im =
α3E

δ1 + δ2 + μ3
. (2)

By adding the third and fourth equations in (1) and setting the result
to zero, we obtain

Ip + In = (α1 + α2 +
α3 (δ1 + δ2)
δ1 + δ2 + μ3

) E
μ3
. (3)

On the other hand, substituting (Equations 2, 3) into the expression
E′ = 0, we obtain the following

(−(α1 + α2 + α3 + μ2) +
α1 + α2 + α3

μ3
λS)E = 0. (4)

This equation reveals two possible solutions, E = 0 and E ≠ 0. For the
former case, Equation 2 yields Im = 0, and Equation 3 gives Ip + In =
0. The nonnegativity constraints on Ip and In require Ip = In = 0.
Consequently, from S′ = 0, we find S = A/μ1. This result identifies
the first equilibrium point, P1(A/μ1,0,0,0,0), which corresponds to
the dissemination-free equilibrium.

For a nonzero E, we solve (Equation 4) to determine S as follows

S∗ =
μ3 (α1 + α2 + α3 + μ2)

λ(α1 + α2 + α3)
(5)

which is positive for all parameter combinations.
By substituting (Equations 2, 3 and 5) into S′ = 0 and solving for

E, we find

E∗ = A
α1 + α2 + α3 + μ2

−
μ1μ3

λ(α1 + α2 + α3)
.

The condition for E∗ to be positive is

(α1 + α2 + α3)(Aλ− μ1μ3) > μ1μ2μ3. (6)

Then, (Equation 2) gives

I∗m =
α3

δ1 + δ2 + μ3
E∗. (7)

Similarly, by substituting (Equations 3, 7) into I′p = 0, we obtain the
following quadratic polynomial

I2p + kIp − l = 0

where

k =
μ3
ω
+(

α3
δ1 + δ2 + μ3

−
α1 + α2 + α3

μ3
)E∗,

l = (α1 +
α3δ1

δ1 + δ2 + μ3
) E
∗

ω
.
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For positive Ip, the solution to this quadratic equation is

I∗p = −
k
2
+ 1
2
√k2 + 4l, (8)

which always exists since l is positive. Then, by using (Equations 8,
3), we find

I∗n =
μ3
ω
− k− I∗p ,

which remains positive for all parameter combinations. Thus, there
exists the endemic equilibrium point P2(S∗,E∗, I∗p, I∗n, I∗m) when
the condition given in (Equation 6) holds.

3 Stability analysis

In this section, we analyze the stability properties of the system
by first determining the basic reproduction number. We then
examine both the local and global asymptotic stability of both
equilibria and establish the conditions for their stability. Finally, we
illustrate these theoretical results through numerical simulations.

3.1 Basic reproduction number

The basic reproduction number, R0, plays a crucial role
in analyzing the dynamics of dissemination in online public
opinion systems. If R0 > 1, the dissemination persists, whereas it is
eliminated forR0 < 1.This threshold mirrors its significance in such
models, emphasizing the need for effective strategies to control the
spread of online public opinion by lowering R0 below one when it is
necessary to limit its impact.

Using the next-generation matrix method and following the
notation in [7], R0 can be determined as the spectral radius of FV−1

where the matrices F and V are defined as follows

F =(

0 λA/μ1 λA/μ1 λA/μ1
0 0 0 0
0 0 0 0
0 0 0 0

),

V =(

−α1 − α2 − α3 − μ2 0 0 0
α1 −μ3 0 δ1
α2 0 −μ3 δ2
α3 0 0 −δ1 − δ2 − μ3

).

Then, we obtain the basic reproduction number as

R0 =
Aλ
μ1μ3
(1−

μ2
α1 + α2 + α3 + μ2

). (9)

3.2 Dissemination-free equilibrium

The dissemination-free equilibrium represents a state where
the system reaches stability in the absence of active dissemination.
The following theorem provides the conditions for local asymptotic
stability.

Theorem 2: For the model defined by (1), the dissemination-free
equilibrium is locally asymptotically stable when R0 < 1. However, if
R0 > 1, the dissemination-free equilibrium becomes unstable.

Proof. The Jacobian matrix of the nonlinear system (1)
is as follows

J =(

−μ1 − λ(Ip + In + Im) 0 −λS −λS −λS
λ(Ip + In + Im) −α1 − α2 − α3 − μ2 λS λS λS

0 α1 ωIn − μ3 ωIp δ1
0 α2 −ωIn −μ3 −ωIp δ2
0 α3 0 0 −δ1 − δ2 − μ3

),

(10)

and the correspondingmatrix at the dissemination-free equilibrium
is given by

J (P1) =(

−μ1 0 −λA/μ1 −λA/μ1 −λA/μ1
0 −α1 − α2 − α3 − μ2 λA/μ1 λA/μ1 λA/μ1
0 α1 −μ3 0 δ1
0 α2 0 −μ3 δ2
0 α3 0 0 −δ1 − δ2 − μ3

). (11)

The characteristic equation corresponding to (Equation 11) is

(ξ+ μ1)(ξ+ μ3)(ξ+ δ1 + δ2 + μ3)(A0ξ
2 +A1ξ+A2) = 0

where ξ represents the eigenvalue of J(P1), and

A0 = μ1, A1 = μ1 (α1 + α2 + α3 + μ2 + μ3) ,

A2 = −Aλ(α1 + α2 + α3) + μ1μ3 (α1 + α2 + α3 + μ2) .

If we use the basic reproduction number in (Equation 9), then we
can express A2 as

A2 = μ1μ3 (α1 + α2 + α3 + μ2)(1−R0) .

Therefore, all eigenvalues of the characteristic equation will have
negative real parts if R0 < 1, and hence the model given by (1) is
locally asymptotically stable at the dissemination-free equilibrium.
On the other hand, the model is unstable at this equilibrium if R0 >
1.

Theorem 3: The dissemination-free equilibrium, P1, of the model
defined by (1) is globally asymptotically stable within Ω whenever
R0 < 1.

Proof. We define the following linear Lyapunov function

V (t) = (α1 + α2 + α3)E (t) + (α1 + α2 + α3 + μ2)(Ip + In + Im) .

Considering (1) togetherwith (5), the derivative of the Lyapunov
function with respect to t simplifies to

V′ (t) = (α1 + α2 + α3)E′ (t) + (α1 + α2 + α3 + μ2)(I
′
p (t) + I

′
n (t) + I′m (t))

= μ3 (α1 + α2 + α3 + μ2)(
α1 + α2 + α3

α1 + α2 + α3 + μ2
λS
μ3
− 1)(Ip + In + Im)

≤ μ3 (α1 + α2 + α3 + μ2)(
α1 + α2 + α3

α1 + α2 + α3 + μ2
Aλ
μ1μ3
− 1)(Ip + In + Im) .

Equation 9 indicates that the final inequality can be expressed as

V′ (t) ≤ μ3 (α1 + α2 + α3 + μ2)(R0 − 1)(Ip + In + Im) .

For R0 < 1, the condition V′ = 0 holds only if Ip = In =
Im = 0. Therefore, the maximum invariant set within
{(S,E, Ip, In, Im) ∈R5

+|V′ = 0} is {P1}. By applying LaSalle’s invariance
principle, it follows that the dissemination-free equilibrium, P1, is
globally asymptotically stable when R0 < 1.
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FIGURE 2
The variational curves of S, E, Ip, In and Im provide insight into the global stability of the dissemination-free equilibrium for R0 = 0.0964286 < 1.

In Figure 2, the system is depicted for the parameter values A =
0.9, λ = 0.1, μ1 = 0.7, μ2 = 0.4, μ3 = 0.8, α1 = 0.1, α2 = 0.2, α3 = 0.3,
ω = 0.2, δ1 = 0.03 and δ1 = 0.04, with six different initial conditions
(5,5,2,5,5), (3,3,5,2,2), (2,4,3.8,3.5,3), (1,2,0.2,4,4), (0.2,1,1.6,1,1)
and (4,0.4,1,0.5,0.5). These parameter settings correspond to R0 =
0.0964286 < 1, where the system settles at the dissemination-free
equilibrium (1.28571,0,0,0,0). The figure illustrates the dynamic
behavior of the system, showing that, regardless of the initial
conditions, all state variables converge to the dissemination-free
equilibrium.

3.3 Endemic equilibrium

The endemic equilibrium represents a steady-state solution
where dissemination persists in the system at a constant level.
Analyzing the stability of this equilibrium provides insight into the
long-term behavior of the system, helping to identify conditions
under which dissemination persists or diminishes over time.

Theorem 4: For the model defined by (1), the endemic equilibrium,
P2, is locally asymptotically stable when the basic reproduction number
R0 > 1.

Proof. We define the following coefficients

B0 = δ1 + δ2 + μ3

B1 =
(δ1 + δ2 + μ3)(Aλ(α1 + α2 + α3) + μ3 (α1 + α2 + α3 + μ2)(α1 + α2 + α3 + μ2 + μ3))

(α1 + α2 + α3 + μ2)μ3
,

B2 =
Aλ(α1 + α2 + α3)(δ1 + δ2 + μ3)(α1 + α2 + α3 + μ2 + μ3)

(α1 + α2 + α3 + μ2)μ3
,

B3 = (δ1 + δ2 + μ3)(Aλ(α1 + α2 + α3) − μ1 (α1 + α2 + α3 + μ2)μ3) .

Then, the characteristic polynomial of the Jacobian matrix
(Equation 10) corresponding to P2 is

(ξ+ δ1 + δ2 + μ3)(ξ+ 2ω√k2 + 4l)(B0ξ
3 +B1ξ

2 +B2ξ+B3) = 0.

It is evident that B0, B1 and B2 are all positive. Furthermore, the
condition in (11) for the existence of the endemic equilibrium,
guarantees that B3 and B1B2 −B0B3 remain also positive.
Consequently, using the Routh-Hurwitz criterion, we determine
that P2, when it exists, is locally asymptotically stable.

The inequality in (Equation 6) can be reformulated in terms of
R0 defined in (Equation 9), yielding the relation

(α1 + α2 + α3)(R0 − 1) > 0.

This reformulation highlights that the endemic equilibrium is
asymptotically stable for R0 > 1.

Figure 3 illustrates the surface corresponding to R0 = 1 for a
fixed μ2 = 0.8, with the x-axis representing α1 + α2 + α3, the y-axis
representing λ/μ3, and the z-axis representing μ1/A. Parameter
values below this surface indicate that the dissemination-free
equilibrium is asymptotically stable, whereas values above the
surface signify the asymptotic stability of the endemic equilibrium.

Theorem 5: The endemic equilibrium, P2, of the model defined by (1)
is globally asymptotically stable withinΩ whenever R0 > 1.

Proof. We consider a nonlinear Lyapunov function of the
Goh–Volterra type, structured as

V (x) =
n

∑
i=1

ci(xi − x∗i − x
∗
i ln

xi
x∗i
),
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FIGURE 3
Surface corresponding to R0 = 1 for a fixed μ2 = 0.8.

which is particularly well-suited for systems with nonlinear
interactions, such as those observed in biological or ecological
models. Here, xi∗ represents the equilibrium value of the i-th state
variable, and ci > 0 are positive constants. These functions are non-
negative, achieving their minimum value at the equilibrium xi

∗.
Let us define the following Lyapunov function of this type for

the model given by (1)

V (P) = (S− S∗ − S∗ ln S
S∗
)+(E−E∗ −E∗ ln E

E∗
)+C(I− I∗ − I∗ ln I

I∗
),
(12)

where P = (S,E, I), I = Ip + In + Im, and C is a positive parameter
that will later be determined to satisfy the necessary conditions,
particularly those related to the derivative of the Lyapunov function.

By differentiating (Equation 12) and substituting the expressions
for the derivatives defined in (1), we obtain

V′ (P) = S′ − S∗ S
′

S
+E′ −E∗ E

′

E
+C(I′ − I∗ I

′

I
)

= (1− S
∗

S
)(A− λSI− μ1S) + (1−

E∗

E
)(λSI− (α+ μ2)E)

+C(1− I
∗

I
)(αE− μ3I)

(13)

where α = α1 + α2 + α3. At P2, solving for A from the first
equation of system (1) yields A = λS∗I∗ + μ1S

∗. Substituting
this into (Equation 13) and simplifying, we can group the remaining
terms as follows

V′ (P) = λS∗I∗ + 2μ1S
∗ − μ1S− (λI

∗ + μ1)
(S∗)2

S
− λSIE

∗

E
+ (α+ μ2)E

∗ −C(αE
I
− μ3) I

∗ +W (P)

whereW(P) = λS∗I− (α+ μ2)E+CαE−Cμ3I.

We setW(P) = 0; that is,

λS∗I− (α+ μ2)E+CαE−Cμ3I = 0. (14)

A small deviation from the steady state, derived from (Equations 1
and 14), leads toC = λ

μ3
S∗, α+ μ2 = λ

S∗I∗

E∗
and α = μ3

I
∗

E∗
. Substituting

these values in (Equation 3), we express the derivative of the
Lyapunov function as

V′ (P) = λS∗I∗(3− S
∗

S
− I
∗

I
E
E∗
− S
S∗

I
I∗

E∗

E
)+ μ1S

∗(2− S
∗

S
− S
S∗
).

Since the arithmetic mean is greater than or equal to the geometric
mean, we get

3− S
∗

S
− I
∗

I
E
E∗
− S
S∗

I
I∗

E∗

E
≤ 0, 2− S

∗

S
− S
S∗
≤ 0,

which implies that V′(P) ≤ 0 for R0 > 1. By LaSalle’s Invariance
Principle, it follows that every solution of the system in (1)
approaches the unique associated endemic equilibrium as t→∞,
provided R0 > 1.

Figure 4 presents the system dynamics, utilizing the
parameter values A = 4, λ = 0.1, μ1 = 0.6, μ2 = 0.2, μ3 = 0.25,
α1 = 0.1, α2 = 0.3, α3 = 0.2, ω = 0.05, δ1 = 0.03 and δ2 = 0.04.
The system is examined under the same six initial conditions
as in Figure 3. With these parameters, the basic reproduction
number satisfies R0 = 2 > 1, leading to an endemic equilibrium
at (3.33,2.5,2.6652,2.7722,1.5625). According to Theorem 5,
this equilibrium is globally asymptotically stable. The
figure illustrates that, irrespective of the chosen initial
conditions, all state variables ultimately settle at the endemic
equilibrium.
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FIGURE 4
The variational curves of S, E, Ip, In and Im provide insight into the global stability of the endemic equilibrium for R0 = 2 > 1.

FIGURE 5
Transcritical bifurcation in the (R0, Ip + In + Im) plane. The blue curve
represents the stable dissemination-free equilibrium, the red curve
denotes the unstable equilibrium, and the purple curve corresponds to
the stable endemic equilibrium.

3.4 Transcritical bifurcation

AtR0 = 1, the system in (1) undergoes a transcritical bifurcation,
a phenomenon characterized by an equilibrium whose eigenvalue
exhibits a real part that crosses zero. This transition marks a
fundamental change in system stability. Using the parameter values
A, α1, α2, α3, μ2 and μ3 as defined in Figures 4, 5 visualizes the
system’s behavior in the (R0, Ip + In + Im) plane.

FIGURE 6
Sensitivity analysis of R0.

The graphical representation highlights the following distinct
equilibrium branches in the system.

• The blue curve represents the stable branch of the
dissemination-free equilibrium (P1), where the system remains
free from opinion dissemination.
• Thered curve denotes the unstable branch of the dissemination
equilibrium (P1), indicating a transition point where
stability is lost.
• The purple curve corresponds to the stable endemic
equilibrium (P2), where opinion dissemination persists in a
stable state.
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FIGURE 7
Contour plots of R0 as a function of K and α (a) and K and μ2 (b) where K = Aλ

μ1μ3
and α = α1 + α2 + α3. The labels on the contour lines represent the

corresponding R0 level values.

3.5 Simulations

3.5.1 Sensitivity analysis of the basic reproduction
number

Understanding the sensitivity of the basic reproduction number
(R0) is crucial for identifying the most influential factors in the
opinion spread process. To quantify the impact of each parameter
on R0, we compute the normalized sensitivity index defined by

YR0
x =

∂R0

∂x
x
R0
,

where YR0
x measures the relative change in R0 due to a small

proportional change in x. A positive YR0
x indicates that increasing

x increases R0, while a negative Y
R0
x means increasing x reduces R0.

Figure 6 presents a bar chart of the sensitivity indices,
visually comparing the relative influence of each parameter
on R0. The results indicate that A (engagement level) and λ
(influence rate) have the most significant positive impact on R0,
suggesting that increasing engagement or strengthening influence
accelerates opinion spread. Conversely, μ1 and μ3 (removal-
disengagement rates) strongly decrease R0, indicating that higher
disengagement rates help mitigate opinion persistence and reduce
polarization effects.

The contour plots in Figure 7 illustrate how R0 varies with
different system parameters, offering key insights into opinion
dissemination which quantifies the balance between influx,
transmission, and disengagement rates of susceptibles and
communicators, plays a crucial role in shaping R0. As K = Aλ

μ1μ3
increases, R0 rises, indicating that a higher influx and transmission
relative to disengagement of susceptible and exposed departments
leads to sustained opinion spread. Additionally, α = α1 + α2 + α3,
representing the total rate at which exposed individuals transition
into communicator states (positive, negative, or mixed-emotion),
influences the dissemination dynamics but does not guarantee high
R0 unless coupled with sufficiently large K. Subplot (b) explores
the effect of μ2, the disengagement rate of exposed individuals, on

R0. The results show that increasing μ2 leads to a decline in R0,
highlighting that a higher dropout rate among exposed individuals
limits long-term dissemination. The steep color gradients in both
subplots suggest a threshold-like transition, where small parameter
variations can significantly alter R0.

3.5.2 Role of engagement in driving polarization
and depolarization

Although the model formulation permits time-bounded
influxes, the following simulations assume a constant u(t) = A
to investigate the system’s long-term behavior and equilibrium
dynamics. In this section, we examine how the engagement
level, A, influences the evolution of public opinion, driving
transitions between different opinion states. Here, the parameter
A represents the constant influx of new susceptible individuals into
the system, determining the rate at which fresh participants enter
public discourse. Since A is externally adjustable, it serves as a
powerful control mechanism, enabling modifications to the system’s
equilibrium and shifting the balance between polarization and
depolarization. This implies that in an evolving opinion landscape,
adjusting A allows us to steer public discourse, making it a key
determinant in shaping long-term ideological stability.

The simulation results, presented in Figure 8, illustrate the
influence of 12 different values of A, ranging from 0.5 to 6, on the
system’s temporal evolution. Each simulation was performed using
the initial condition (3,2,4,1,5), ensuring consistency across all cases.
A dashed line marks the trajectory for A = 2, serving as a reference
to highlight deviations in system behavior as engagement levels vary.

For smaller values of A, where the inflow to S is relatively
low, Ip declines in the early stages before stabilizing. This suggests
that when engagement is weak, the ability of Ip to maintain
influence diminishes, likely due to insufficient replenishment
from the susceptible pool. Meanwhile, In exhibits a brief increase
before gradually declining to its steady-state, likely due to initial
reinforcementwithin existing networks.However, without sustained
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FIGURE 8
Temporal evolution of opinion groups (S, E, Ip, In, Im) for different values of engagement level (A). Higher A reinforces polarization by increasing both
communicator groups (Ip, In), while lower A promotes depolarization as these groups weaken.

engagement, its influence diminishes over time, leading to
depolarization as both communicator groups weaken.

As A increases, the dynamics of communicator groups change
significantly. Competition initially weakens Ip before it recovers and
stabilizes at a higher steady-state.Meanwhile, In temporarily benefits
from increased exposure before stabilizing at a reduced level.
These interactions reflect how, by model construction, engagement
supports the persistence of both opposing viewpoints rather than
amplifying only one.

For higher values ofA, the contrast between the two opinionated
groups becomes even more pronounced, reinforcing polarization.
As engagement increases, both Ip and In persist at relatively higher
levels, meaning that a larger fraction of the population remains
divided into strongly opinionated groups. As expected from the
model’s symmetrical structure, increasing engagement sustains both
opinionated groups, which aligns with a polarized steady state rather
than consensus.

At lower engagement levels, depolarization occurs as both
communicator groups gradually lose influence, leading to a
more homogeneous opinion landscape. As Ip and In decrease
over time, opinionated individuals struggle to maintain their
influence, resulting in reduced polarization. More individuals either
disengage from the discourse or transition into less extreme
states, allowing for a more uniform opinion distribution. In
the model, lower engagement levels reduce the replenishment
of opinionated groups, which leads to a more homogeneous
final configuration.

Overall, the simulation results suggest that engagement plays
a crucial role in shaping the balance between polarization and
depolarization. When engagement is high, ideological divisions
are reinforced, with both positive and negative opinion groups
persisting at substantial levels. In contrast, when engagement is
weak, opinion groups lose their influence over time, leading to
a more depolarized system where ideological fragmentation is
reduced.These observations, based on the chosen parameter values,
highlight the potential of engagement as amechanism that can either
sustain ideological divisions or facilitate depolarization, depending
on its intensity.

3.5.3 Role of influence rate in driving polarization
and depolarization

In this analysis, the engagement level is fixed at A = 4, while
the influence rate λ is varied from 0.01 to 0.95 to examine its role
in shaping polarization and depolarization dynamics. In Figure 9,
a dashed line at λ = 0.09 is included as a reference, and all other
parameters remain consistent with those in Section 3.4.2.

The results suggest that λ, which controls the strength of
influence communicators exert on susceptibles, plays a crucial role
in determining whether the system trends toward polarization or
depolarization. For smaller values of λ, both communicator groups
weaken over time, indicating that weak influence prevents the long-
term persistence of strongly opinionated individuals, facilitating
depolarization. Conversely, as λ increases, Ip initially decreases
but later grows before stabilizing at a higher level, suggesting
that stronger influence reinforces opinionated groups rather than
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FIGURE 9
Temporal evolution of opinion groups (S, E, Ip, In, Im) for different values of influence rate (λ). Higher λ reinforces polarization by increasing the
persistence of communicator groups (Ip, In), while lower λ weakens their influence, promoting depolarization.

FIGURE 10
Temporal evolution of opinion groups (S, E, Ip, In, Im) for different values of disengagement rate (μ1). Higher μ1 leads to depolarization by accelerating
the disengagement of susceptibles, reducing the formation of strong opinionated groups. In contrast, a lower μ1sustains polarization by allowing more
susceptibles to transition into opinionated states.

weakening them. Meanwhile, In initially rises across all λ values
before declining, with higher λ values leading to amore pronounced
and sustained increase.

In accordance with the model’s dynamics, stronger influence
increases opinion propagation without ensuring convergence to a
single viewpoint.

3.5.4 Role of disengagement rate in driving
polarization and depolarization

In this analysis, the disengagement level of susceptibles, μ1, is
varied from 0.01 to 0.91 to examine its role in shaping polarization
and depolarization dynamics. In Figure 10, a dashed line at μ1 =
0.25 is included as a reference, and all other parameters remain
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consistent with those in Section 3.4.2. The results indicate that
μ1, which controls the rate at which susceptibles leave the system
before forming an opinion, significantly influences the persistence
of opinionated groups and, consequently, the degree of polarization
in the system.

For higher values of μ1, the positive communicator population
(Ip) decreases over time until it stabilizes at a lower steady-state.This
suggests that when susceptibles disengage quickly, fewer individuals
transition into the positive communicator group, leading to a
weaker influence of strongly opinionated individuals. Meanwhile,
the negative communicator group (In) initially experiences an
increase before declining to a lower steady-state, indicating that
a temporary gain in negative opinions is not sustainable under
high disengagement rates. In contrast, for lower values of μ1,
the behavior of both communicator groups changes significantly.
The number of positive communicators decreases at first but later
increases before stabilizing at a higher steady-state value, suggesting
that when susceptibles remain in the system for longer, more
individuals transition into strongly opinionated groups. Similarly,
In also exhibits an initial rise, but for small μ1, the final steady-
state value is significantly higher, indicating that stronger influence
sustains both opposing opinion groups for an extended period.

Given the role of μ1 in controlling the outflow from susceptibles,
it plays a structural role in determining how opinionated groups
evolve in the model. When μ1 is high, both Ip and In stabilize
at lower levels, suggesting that as susceptibles disengage more
rapidly, fewer individuals transition into strong opinion states,
leading to depolarization. Conversely, when μ1 is low, both
groups persist at higher levels, reinforcing polarization as more
individuals remain engaged and committed to their views. These
findings confirm that the disengagement rate of susceptibles plays a
fundamental role in shaping long-term opinion dynamics, with high
disengagement facilitating depolarization and low disengagement
reinforcing ideological divisions.

4 Conclusion

In this study, we developed and analyzed a compartmental
model that captures the nonlinear dynamics of public opinion
dissemination under finite-duration interventions. The model
incorporates five interacting compartments, including a novel
mixed-emotion group, and is driven by a time-dependent influx
function representing external engagement. Through rigorous
analytical methods, we established the positivity and boundedness
of solutions, identified both dissemination-free and endemic
equilibrium points, and determined their stability based on the
basic reproduction number R0. Furthermore, the system exhibits a
transcritical bifurcation at the critical threshold R0 = 1, illustrating
how qualitative changes in system dynamics emerge with varying
control parameters.

Our findings suggest that public discourse can indeed
be influenced through targeted interventions, particularly via
parameters that correspond to policy-relevant levers. In our model,
the engagement amplitude A, which represents the sudden influx
of users into the discourse, is directly modulated by access policies
such as temporary bans or re-openings of digital platforms. The
timing and duration of such interventions (tint,Tint) are similarly

under administrative control. Disengagement rates (μ1,μ3) may be
indirectly shaped through algorithmic throttling, content saturation,
or platform design that induces fatigue. An important insight
from our analysis is the role of the mixed-emotion group in
shaping the persistence and direction of polarization. Although
its population may remain moderate, the Im compartment mediates
the flow between opposing viewpoints via transition rates δ1 and δ2.
Through the bidirectional transitions governed by δ1 and δ2, the Im
compartmentmediates exchanges between opposing communicator
groups. In our simulations, this mediating role can prolong the
coexistence of Ip and In and delay convergence to a single dominant
group, thereby supporting the persistence of multiple viewpoints.
While these flows are linear and do not constitute a regulatory
feedback loop in the strict dynamical systems sense, their structural
effect is to provide continuous exchange channels that can sustain
ideological diversity under certain parameter regimes. Ignoring this
group would risk oversimplifying the dynamics of public discourse,
especially in digital environments where users increasingly express
ambivalent or multifaceted opinions Additionally, the influence
strength λ, though harder to manipulate directly, can be affected by
state-run media amplification or suppression strategies.

A key simplification in our model is the use of constant
transition rates from exposed individuals to the opinionated
compartments. This implies that opinion adoption is governed
by internal dispositions rather than social influence at that stage.
While this allows for analytical tractability, it overlooks potential
feedback effects where individuals might be more likely to adopt
the most visible or dominant opinion. Future extensions could relax
this assumption by introducing state-dependent transition rates,
possibly influenced by the current distribution of Ip, In, Im, to better
capture social reinforcement or conformity effects.

Taken together, both our simulations and sensitivity analysis
show that tuning these parameters can shift the system between
polarized and depolarized states, offering a theoretical foundation
for understanding how public discourse might be steered through
real-world regulatory actions.

Future work may extend the model to incorporate time-
dependent transition rates and influx functions, allowing for the
study of non-autonomous regimes and temporally structured
interventions. In particular, while our formulation admits a general
time-bounded influx u(t), the present analysis is restricted to the
constant-influx case in order to facilitate tractable equilibrium
and stability results. Addressing the full transient dynamics
under variable u(t) would require alternative mathematical
tools suited to non-autonomous systems. Furthermore, coupling
the system with delayed or feedback-controlled mechanisms
could yield richer bifurcation structures and dynamic responses,
offering deeper insights into how temporary engagement
surges and algorithmic interventions influence the evolution of
polarization over time.
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